
Representations of the symmetric group

1 Conjugacy classes and Young diagrams

Let us recall what we know about irreducible representations of Sn so far: we
have the two 1-dimensional representations C and C(ε), and an irreducible
representation V of dimension n − 1 which satisfies: V ⊕ C ∼= C[Sn/Sn−1],
where C[Sn/Sn−1] is the standard permutation representation of Sn coming
from its action on {1, . . . , n}. There is also the irreducible representation
V ⊗ε, which is not isomorphic to V once n ≥ 4. Our goal in this set of notes
will be to describe a construction of all of the irreducible representations of
Sn.

We begin by recalling the usual description of the conjugacy classes in
Sn. Every σ ∈ Sn can be written as γ1 · · · γk, where the γi are pairwise
disjoint ni-cycles and the product is unique up to order. Here the identity 1
corresponds to the empty product (k = 0). We may as well reorder so that
n1 ≥ n2 ≥ · · · ≥ nk, so that the ni form a non-increasing sequence of integers
at least 2 and

∑k
i=1 ni ≤ n. We will refer to the sequence (n1, . . . , nk) as

the cycle type of σ. For example, an r-cycle has cycle type r. The element
(1, 2)(3, 4, 5) has cycle type (3, 2). Two elements of Sn are conjugate ⇐⇒
they have the same cycle type.

It is convenient to rewrite this description of the conjugacy classes via
partitions:

Definition 1.1. A partition λ of n, which we write symbolically as λ ` n, is
a weakly decreasing (i.e. non-increasing) sequence of positive integers λ1 ≥
λ2 ≥ · · · ≥ λ`, such that

∑`
i=1 λi = n.

Note that, given a cycle type, i.e. a non-increasing sequence of integers
n1 ≥ n2 ≥ · · · ≥ nk at least 2 and

∑`
i=1 ni ≤ n, we can always enlarge the

sequence to a partition by considering

n1 ≥ n2 ≥ · · · ≥ nk ≥ 1 ≥ 1 ≥ · · · ≥ 1,
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where the number of terms equal to 1 that we add is n−
∑k

i=1 ni. Conversely,
given a partition λ, we obtain a cycle type by dropping off all of the terms
at the end with λi = 1. Thus we see that the conjugacy classes of Sn
are indexed by partitions of n. It is therefore reasonable to hope that the
irreducible representations of Sn are also indexed by partitions.

Definition 1.2. Given a partition λ ` n, the Young subgroup Sλ ≤ Sn is
the subgroup of Sn defined by: σ ∈ Sλ ⇐⇒ σ({1, . . . , λ1}) = {1, . . . , λ1},
σ({λ1 + 1, . . . , λ1 + λ2}) = {λ1 + 1, . . . , λ1 + λ2}, . . . , and more generally,
for all i, 1 ≤ i ≤ `,

σ


i−1∑
j=1

λj + 1, . . . ,
i∑

j=1

λj


 =


i−1∑
j=1

λj + 1, . . . ,

i∑
j=1

λj

 .

In other words, Sλ is the subgroup which preserves the first set of λ1 con-
secutive elements of {1, . . . , n}, then the next set of λ2 consecutive elements,
and so on. Thus clearly

Sλ ∼= Sλ1 × · · · × Sλ` .

Hence #(Sλ) = (λ1)! · · · (λ`)! and #(Sn/Sλ) = n!/(λ1)! · · · (λ`)!.
For example, if λ = (n), then Sλ = Sn, whereas if λ = (1, 1, . . . , 1), then

Sλ = {1}.
Let Mλ = C[Sn/Sλ] = IndSnSλ C. The basic idea will be to locate an irre-

ducible subspace Sλ of Mλ satisfying certain properties. The representations
Sλ will exactly be the irreducible representations of Sn up to isomorphism.

2 Young diagrams and Young tableaux

Definition 2.1. Given a partition λ ` n, its Young diagram is given by
drawing n boxes in ` rows, flush left, with the ith row having λi boxes.

For example, given λ = (3, 2, 1, 1, 1) ` 8 its Young diagram is

2



At the two extremes, for λ = (n), the corresponding diagram is

. . .

and for λ = (1, 1, . . . , 1), the corresponding diagram is

...

We define an operation of transpose (written λ 7→ λT ) on Young dia-
grams by switching rows and columns. For example, with λ = (3, 2, 1, 1, 1) `
8 as before, the transpose diagram is

which corresponds to λT = (5, 2, 1). Likewise (n)T = (1, 1, , . . . , 1). Clearly
(λT )T = λ.

Next, we define a partial order on the set of all partitions:

Definition 2.2. Suppose that λ, µ ` n, where λ = (λ1, . . . , λ`) and µ =
(µ1, . . . , µm). Then λ dominates µ, written λD µ, if, for all i,

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi.

Here, if i > `, we set λi = 0, and similarly if i > m we set µi = 0. The
definition amounts to saying that, for every i, the first i rows of the Young
diagram for λ contain at least as many boxes as the first i rows of the Young
diagram for µ.

The relation D is only a partial order because not every two partitions
are comparable. For example, (5, 2, 1) D (3, 4, 1), but (5, 1, 1, 1) and (3, 4, 1)
are not comparable. For every partition λ, (n) D λ and λD (1, 1, . . . , 1).

The following lemma makes precise the sense in which D is a partial
order:
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Lemma 2.3. With D defined as above, and for all λ, µ, ν ` n,

(i) λD λ.

(ii) If λD µ and µD ν, then λD ν.

(iii) If λD µ and µD λ, then λ = µ.

Proof. (i) and (ii) follow easily from the definition. As for (iii), note that
by definition λ1 ≥ µ1 and µ1 ≥ λ1, hence λ1 = µ1. Assume inductively that
we have shown that λk = µk, k ≤ i− 1. Then since λD µ,

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi,

and hence λi ≥ µi. By symmetry, µi ≥ λi. Hence λi = µi, completing the
inductive step and hence the proof of (iii).

Definition 2.4. Given λ ` n, a λ-tableau t or a tableau of type λ is a label-
ing of the n boxes of the Young diagram of λ by the elements of {1, . . . , n},
in other words a way to fill in the n boxes of the Young diagram with the el-
ements of {1, . . . , n}, using each element exactly once. Hence, given λ, there
are exactly n! tableau of type λ. For example, given λ, the basic λ-tableau
t0 is obtained by filling in the boxes consecutively: for λ = (3, 2, 1) ` 6, the
basic tableau t0 is

1 2 3

4 5

6

Two λ-tableaux t1 and t2 are equivalent, written t1 ∼ t2, if, for every i,
the set of entries in the ith row of t1 is the same as the set of entries in the
ith row of t1. In other words, t2 is obtained from t1 by permuting each row
of t1. For example,

3 2 6

4 1

5

and

6 2 3

1 4

5
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are equivalent.
We write the equivalence class containing t as [t]. An equivalence class

of λ-tableaux is called a λ-tabloid or a tabloid of type λ.
Clearly, Sn acts transitively on the set of λ-tableaux and preserves the

equivalence relation ∼. Thus Sn acts transitively on the set of λ-tabloids. If
t0 is the basic λ-tableau, then the isotropy subgroup of t0 is Sλ, the Young
subgroup. Hence we can identify the set of all λ-tabloids with Sn/Sλ. In
particular, there are n!/(λ1)! · · · (λ`)! λ-tabloids.

Given a λ-tableau t, we can define a λT -tableau tT in the obvious way.
Clearly, if σ ∈ Sn, then (σ · t)T = σ · (tT ). However, if t1 ∼ t2, tT1 and tT2 are
not in general equivalent.

As before, let Mλ = C[Sn/Sλ] = IndSnSλ C. We view Mλ as having a basis
consisting of λ-tabloids. Our goal will be to find an irreducible subspace
Sλ of Mλ with the property that dim HomSn(Sλ,Mλ) = 1, i.e. that the
multiplicity of Sλ in Mλ is 1, and such that HomSn(Sλ,Mµ) 6= 0 =⇒
λD µ.

Example 2.5. (1) If λ = (n), then Sλ = Sn, M (n) is the trivial represen-
tation C, and necessarily S(n) = C. Note that (n) D µ for every partition
µ ` n, and also that the trivial representation occurs in Mµ for every µ
because Mµ is a permutation representation.

(2) If λ = (1, . . . , 1), then M (1,...,1) is the regular representation. We will
see that S(1,...,1) = C(ε). Note that µD (1, . . . , 1) for every µ ` n. Likewise,
HomSn(Sµ,M (1,...,1)) 6= 0 since every irreducible representation is isomorphic
to a subspace of the regular representation.

(3) If λ = (n − 1, 1), then Sλ ∼= Sn−1 and M (n−1,1) is the permutation
representation of Sn acting on {1, . . . , n}. Hence M (n−1,1) ∼= C ⊕ V , where
V is irreducible of dimension n− 1. Correspondingly, if λD (n− 1, 1), then
either λ = (n) or λ = (n− 1, 1).

3 Row and column stabilizers; polytabloids

Definition 3.1. Let t be a λ-tableau with associated tabloid [t]. We define
the row stabilizer Rt to be the subgroup of Sn consisting of all elements σ
such that, for every i, σ preserves the set of elements in the ith row of t.
Equivalently, Rt is the isotropy subgroup of the associated tabloid [t]. For
t = t0, Rt0 = Sλ is the Young subgroup. For a general t, Rt is conjugate to
Sλ as we shall see shortly.

5



We likewise define the column stabilizer Ct to be the subgroup of Sn
consisting of all elements σ such that, for every i, σ preserves the set of
elements in the ith column of t. Thus Ct is the isotropy subgroup of [tT ],
so that Ct = RtT , and hence Ct is conjugate to SλT . However, Ct depends
on the tableau t, not just on the tabloid [t].

Lemma 3.2. For all tableaux t and all σ ∈ Sn,

(i) Rt ∩ Ct = {1}.

(ii) Rσ·t = σRtσ
−1 and Cσ·t = σCtσ

−1.

Proof. (i) Let a be the (i, j)th entry of t, i.e. a lies in the ith row and jth

column of t. If σ ∈ Rt ∩ Ct, then σ(a) is also in the ith row and jth column
of t. Thus σ(a) = a for all a ∈ {1, . . . , n}, so that σ = 1.

(ii) This is a general fact about isotropy subgroups for group actions.

If t is a λ-tableau, we define the following element of the group algebra:

At =
∑
σ∈Ct

ε(σ)σ ∈ C[Sn].

Note that we sum over the column stabilizer Ct. Since the group algebra
acts on all representations, given an Sn-representation V , we can view At
as defining a linear map V → V . In particular, At defines a linear map
Mµ →Mµ for all µ ` n.

Definition 3.3. Given a λ-tableau t, the polytabloid et associated to t is
the element

et = At([t]) =
∑
σ∈Ct

ε(σ)σ · [t] =
∑
σ∈Ct

ε(σ)[σ · t] ∈Mλ.

Remark 3.4. As we shall see in numerous examples, et depends on t, not
just on [t], because Ct depends on t and not just on [t].

Lemma 3.5. For all tableaux t, et 6= 0.

Proof. Note first that, if σ ∈ Ct and σ · [t] = [t], then σ ∈ Rt and hence
σ ∈ Rt ∩ Ct = {1}. Likewise, if σ1, σ2 ∈ Ct and σ1 · [t] = σ2 · [t], then
σ−12 σ1 = 1 and hence σ1 = σ2. It follows that et =

∑
σ∈Ct ε(σ)σ · [t] is a sum

of different basis vectors in Mλ, with coefficients ±1, and hence et 6= 0.

Lemma 3.6. For all tableaux t and all σ ∈ Sn,
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(i) σ ·At = Aσ·tσ as elements of the group algebra.

(ii) σ · et = eσ·t.

Proof. (i) We have σAt =
∑

τ∈Ct ε(τ)στ . On the other hand,

Aσ·tσ =
∑
τ∈Cσ·t

ε(τ)τσ =
∑

τ∈σCtσ−1

ε(τ)τσ

=
∑
τ∈Ct

ε(στσ−1)στσ−1σ =
∑
τ∈Ct

= ε(τ)στ.

Comparing, we see that Aσ·tσ = σ ·At.
(ii) By definition,

σ · et = σAt([t]) = Aσ·tσ([t]) = Aσ·t([σ · t]) = eσ·t.

We now define the representation Sλ. The idea is as follows: let G be
a finite group and V an irreducible G-representation. For a fixed vector
v ∈ V , the span of the set

G · v = {ρV (g)(v) : g ∈ G}

is clearly a nonzero G-invariant subspace of V . If moreover v ∈ W , where
W is an irreducible subspace of V , then this span is a nonzero G-invariant
subspace of W , hence must equal W .

Definition 3.7. Given λ ` n, define Sλ, the Specht representation, to be
the span of the polytabloids et, where t is a λ-tableau. Since σ · et = eσ·t,
Sλ is an Sn-invariant subspace of Mλ, hence an Sn-representation.

Example 3.8. (1) If λ = (n), then M (n) = C with the trivial action of Sn.
Here, there is only one tableau [t], Ct = {1}, and At = Id.

(2) Let λ = (n− 1, 1). Then every tableau t is of the form

∗ ∗ ∗ . . . ∗
k
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for a unique k = k(t), 1 ≤ k ≤ n. Moreover, two tableaux t1 and t2 are
equivalent ⇐⇒ k(t1) = k(t2). Hence the (n− 1, 1)-tabloids are indexed by
k ∈ {1, . . . , n}. Let [k] denote the corresponding equivalence class. Clearly
σ · [k] = [σ(k)]. Thus M (n−1,1) ∼= Cn, with basis vectors [1], . . . , [n], and the
Sn-action is the same as the standard permutation representation. If t ∈ [k],
let the entry in the first row and column of t be i, so that t is of the form

i ∗ ∗ . . . ∗
k

Then Ct = {1, (ik)}. Note that Ct depends on t, not just [t] = [k]. Hence
At([t]) = [k]+ε((ik))(ik) · [k] = [k]− [i]. The vectors [k]− [i] are not linearly
independent, and their span in M (n−1,1) ∼= Cn is easily seen to be{

a1[1] + · · ·+ an[n] :

n∑
i=1

ai = 0

}
.

Thus S(n−1,1) ∼= V , the standard irreducible representation of dimension
n− 1 of Sn.

(3) For λ = (1, 1, . . . , 1), M (1,1,...,1) = C[Sn], Ct = Sn for every t, and
Rt = {1}. The tableaux are the same as the tabloids, and correspond
to elements σ ∈ Sn via: tσ is the (1, 1, . . . , 1)-tableau whose entries going
vertically are σ(1), σ(2), . . . , σ(n). Thus t1 = t0 is the basic tableau and
tσ = σ · t1. Then At =

∑
σ∈Sn ε(σ)σ for every t, and

et1 = At([t1]) =
∑
σ∈Sn

ε(σ)[tσ].

By a standard calculation in the group algebra, for every τ ∈ Sn,

τ ·At = At · τ = ε(τ)At.

Thus τ ·et1 = etτ = Atτ([t1]) = ε(τ)et1 = ±et1 , so S(1,1,...,1) is 1-dimensional,
and τ(et1) = ε(τ)et1 , so that S(1,1,...,1) ∼= C(ε).

4 Proof of irreducibility

We begin with the following lemma:
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Lemma 4.1 (Dominance lemma). Let λ, µ ` n, let t be a λ-tableau and let
s be a µ-tableau. Suppose that, for every i, if a 6= b are two entries in the
ith row of s, then a and b lie in different columns of t. Then λD µ.

Proof. We first establish a claim which we shall also use:

Claim 4.2. With hypotheses as above, there exists a σ ∈ Ct such that, after
replacing t by σ · t, for every i, the elements in the first i rows of s all appear
in the first i rows of t. Equivalently, if Si is the set of elements in the ith

row of s and Tj is the set of elements in the jth row of t, then, for every i,
σ(Si) ⊆

⋃
j≤i Tj.

First let us show that the claim implies the lemma. Assuming the claim,
for every i there are µ1 + · · · + µi elements in the first i rows of s. Since
they all appear in the first i rows of t, the number of elements in the first i
rows of t, namely λ1 + · · ·+ λi, has to be at least as large as µ1 + · · ·+ µi.
In other words, for every i,

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi,

and hence λD µ.

Proof of the claim. Note that the hypotheses of the lemma are unchanged
by applying column permutations to t, i.e. by replacing t by σ · t for σ ∈ Ct.
We will give an inductive construct of an appropriate σ.

For i = 1, the entries of the first row of s are in different columns of
t. In particular there are λ1 ≥ µ1 columns of t. Permute each column of t
containing an element of the first row of s by moving the given element into
the first row (for example, by a transposition if it is not already in the first
row). This replaces t by σ1 · t for some σ1 ∈ Ct.

For the inductive step of the construction, suppose that we have found
a σi ∈ Ct such that, after replacing t by σi · t, the elements in the first i
rows of s all appear in the first i rows of t. Now consider the entries in the
(i+ 1)st row of s. If any of these entries appear in one of the first (i+ 1)st

rows of t, we leave the corresponding columns alone. If some entry a appears
in the jth row of t with j > i + 1, suppose that a is also in the kth column
of t. Then no other entry in the (i + 1)st row of s lies in the kth column
of t. Also, since a lies below the (i + 1)st row of t, the kth column of t has
a nonempty intersection with (i + 1)st row of t. Then we can permute the
kth column of t by switching the in the jth row, namely a, with the entry in
the (i+ 1)st row. This procedure doesn’t affect the first i rows, and can be
done independently for each entry in the (i + 1)st row of s which lies in in
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the jth row of t for some j > i + 1, since these all lie in different columns.
We thus modify σi · t by a column permutation, and hence t by a column
permutation σi+1, so that σi+1 · t has the desired properties. This completes
the inductive step of the construction.

Recall that Mλ has a basis consisting of the λ-tabloids [t]. We can intro-
duce a positive definite Hermitian inner product 〈·, ·〉 on Mλ by decreeing
that this basis is unitary, i.e. that

〈[t1], [t2]〉 =

{
1, if [t1] = [t2];

0, otherwise.

Since Sn acts on Mλ by permuting the basis vectors, this Hermitian inner
product is Sn-invariant. In what follows, when we speak about orthogonality,
it will be with respect to 〈·, ·〉.

The key technical result we need now is:

Theorem 4.3 (Submodule theorem). Let V be an Sn-invariant subspace of
Mλ. Then either Sλ ⊆ V or V ⊆ (Sλ)⊥.

Proof. We start with the following lemma:

Lemma 4.4. Suppose that λ, µ ` n, that t is a λ-tableau and that s is a
µ-tableau. If At([s]) 6= 0, then λDµ. If moreover λ = µ, then At([s]) = ±et.

Proof. First, we claim that, if At([s]) 6= 0, then for every i, if a and b are
two elements in the ith row of s, then a and b are in different columns of t.
The dominance lemma then implies that λ D µ. To see the claim, suppose
by contradiction that a and b are in the same column of t. Then (ab) ∈ Ct,
and also (ab) ∈ Rs, so that (ab) · [s] = s. Let H = {1, (ab)} ≤ Ct be the
subgroup generated by (ab). We can then break Ct up into the left cosets
for H: if σ1, . . . , σN are a set of representatives for Ct/H, then

Ct = {σ1, σ1 · (ab), . . . , σN , σN · (ab)}.

Then, writing the elements of Ct as above,

At([s]) =
∑
σ∈Ct

ε(σ)σ · [s] =
N∑
i=1

(ε(σi)σi · [s] + ε(σi · (ab))σi · (ab) · [s])

=

N∑
i=1

(ε(σi)σi · [s]− ε(σi)σi · [s]) = 0,
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where we have used the fact that (ab) · [s] = [s] and that

ε(σi · (ab)) = ε(σi)ε((ab)) = −ε(σi).

But this contradicts the assumption that At([s]) 6= 0.
Now suppose that λ = µ and that At([s]) 6= 0. As we have seen, the

hypotheses of the dominance lemma hold. Then by Claim 4.2 there exists a
τ ∈ Ct such that, if Si is the set of elements in the ith row of s and Tj is the set
of elements in the jth row of t, then, for every i, τ(Si) ⊆

⋃
j≤i Tj . We claim

that this forces τ · [s] = [t]. First, τ(S1) ⊆ T1, but since λ1 = µ1, S1 and T1
have the same number of elements. Since τ is injective, τ(S1) = T1. Suppose
by induction that we have proved that τ(Sj) = Tj for all j < i. Then since
τ is injective, the statement that τ(Si) ⊆

⋃
j≤i Tj forces τ(Si) ⊆ Ti. Again

by counting, since λi = µi, τ(Si) = Ti. It follows that, t is obtained from
τ · s by some permutations of the rows. Thus τ · [s] = [t]. Then

At([s]) =
∑
σ∈Ct

ε(σ)σ · [s] =
∑
σ∈Ct

ε(σ)στ−1 · [t]

= ε(τ)
∑
σ∈Ct

ε(σ · τ−1)στ−1 · [t] = ε(τ)
∑
σ∈Ct

ε(σ)σ · [t]

= ε(τ)At([t]) = ε(τ)et.

Thus, if At([s]) 6= 0, then At([s]) = ±et.

Corollary 4.5. If t is a λ-tableau, then At(M
λ) = C · et.

Proof. We know that Mλ is spanned by the λ-tabloids [s] and that At([s])
is either 0 or ±et. Thus At(M

λ) ⊆ C · et. Finally, the image of At is C · et,
as opposed to 0, since At([t]) = et.

Returning to the proof of the submodule theorem, let V be an Sn-
invariant subspace of Mλ. Then C[Sn](V ) ⊆ V and hence At(v) ∈ V for
every λ-tableau t and every v ∈ V . As At(M

λ) = C · et, et ∈ V as long as
there exists a v ∈ V such that At(v) 6= 0. In this case, since σ · et = eσ·t and
V is Sn-invariant, eσ·t ∈ V for all σ ∈ Sn. Since Sn acts transitively on the
set of tableaux, es ∈ V for every tableau s. As Sλ is generated by the es,
Sλ ⊆ V .

Otherwise, At(v) = 0 for every tableau t and v ∈ V . Since the inner
product 〈·, ·〉 is Sn-invariant, 〈σ(v), w〉 = 〈v, σ−1(w)〉 for all v, w ∈ Mλ.
Then, for all v, w ∈Mλ, 〈At(v), w〉 = 〈v,A∗t (w)〉, where

A∗t =
∑
σ∈Ct

ε(σ)σ−1 =
∑
σ∈Ct

ε(σ−1)σ−1 =
∑
σ∈Ct

ε(σ)σ = At.
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Thus At(v) = 0 for all v ∈ V =⇒ 〈v,At(w)〉 = 0 for every w ∈ Mλ. Since
the image of At is C · et, this implies that 〈v, et〉 = 0 for every λ-tableau t.
Since Sλ is the span of the et, V ⊆ (Sλ)⊥ as claimed.

Corollary 4.6. Sλ is irreducible.

Proof. Note that Sλ 6= {0} as et 6= 0 for every t. If V is an Sn invariant
subspace of Sλ, then by the submodule theorem either Sλ ⊆ V or V ⊆
(Sλ)⊥. In the first case, V = Sλ since V ⊆ Sλ and Sλ ⊆ V . In the second
case, V ⊆ Sλ ∩ (Sλ)⊥ = {0}. Thus every Sn-invariant subspace of Sλ is
either Sλ or {0}, so that Sλ is irreducible.

Corollary 4.7. If HomSn(Sλ,Mµ) 6= 0, then λ D µ. Moreover, if λ = µ,
then dim HomSn(Sλ,Mλ) = 1. Thus the multiplicity of Sλ in Mλ is 1.

Proof. If F 6= 0, then by Schur’s lemma F is injective. Thus, for every
λ-tableau t, F (et) 6= 0.

Since there is an Sn-invariant isomorphism

Mλ ∼= Sλ ⊕ (Sλ)⊥,

we can extend F to an Sn-morphism F̃ : Mλ → Mµ by setting F̃ = F on
Sλ and F̃ = 0 on (Sλ)⊥. Since F̃ is an Sn-morphism, it commutes with the
action of C[Sn], so that F̃ ◦At = At ◦ F̃ . But At([t]) = et, and hence

F (et) = F̃ (et) = F̃ (At([t])) = At(F̃ ([t])).

We can write F̃ ([t]) as a linear combination of µ-tabloids [s]. Since F (et) 6=
0, there must exist a µ-tabloid s such that At([s]) 6= 0. By Lemma 4.4,
λ D µ. Moreover, if λ = µ, then At([s]) = ±et, so that F (et) ∈ Sλ for all
t. It follows that F is given by i ◦ G, where i : Sλ → Mλ is the inclusion
and G ∈ HomSn(Sλ, Sλ). By Schur’s lemma, HomSn(Sλ, Sλ) = C Id. Thus
every Sn morphism from Sλ to Mλ is multiplication by a scalar, followed
by inclusion, so that dim HomSn(Sλ,Mλ) = 1.

Corollary 4.8. For all λ, µ ` n, Sλ ∼= Sµ as Sn-representations ⇐⇒
λ = µ.

Proof. Trivially, if λ = µ, then Sλ ∼= Sµ. Conversely, suppose that Sλ ∼= Sµ.
Then the composition of this isomorphism with the inclusion Sµ ⊆ Mµ

gives a nonzero element of HomSn(Sλ,Mµ) 6= 0. The previous corollary
then implies that λD µ. By symmetry, µD λ. Hence λ = µ.
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5 Some concluding remarks

In this final section, we make some more remarks about the irreducible
representations of Sn, mostly without proofs.

5.1 Rationality of the representations

As we have previously noted, if gcd(a, n!) = 1 and σ ∈ Sn, then σa and σ are
conjugate, and this implies that, for every representation V of Sn, the value
of the character χV (σ) is an integer for every σ ∈ Sn. In fact, a stronger
statement is true:

Theorem 5.1. The irreducible representations Sλ of Sn are defined over
Q. Hence every representation of Sn can be defined over Q.

The main point of the proof is as follows. The representation Mλ is
defined over Q. In fact, Mλ = C[Sn/Sλ], with a basis consisting of the
λ-tabloids [t], and we can just take the corresponding Q-vector space Mλ

Q =
Q[Sn/Sλ], with a Q-basis consisting of the λ-tabloids [t]. Note that σ ∈ Sn
acts by permuting the tabloids, and hence the matrix corresponding to σ has
rational entries, in fact every entry is either 0 or 1. The polytabloids et are
also elements of Mλ

Q, since they are linear combinations of certain tabloids

with coefficients ±1. Hence they span a vector subspace of Mλ which is also
defined over Q.

5.2 Explicit construction of some representations

We have already seen that the trivial representation C is isomorphic to S(n),
that C(ε) is isomorphic to S(1,...,1), and that the standard representation V
is isomorphic to S(n−1,1). Linear algebra can construct a few of the other
irreducible representations directly. One basic linear algebra construction is
exterior or alternating product: given a vector space U , we can construct
a new vector space

∧k U , which is generated by expressions of the form
v1 ∧ · · · ∧ vk which are multilinear in the vi. For any collection v1, . . . , vk of
elements of U , we have the basic transformation law: for all σ ∈ Sk

vσ(1) ∧ · · · ∧ vσ(k) = ε(σ)v1 ∧ · · · ∧ vk.

If u1, . . . , ud is a basis for U , then a basis for
∧k U is given by:

{ui1 ∧ · · · ∧ uik : i1 < · · · < ik}.
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In particular dim
k∧
U =

(
d

k

)
for k ≤ d, and dim

k∧
U = 0 for k > d. Then

one can show:

Proposition 5.2. For k ≤ n − 1,
∧k V =

∧k S(n−1,1) is an irreducible
representation of Sn, and it is isomorphic to S(n−k,1,...,1).

An explicit proof is sketched in the HW.
Another construction of representations uses the symmetric product:

given a vector space U , we can construct a new vector space Symk U , which
is generated by expressions of the form v1 . . . vk which are multilinear in
the vi. For any collection v1, . . . , vk of elements of U , we have the basic
transformation law: for all σ ∈ Sk

vσ(1) . . . vσ(k) = v1 . . . vk.

If u1, . . . , ud is a basis for U , then a basis for Symk U is given by:

{ui1 · · ·uik : i1 ≤ · · · ≤ ik}.

In particular dim Symk U =

(
d+ k − 1

k

)
. It is then easy to check that, for

k ≤ n/2, there is an injective Sn-morphism M (n−k,k) → Symk V . Hence
S(n−k,k) is isomorphic to an Sn-invariant summand of Symk V . For n = 2,
it is easy to make this more explicit:

Proposition 5.3. Sym2 V ∼= C⊕ V ⊕ S(n−2,2).

In fact, one can identify the subspace C ⊕ V explicitly as well and so

give a concrete realization of S(n−2,2). Note that dimS(n−2,2) =
n(n− 3)

2
.

5.3 Conjugate partitions

For every partition λ ` n, we have defined the transpose λT ` n, and
(λT )T = λ. Note that it is possible for λT = λ. For example, (n)T =
(1, . . . , 1). For the representations Sλ, we have the following result, which
generalizes S(1,...,1) = C(ε):

Proposition 5.4. Sλ
T ∼= Sλ ⊗ ε.
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5.4 Representations of the alternating group

The alternating group An is a subgroup of Sn of index two, and so we can
apply our general results about restrictions of irreducible representations to
subgroups of index two:

Proposition 5.5. Let λ ` n.

(i) λ = λT ⇐⇒ Sλ ∼= Sλ ⊗ ε. In this case,

ResSnAn S
λ ∼= ResSnAn(Sλ ⊗ ε) ∼= W ⊕W ′,

where W and W ′ are two irreducible representations of An, with dimW =
dimW ′ and W , W ′ are not isomorphic.

(ii) λ 6= λT ⇐⇒ Sλ and Sλ ⊗ ε. In this case,

ResSnAn S
λ ∼= ResSnAn(Sλ ⊗ ε)

is an irreducible representation of An.

Finally, every irreducible representation of An arises in this way.

Example 5.6. We consider the case n = 5. There are two 1-dimensional
representations of S5, S

(5) ∼= C and S(1,1,1,1,1) ∼= C(ε). There are two 4-
dimensional representations, the standard representation V = S(4,1) and
V ⊗ ε = S(2,1,1,1), where we have used the fact that (4, 1)T = (2, 1, 1, 1) and
Proposition 5.4. Next, S(3,2) is an irreducible representation of dimension 5,
and since (3, 2)T = (2, 2, 1), we have S(2,2,1) ∼= S(3,2) ⊗ ε, also of dimension
5. Finally,

∧2 V ∼= S(3,1,1) is irreducible of dimension 6. Since (3, 1, 1)T =
(3, 1, 1),

∧2 V ∼=
∧2 V ⊗ ε, and this is the only irreducible representation up

to isomorphism with this property.
As a check, we add up the sums of the squares of the irreducible repre-

sentations constructed above:

12 + 12 + 42 + 42 + 52 + 52 + 62 = 120 = #(S5),

as expected.
We turn now to A5. The representations C and C(ε) both restrict to

the trivial representation of A5. The representations V and V ⊗ ε both re-
strict to an irreducible representation of dimension 4, the restriction of the
standard irreducible representation V to A4. The representations S(3,2) and
S(2,2,1) ∼= S(3,2) ⊗ ε both restrict to an irreducible representation of dimen-
sion 5. Finally, the 6-dimensional representation

∧2 V ∼= S(3,1,1) restricts
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on A5 to W ⊕ W ′, where W and W ′ are two non-isomorphic irreducible
representations of A5. Finally, every irreducible representation of A5 is one
of these. As a check,

12 + 42 + 52 + 32 + 32 = 60 = #(A5).

With a little more effort, we can work out the character table for A5.
There are 5 conjugacy classes: all 3-cycles and products of two disjoint 2-
cycles are conjugate in A5, but there are two different conjugacy classes of
5-cycles (any two 5-cycles are conjugate in S5, but not necessarily in A5).

1 C((1, 2, 3)) C((12)(34)) C((12345)) C((21345))

χC 1 1 1 1 1

χV 4 1 0 −1 −1

χS3,2 5 −1 1 0 0

χW 3 0 −1 1+
√
5

2
1−
√
5

2

χW ′ 3 0 −1 1−
√
5

2
1+
√
5

2

Note: The images of the 3-dimensional representations W and W ′ can
be realized as a subgroup of SO(3), the icosahedral group. It is the group
of symmetries of a regular dodecahedron, or equivalently of a regular icosa-
hedron.

5.5 Further directions

There are many other questions one might ask about representations of Sn.
Here are two:

Branching rules: The group Sn naturally contains Sn−1 as a subgroup
and in turn is naturally a subgroup of Sn+1. Given λ ` n and the irre-
ducible representation Sλ of Sn, we have the corresponding representation
ResSnSn−1

Sλ of Sn−1 as well as the representation Ind
Sn+1

Sn
Sλ. These can both

be described in terms of the Young diagram of λ.

Multiplication rules: Here, given λ, µ ` n, the problem is to describe
the the irreducible summands and their multiplicities of the representation
Sλ ⊗ Sµ.

For a discussion of these and many other questions related to represen-
tations of Sn, we refer to the many books on Sn.
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