
Problem set 12 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!

Continuing the discussion from Problem set 11. Recall that we formulated some
conditions on partitions λ of n. One of these was:

(S3’) For every tableau t of type λ with increasing numbers down the columns,
if R ∩ Ct = {1}, then t = r(t0) with r ∈ R.

Exercise 6 from Problem set 11. Prove (S3’).

Answer to Exercise 6. In class on Tuesday, November 21 we argued as follows.
Let t be a tableau of type λ with increasing numbers down the columns and such
that R∩Ct = {1}. Suppose that an entry a from the last row of t0 does not appear
in the last row of t. Then let b be the last entry of the column of t in which a
appears. Since a is not in the last row of t we see that b is not equal to a. Hence
b > a because in t the numbers are increasing down the columns. It follows that
b must be in the last row of t0 also. But then the transposition τ = (ab) is inh
R ∩ Ct, contradiction!

Thus the last rows of t and t0 have the same entries. Then we can remove these
last rows and reduce to a smaller n and we win by induction (details omitted).

The irreducible representations of Sn. By the solution of Exercise 6 above
and the discussion in Problem set 11, for any partition λ of n we get a unique
irreducible representation Sλ of Sn which occurs both in

Mλ = IndSn

Sλ
1 = IndSn

Rt0
1 = IndSn

R 1

and in IndSn

C (ϵ) where C = Ct0 . (For notation please see Problem set 11.) Also,
we know that Sλ occurs with multiplicity 1 in both of these.

Exercise 7. Let λ and µ be partitions of n. Prove the following statement: If
HomSn

(Sλ,Mµ) ̸= 0, then there exists a tableau t′ of type µ such that every
element of C ∩Rt′ is even.

Answer to Exercise 7. We will discuss this in the lecture on Tuesday Nov 28.
Observe that

HomSn
(Sλ,Mµ) ̸= 0 ⇒ HomSn

(IndSn

C (ϵ),Mµ) ̸= 0

By adjunction we have

HomSn(Ind
Sn

C (ϵ),Mµ) = HomC(ϵ,Res
Sn

C Mµ)

Let R′ be the row stabilizer of the basic tableau t′0 of type µ. Then by Mackey’s
second theorem we have

ResSn

C Mµ) = ResSn

C IndSn

R′ 1 =
⊕

IndCC∩Rt′
1

where the direct sum is over a certain list of tableaux t′ of type µ with row stabilizer
Rt′ . Namely, Mackey’s theorem tells us to write Sn = Cσ1R

′ ⨿ . . . ⨿ CσlR
′ and

then have the direct sum of the inductions of 1 from C ∩ σiR
′σ−1

i to C. But then

σiR
′σ−1

i = Rt′ where t′ = σi(t
′
0) as desired. Thus HomSn(S

λ,Mµ) ̸= 0 implies
that for some tableau t′ of type µ we have

HomC(ϵ, Ind
C
C∩Rt′

1) ̸= 0
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By adjunction this says that

HomC∩Rt′ (ϵ, 1) ̸= 0

which is clearly equivalent to the statement in the exercise.

Exercise 8. Prove the following statement: If HomSn(S
λ,Mµ) ̸= 0, then λ ⊵ µ.

Answer to Exercise 8. By Exercise 7 there exists a tableau t′ of type µ such that
every element of C∩Rt′ is even. In particular there does not exist a transposition in
C∩Rt′ . Let t0 be the basic tableau of type λ as above. Now if a ̸= b are two entries
in the same row of t′, then they cannot be in the same column of t0 (otherwise the
transposition of a and b would be in the group C ∩Rt′). Hence by the Dominance
lemma (see notes of Bob on reps of symmetric groups; we will discuss this in the
lecture on Tuesday, Nov 28), we get λ ⊵ µ as desired.

The irreducible representations of Sn. We conclude in particular that if Sλ ∼=
Sµ then both λ ⊵ µ and µ ⊵ λ. Hence λ = µ. Thus we get exactly the right
number of irreducible representations of Sn.

Grothendieck group of an abelian category. Let A be an abelian category.
This is basically any additive category (morphisms can be added and we have direct
sums) and where we have a notion of short exact sequences (kernels and cokernels
exist and Im ∼= Coim). You won’t need to know what this notion is in general
because we only care about what happens in the examples. Then the Grothendieck
group of A is the (unique up to unique isomorphism) abelian group K(A) which
comes with a map

Objects of A → K(A), M 7−→ [M ]

such that any relation among the images of this map is a consequence of the fol-
lowing elementary relations

(1) If M and M ′ are isomorphic objects of A, then [M ]− [M ′] is zero in K(A).
(2) If 0 → M ′ → M → M ′′ → 0 is a short exact sequence in A, then [M ] −

[M ′]− [M ′′] is zero in K(A).

In particular, if M is isomorphic to M ′ ⊕M ′′, then [M ] = [M ′] + [M ′′] in K(A).

Exercise 1. Show that every element of K(A) can be represented as a difference
[M ]− [M ′] for some objects M and M ′ of A.

Exercise 2. Let G be a finite group. Let A be the category of representations of
G (as in the course). Describe K(A).

Exercise 3. Let A be the category of finite abelian groups. Describe K(A).

Exercise 4. Let A be the category of finitely generated abelian groups. Describe
K(A).

Exercise 5. Let G be a finite group. Let A be the category of representations
of G (as in the course). Show that tensor product on the category A defines a
commutative ring structure on K(A) (explain what this means and then prove it
works).

Optional exercise A. Is there a “natural” way to define a ring structure on K(A)
in the examples of Exercise 3 or 4?

Optional exercise B. Let k be a field and let A be the category of all k-vector
spaces. Show that K(A) is zero.


