Permutation representations

1 Permutation representations

Let G be a finite group and let X be a finite G-set. For simplicity we will
assume that #(X) > 2. Recall that G acts transitively on X if, for all
x,y € X, there exists a ¢ € G such that g - x = y. Equivalently, there is
exactly one G-orbit, i.e. for one (or equivalently all) z € X, G-z = X.

Definition 1.1. G acts doubly transitively on X if, for all z,y,z,w € X
with « # y and z # w, there exists a ¢ € G such that g-z = z and g-y = w.
In particular, the G-action is transitive.

Equivalently, let G act on the Cartesian product X x X in the obvious
way: g (z,y) = (¢9-2,9-y), and let A C X x X be the diagonal:

A={(z,x):ze X} ={(z,y) e X x X : 2 =y}

Thus A is a G-invariant subset and so X x X — A is also a G-set. Then
G acts doubly transitively on X <= G acts transitively on X x X — A

<= there are exactly two G-orbits for the action of G on X x X, namely
X x X —A and A.

Example 1.2. 1) The symmetric group S, acts doubly transitively on
{1,...,n} for n > 2. In fact, given ¢,7,k,¢ € {1,...,n} with i # j and
k # ¢, the sets {1,...,n} —{i,j} and {1,...,n} — {k, ¢} both have n — 2
elements, so there is some bijection

oo: {1,....,n} —{i,5} = {1,...,n} — {k, ¢}.
Then define a permutation o: {1,...,n} — {1,...,n} by
o(1) = k; o(j) =¢; o(x) =oo(x), x#1i,j.

Then by construction o(i) = k and o(j) = ¢, so the action is doubly transi-
tive.



2) The alternating group A,, acts doubly transitively on {1,...,n} for
n > 4: Given i,7,k, ¢ € {1,...,n} with i # j and k # ¢, use the above
to find a o € S, such that o(i) = k and o(j) = ¢. If 0 € A,, we are
done. Otherwise, o is odd. Since n > 4, there exists two distinct elements
r,s € {1,...,n} — {k,£}. Then (r,s)oc € A, since it is a product of an
even number of transpositions and (r, s)o(i) = (r,s)(k) = k and similarly
(r,s)o(j) = (r,s)(¢) = £. Thus the action is doubly transitive. Note however
that for n = 2,3 the action of A, on {1,...,n} is not doubly transitive. For
example, there is no o € Ag such that o(1) =2 and o(2) = 1.

3) For n > 4, the action of D,, on the vertices of a regular n-gon (or
equivalently on the n points (cos =7 2rk gin 27r’“) in the model for D,, we have
constructed) is transitive but not doubly transitive. This is because the
action must send a pair of adjacent vertices to a pair of adjacent vertices,
and, for n > 4, there are always vertices which are not adjacent.

Let X be a G-set and consider C[X], viewed as a G-representation.
Our goal is to better understand the decomposition of C[X] into irreducible
representations. There is always a one-dimensional G-invariant subspace
Wi =t-3 _ cxonwhich G acts trivially and a subspace

:{th-x:thzo},

zeX zeX

with C[X] = W &Ws. Note that Wi € C[X]%, but equality does not always
hold.

Proposition 1.3. dim C[X]“ is equal to the number of G-orbits of X.
Proof. Write the distinct orbits of G in X as O1,...,0s. For each i, 1 <

1 < t, set
= Z z e C[X
z€0;

Viewing C[X] as L?(X), the vector space of functions from X to C, the
element v; corresponds to the characteristic function of O;, i.e. the function

fo, defined by
1, ifxe Oy
foz(x) = {

Clearly vy, ...,v; are linearly independent elements of C[X|. Moreover,
pe)(9) () = D pex(9)@) = D_g-w =3 @ =i,
z€0; z€0; z€O;



since g € G permutes the orbit O;. Hence vy, ..., v; are linearly independent
elements of C[X]%. We must show that they span C[X]¢. Given an element
a =) cxtex, we can break the sum up into a sum over the orbits:

a:th-x:ith-x.

zeX i=1 z€O;

Claim 14. Ifa =) xt:-x € C[X]%, then, for all x,y € O;, t, = ty,
i.e. the value t, is the same for all x € O;.
In fact, assuming the claim, let s; be the common value of t, for x € O;.

Then a = >.'_, s;v;. Thus the v; span C[X]% and hence are a basis, so
dim C[X]¢ = t. O

Proof of the claim. 1t follows from the definitions that o = Y -t - o €

CIX]¢ <= peixi(g)(@) =aforallge G <= forallge G
(x]
Ztm-(g~:1:):Ztm~x.
zeX zeX

Equivalently, for all x € X and all g € G, t; = t;-1.,. In particular, if y is
in the same orbit O; as ¥, say * = g -y, then t, = t,-1., = t,, which is the
statement of the claim. O

Corollary 1.5. The subspace Wy of C[X] is equal to C[X], or equivalently
(W2)¢ = {0} <= G acts transitively on X. O

Corollary 1.6 (Burnside’s lemma). If the finite group G acts on a finite
set X, and t is the number of G-orbits of X, then

t#(G) = Y #(X9).

geG

Proof. By general theory,
1 1
dim C[X] = (xex)p 1) = =+ Z xex)(9) = 574 Z #(XY),
#0) 2 #0) 2
where X9 = {z € X : g-x = x}. Thus the corollary follows from Proposi-

tion 1.3. U

Theorem 1.7. With notation as above, write C[X] = Wy & Wa. Then
Wy = C[X]¢ <= G acts transitively on X. Moreover, in this case W is
irreducible <= G acts doubly transitively on X.



Proof. The first statement is Corollary 1.5. Assume that this is the case.
Now Wy is irreducible <= (xw,, Xxw,) = 1. On the other hand, we can
write

XCIX] = Xwy T XW, = L+ xws-
Thus

(Xcx)s Xex)) = (1 + xwa, 1+ xws)
= <1a 1> =+ <17XW2> + <XW27 1> + <XW27XW2>'

Clearly (1,1) = 1. Since G acts transitively on X, W = {0}, and hence
(Xws, 1) = 0, likewise (1, xws,) = (xws, 1) = 0. It follows that

(xerx)p xexp) = 1+ (owas Xwa)-
Thus Wy is irreducible <= (xw,, xwy) =1 <= (xc[x), Xc[x]) =

2
Clearly, all of the values of x¢[x] are integers, since xc[x](g) = #(X7).
In particular, they are real numbers. Thus

1 2 1 2 2
X]s XC[X]) = 7 X = X = 1)
{(Xcx) Xex]) el gzeé'm[ 1(9)] el %XC[ 1(9)" = (Xgxpp 1)
Next, we claim that
X(zc[x] = XC[XxX]-
In fact, for every g € G, X(2C[X] (g9) = (#(X9))2. On the other hand, we have
seen that
Xcxxx)(9) = #(X x X)9),
where (X x X)9 = {(z,y) € X x X : g (x,y) = (x,y)}. Since g - (z,y) =
(g-z,9-y), (z,y) € (X xX) «— g-xz=zandg-y =y <=
x € X9 and y € X9. In other words, (X x X)9 = (X9) x (X9). Thus
#((X x X)9) = (#(X9))? and hence X(%J[X} = Xc[x xx] as claimed.
Putting this together, we see that

(xcmx)s xeix)) = (Xepxgr 1) = (Xepexx)s 1)-
By Proposition 1.3, (xc[xxx],1) is the number of orbits of G' acting on
X x X. Hence, by the remarks in Definition 1.1, <X(C[X}7X(C[X}> =2
the G-action on X x X has exactly two orbits <= the G-action on X is
doubly transitive. O

Corollary 1.8. For n > 2, the representation of Sy, on W = {(t1,...,t,) :
> i ti = 0} is an irreducible representation of dimension n —1. For n > 4,

the representation of A, on W is an irreducible representation of dimension
n—1. O



