Problem set 10 for Representations of Finite Groups
If you find errors in this text, please email me, thanks!

Material from lecture on Thursday, November 16. Let me explain it a little
bit more here.

Situation. Let G be a finite group. For i = 1,2, let H; C G be a subgroup and let
Xi : Hi = C* be a group homomorphism (sometimes called a character, or a linear
character, or a degree 1 character). Assume the following

(A1) xalminms = x2lHinH,
(A2) for g € G, g ¢ HiHy there exist a z € H; N gHog™! such that x;(z) #

x2(97'zg).

Lemma 1. There exists a unique (up to isomorphism) irreducible representation
(V,m) of G such that (V,x) occurs in both Indglxl and Indg2xg.

Proof. It suffices to show that
Homg(Indglxl, Indg2 X2)
is 1-dimensional. To see this we use adjointness of functors
Homg(Indglxl, Indglxl) = Hompy, (x1, ResglIndeXQ)

Write
G= nglH2 II... HH]_gnHQ

We may and do choose g1 = 1. Then g; € HiHy for i = 2,...,n. By Mackey’s
second theorem we have

Resf, Indf, xo = Indj g, xelmom © @@, Indgg! ¥
where
Hyi=HiNgiHag; ' and i(z) = xa2(g; '29:)
Thus we have

Hompy, (x1, Resf(1 InngXQ)
=Homp, (x1, Ind 7 1y, Xo|mynm,) © @1:2 _ Homp, (x1, Indgiiwi)

:HomH1ﬁH2 (X1|H10H2’X2‘H1ﬂH2) @ @1:2 Cn HomHl,i (XllHl,wwi)

where in the second equality we used adjointness of restriction and induction again.
Thus condition (A1) tells us that the first summand has dimension 1 and condition
(A2) tells us that the other summand have dimension 0. QED

Lemma 2. The representation (V,7) has multiplicity 1 in both Indfl1 (x1) and
Indg,2 (x2)-

Proof. Follows immediately from the fact that we proved Homg (Indf{1 X1, Indg2 X2)
is 1-dimensional in the proof of Lemma 1. QED

Lemma 3. The representation (V) 7) is the only irreducible representation of G (up
to isomorphism) such that x; occurs in Res% (V,7) and x» occurs in Resfj (V, 7).

Proof. Follows from adjointness of restriction and induction. QED



For i = 1,2 let us denote
_ -1
P = E ner, Xi (h)op, € C[G]

Recall that an element T' = ) a40, € C[G] acts on a representation (W, p) of G by
the rule W 3 w — T(w) = > agp(g)(w). Recall that T =0 < T acts as the zero
operator on each representation W < T acts as the zero operator on each irreducible
representation W. Recall that we have the convolution product x on C[G] and that
this product is compatible with the action of C[G] on the representation W.

Lemma 4. For any representation (W, p) the subspace P;(W) of W is nonzero if
and only if Hompg, (x4, ResgiW) is nonzero.

Proof. For h € H; we have
o * Py = xi(h) P

in C[G]. Hence if w = P;(w') then p(h)(w) = x;(h)w for h € H;. Converesely, if
w € W satisfies p(h)(w) = x;(h)w, then P;(w) = |H;|w and we see that P; is not
the zero operator. QED
Lemma 5. For an irreducible representation (W, p) of G the following are equiva-
lent

(1) (W, p) is isomorphic to (V, ),

(2) P (W) and Po(W) are nonzero,

(3) Pi(Py(W)) is nonzero.

Proof. The equivalence of (1) and (2) follows from Lemmas 1 and 4. If (3) holds,
then (2) holds. In particular, we see that if Py x P» is nonzero, then it must act
nontrivially on V and (2) and (3) are equivalent. To finish the proof write

PixPy=3 " X ()X (h2)dnn
The coefficient of §; is
—1 o
ZheHmH2 X1 (h)xa(h) = [Hy N Hy|

by assumption (A1) and hence P; x P, is nonzero.

Lemma 6. There exists a constant u € C* such that

1 —
@) =1 (Y i e g Xa(h)X2(h2))
for all ¢’ € G.
Proof. We claim that there exists a constant 4 € C* such that

1 (dec dg * Py x Py % 6971) = dec Xr(9)0g

in C[G]. Of course, if this is true, then we see the lemma holds by looking at values
of left and right hand side on ¢’ € G. The displayed equality follows from the
following three observations

(1) Both right and left hand side of the equation are in the center of C[G], i.e.,
they are class functions on G.

(2) Both right and left hand side act as 0 on each irreducible representation of
G, except on V.

(3) The expression » dg x Py x Py % 0,-1 is nonzero.

geG
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Namely, assume (1), (2), and (3) hold. By (1) both T' = > ;¢ * P1 * P2 x §,-1
and TV =5 4G Xr(9)dg act as a scalar on each irreducible representation W of G.
By (2) this scalar is zero, except for W = V. By (3) there exists an p such that
uT and T act by the same scalar on V' as well. Then T” — T acts as zero on each
irreducible representation of G and hence 77 — uT is zero in C[G].

Proof of (1), (2), and (3). Part (1) is left to the reader. Part (2) holds for the left
hand side by Lemma 5 and for the right hand side because deG X=(9)dg is up

to a scalar the projection onto the V-isotypical component (see lectures). Part (3)
holds by the computation in the proof of Lemma 5. QED

Lemma 7. For g € G denote C; the conjugacy class of g. We have

dim (V)
6ol = o (ot e e, X1 (ha))

This agrees with Burrow’s article “A generalization of the Young diagram”.

Proof. A counting argument using the result of Lemma 6 gives that there exists a
constant i/ € C* such that for all g € G we have

!/

M
)= 1 (Zcan macr, monsce, 11N2(0))

where C; C G is the conjugacy class of g. Evaluating this for g = 1 using (A1) we
conclude that

dim(V) = p'|H; N Hy|
Filling this into the formula above we get the lemma. QED

Application to symmetric groups. Let G = 5,,. Let A n be a partition of n.
Let ¢y be the basic tableau of type A. We want to consider the case

H; = S\ = R = R, = row stabilizer of ¢y
with x1 = 1 the trivial character and
Hy; = C = C, = column stabilizer of ¢y
with x2 = € the sign character.

Result. H; N Hy = {1}. This we discussed in class and everyone agreed. This
proves that (A1) holds.

Example. Let G = S3 and let A = (2,1). Then we have H; = R = {1,(12)} and
Hy; = C ={1,(13)}. The products hq - ho for hy € H; and hy € H, are

1-1=1, (12)-1=(12), 1-(13)=(13), (12)-(13)=(132)
The elements o ¢ Hi Hy = RC are the elements
o =(23), (123)

We have H; NoHyo~! = H; in both cases. Thus condition (A2) holds. Let (V, )
the the corresponding irreducible representation of G = S3. Then we see that

. dim(V

(D) = dim(V), xx((12) =0, ye((128)) = - 22V

The zero in the middle comes from the fact that we are summing the values of the
sign character on the hs for those pairs (h1, he) € Hy X Ho such that hq - hg is in the
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conjugacy class of (12). To get dim (V') we use that (xx, xx) = 1 for our irreducible
character x, which in this case means that

1. 1 dim(V)?
1== 21 2= ) = —" 71
5 dim(V) ( +0+ 4> 1

We conclude that dim(V) = 2 which gives the usual character of the usual 2-
dimensional irreducible representation.

Notation. For any tableau ¢ of type A we set
R; = row stabilizer of t and C; = column stabilizer of ¢

Note that given a tableau ¢ of type A there is a unique o € G such that ¢ = o(tp)
and then we have
C,=0Co ' =0gHyo™ !

Exercise 1. Prove that (A2) is equivalent to

(S1) For every g € G, g ¢ HyHy the group Hy N gHyg™ ! contains an odd
permutation.

Exercise 2. Prove that (S1) is equivalent to

(S1’) For every t = g(tp) with g € G, g € RC the group R N C; contains an odd
permutation.

Exercise 3. Prove that (S1’) is equivalent to (S2) + (S3) which are as follows

(S2) For every tableau t of type A, if RNC; # {1}, then RN C} contains an odd
permutation.
(S3) For every tableau t of type A, if RNC, = {1}, then t = o(to) with o € RC.

Exercise 4. Prove
(S2’) For every tableau t of type A, if RN Cy # {1}, then RN C; contains a
transposition.
which of course implies (S2).

Exercise 5. Prove that (S3) follows from

(S3’) For every tableau ¢ of type A with increasing numbers down the columns,
if RN Cy = {1}, then t = r(ty) with r € R.

Answer to Exercise 5. Assume (S3’) holds. Let ¢ be an arbitrary tableau with
RNCy={1}. Write t = o(to). Let ¢’ be the tableau which is column equivalent to
t and with increasing numbers down the columns. Note that Cy = C; and hence
we have RNCyp = {1}. By assumption, there exists an r € R with ¢’ = r(tg). Write
t' = ¢ (t) with ¢’ € Cy. Since C; = 0Co ™!, we see that ¢/ = oco~! for some c € C.
Then we see that

olte) =t = ()71 (t') = a(c (o7 (r(tn))))
and hence we see that
c=cc lolr=1=¢

which tells us that ¢ € RC as desired. QED
Exercise 6. Prove (S3).

lolr=al=ct=0=rc"!

Answer to Exercise 6. We will try this in class on Tuesday, November 21.



