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1. THEOREM OF THIS LECTURE

Let k be a field. Let X be a proper scheme over k. We say a pair (wx,t) is a
dualizing sheaf or dualizing module for X if wx is a coherent O x-module and

t: HImX (X wx) — k
is a k-linear map such that the pair (wx, k) represents the functor
Coh(Ox) —» Vecty, F s Homy(H"™ (X, F), k)

on the category of coherent O x-modules. Explicitly this says that for any coherent
Ox-module F the map

Homy (F,wx) x H™X (X, F) — k, (p,&) — t(p(€))

is a perfect pairing of finite dimensional k-vector spaces. The notation makes
sense: since ¢ : F — wy is a map of Ox-modules, we obtain an induced map
v HY(X,F) - H"(X,wx) and we can apply this to the cohomology classe £
whereupon we can use t to get an element of k.

Theorem 1.1. If X is projective over k then there exists a dualizing sheaf. In fact,
for any closed immersion i : X — P = P} there is an isomorphism

—dim X
to

i*wX =& i*OX7wp)

In this lecture we will try to indicate the proof of this theorem and compute what
happens in a special case.

2. PRELIMINARIES ON EXT

Let (X, Ox) be a ringed space. Let F be an Ox-module. Recall that &xtf, (F,—)
are the right derived functors of the sheaf-hom functor Home, (F,—). Similarly,
Ext% (F,—) are the right derived functors of the functor Homy (F, —) of global
homomorphisms of O x-modules.

Remark 2.1. On any ringed space (X, Ox) the formation of &xtg, (F,G) commutes
with restriction to opens. This is clear from the fact that an injective resolution of
G restricts to an injective resolution of G on any open and that the formation of
Hom commutes with restriction to opens.
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Remark 2.2. For any short exact sequence 0 — G; — Go — G3 — 0 of O x-modules
we obtain a long exact sequence

0 — Hom(F,G1) — Hom(F,Gy) — Hom(F,Gs) — Ext'(F,G1) — Ext*(F,Go) — ...

(we are dropping the subscript Ox here in order to fit this onto one line in the
pdf). This is a general fact about derived functors. For any short exact sequence
0— F; — Fo = F3 — 0 of Ox-modules and an Ox-module G we obtain a long
exact sequence

0 — Hom(Fs,G) — Hom(Fz,G) — Hom(F1,G) — Ext' (F3,G) — Ext* (Fa, G) — ...

This follows by choosing an injective resolution of G and arguing exactly as in the
case of modules over rings.

Remark 2.3. For any short exact sequence 0 — G; — Go — G3 — 0 of O x-modules
we obtain a long exact sequence

0 — Hom(F,G;) — Hom(F,G,) — Hom(F,Gs) — Ext'(F,G1) — Ext' (F,Gs) — ...

(we are dropping the subscript X here in order to fit this onto one line in the
pdf). This is a general fact about derived functors. For any short exact sequence
0 — F1 — Fo — F3 — 0 of Ox-modules and an Ox-module G we obtain a long
exact sequence

0 — Hom(F3,G) — Hom(F2,G) — Hom(Fy,G) — Ext'(F3,G) — Ext' (F,G) — ...

This follows by choosing an injective resolution of G and arguing exactly as in the
case of modules over rings.

Lemma 2.4. Let (X,Ox) be a ringed space. For any finite locally free module F
we have Ext%x (F,G) =0 for p>0 and any Ox-module G.

Proof. We may work locally on X. Hence we may assume F = (’)g’?”. To see the
claim is true, we observe that

Homo, (0F", H) = Homo, (Ox, H)®" = HO
is an exact functor in the Ox-module H and hence has vanishing higher derived

functors. O

Let (X,Ox) be a ringed space. Let F be a finite locally free module. We set
FY =Homo, (F,Ox)

and we call it the dual finite locally free module. For any O x-module G the canonical
evaluation map
FY @0y G — Homo (F,G)

is an isomorphism of Ox-modules.

Lemma 2.5. Let (X,0x) be a ringed space. For any finite locally free module
F we have Extf (F,G) = HP(X,FY ®o, G) for any Ox-module G. Here F¥ =
Homo, (F,Ox) is the dual finite locally free module.

Proof. Discussed in a previous lecture. Hint: the functor Homx (F, —) is equal to
the functor H°(X, F¥ ®0, —) by the discussion above and then take higher derived
functors on both sides. O

Lemma 2.6. Let X be a Noetherian scheme. Let F be a coherent Ox -module and
let G be a quasi-coherent Ox-module. Then
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(1) the sheaves Extyy (F,G) are quasi-coherent,
(2) if G is coherent as well, then Exty, (F,G) is coherent, and
(3) if X = Spec(A) and F and G correspond to the A-modules M and N, then

we have Exty, (F,G) = Exth)(M,N) on X.
Proof. Parts (1) and (2) are local on X. Hence it suffices to prove part (3) because

we already know that Ext’ (M, N) is a finite A-module if M and N are finite
modules over a Noetherian ring A, see |Lemma 08YR.

Proof of part (3). We will prove this by induction on p. If p = 0, then we have to
show that

Homo (F,G) = Homa (M, N)

on X. This follows by evaluating both sides on D(f) = Spec(Ay) for f € A. For
p > 0 choose a short exact sequence

0— M — A®" - M — 0
which leads to a short exact sequence

0—=F 0% —>F—=0

since F = M. By Lemma we have Ext%X(O??",g) = 0 for p > 0. Using the
long exact sequences for &zt (see remark above), we obtain an exact sequence

Homo, (09",G) — Homo (F',G) — Exty (F,G) =0

and isomorphisms Exty, (F',G) — &ct%t{l (F,G) for all p > 1. Since we have similar
results for Hom 4 and Ext4 we conclude what we want. O

3. TRIVIAL DUALITY

Let i : X — P be a closed immersion of schemes. Let F be an Ox-module and let
G be an Op-module. Then we have the equalities

HOHIOP (Z*]:, ’Homop (i*(’)X, g)) = Homi*ox (’L*]:, HOTTL(QP (i*OX, Q))
= HomoP (i*]:, Q)
The first equality is true because both i, F and Home, (i+Ox,G) are annihilated

by the kernel of the surjection Op — i.Ox. The second equality is a special case
of the very general Lemma 0AGF. In fact, this lemma shows that the functor

Mod(Op) — Mod(i.Ox), G+— Homo,(i.0x,G)

is the right adjoint to the exact functor Mod(i.Ox) — Mod(Op). Hence by the al-
ready discussed |Lemma 015Z|if 7 is an injective O p-module, then Homo, (i.Ox,T)
is an injective 7, O x-module.

Lemma 3.1. Let A be an abelian category. Let I® be a bounded below com-
plex of injective objects of A. Let ¢ be the smallest index such that H°(I®) is
nonzero. Then for any A in A the complex Hom(A, I®) is acyclic in degrees < ¢
and H¢(Hom(A,I*)) = Hom(A, H(I*)).

Proof. Good exercise. O


https://stacks.math.columbia.edu/tag/08YR
https://stacks.math.columbia.edu/tag/0A6F
https://stacks.math.columbia.edu/tag/015Z
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4. PROOF OF THE THEOREM
See Hartshorne proof of Proposition 7.5 in chapter III.

Choose a closed immersion ¢ : X — P = P} as in the statement of the theorem.
Let wx be defined by the formula in the statement of the theorem; this makes sense
by the . The theorem follows from the following string of equalities

Homy (F,wx) = Homp (i.F,iwx)
= Homp (i.F, Sxt‘glnpfdimx(i*OX, wp))
= Ext@mPrdmX G F wp)
= Homy (HY™ X (P, i, F), k)
= Homy (HY™ X (X, F), k)
The first equality follows from the discussion in the last lecture. The second equality
is our choice of wy. The third equality: see below. The fourth equality is duality

on P we already proved. The final equality we saw before: cohomology of F on X
and on the pushforward of F to P are the same.

Lemma 4.1. In the situation above we have Exty,y (i.Ox,wp) = 0 for p < dim P —
dim X.

Proof. By Lemma and looking on the affine opens D, (T;) of P = P} this
translated into the following algebra fact: Let B = k[z1,...,z,] — A be a surjec-
tion with kernel I, then Ext}; (A, B) = Ext?(B/I,B) = 0 for p < n — dim(A). To
prove this, it suffices to show that depth;(B) > n — dim(A), see Lemma 0AVZ.
The inequality depth;(B) > n — dim(A) is an immediate consequence of Lemma
0BUX. (]

Proof of third equality. Choose an injective resolution wp — Z°. By Lemma |4.1
and the definition of &zt the sheaf Ext%‘g’P 7d‘mX(i*(’)X,wp) is the first nonzero
cohomology sheaf of the complex
Homo, (1.0x,Z*)
Moreover, by Section |3 this is a complex of injective i, O x-modules and we have
Homop,, (i+F, Homo, (i.Ox,Z%)) = Hom;, o (i.F, Homo, (1.0x,Z*))
= Homp,, (i, F,Z*)
The final complex computes Ext% (i.F,wp) by definition. By Lemma we obtain

that the middle complex is acyclic in degrees < dim P — dim X and equal to the
left hand side of

Hom;, o (i4F, Sxt%iglpfdimx(i*ox,wp)) = Homp (i.F, Eztgfpfdimx(i*(’)x,wp))
in degree dim P — dim X; the equality holds because both the module i, and
Sxt%‘fp_dlmx(i*ox,wp) are annihilated by the ideal sheaf Ker(Op — i,Ox) of

X in P. Thus we conclude that this is equal to Ext@™ P~ X (; F wp) as desired
and the proof is completeﬂ

We also deduce that Extf, (ixF,wp) = 0 for p < dim P — dim X, but this is irrelevant to the
proof of the theorem.


https://stacks.math.columbia.edu/tag/0AVZ
https://stacks.math.columbia.edu/tag/0BUX
https://stacks.math.columbia.edu/tag/0BUX
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5. DUALIZING SHEAF OF A HYPERSURFACE

Suppose that X C P = P} is a hypersurface. In other words, we have a nonzero
homogeneous polynomial F' € k[Ty, ..., T,] of degree d > 0 such that

X = Proj(k[Tp, ..., T,]/(F))

as a closed subscheme of P = Proj(k[Ty,...,Ty]). Another way to say this is that
on each of the standard affine opens D (T;) = Spec(k[To/Ts, - .., Tn/Ti]) we have
that

X N Do (T}) = Spec(k[To/T;, ..., T /T3l /(F(To /Ty, .., T/ T2)))

The short exact sequence
0 — k[Ty, ..., Tu)(=d) = k[Ty, ..., Tn] = k[To, ..., Tn]/(F) =0
of graded modules gives rise (by the tilde functor) to a short exact sequence
0—-0(-d)—»0—i0x =0

of Op-modules. Here i : X — P denotes the given closed immersion. Applying the
corresponding long exact sequence of &xt we obtain

0 — Hom(i.Ox,wp) — Hom(O,wp) — Hom(O(—d),wp) — Ext'(i.O0x,G) — 0

because we have the vanishing &xt'(O,wp) by Lemma Using the fact that O
and O(—d) are locally free we may rewrite this as

0— Hom(i*OX,wp) — wp — (,Up(d) — Smtl(i*OX,on) —0

An easy local calculation shows that the map wp — wp(d) in the middle is given
by multiplication by F. What else could it be? On the other hand, tensoring the
initial short exact sequence with wp(d) we obtain

0 — wp = wp(d) = wp(d) ®o, i.0x =0
By the projection formula, see |Section 01E6, we have
wp(d) ®o, i:0x =i (wp(d))
Putting everything together we conclude
Hom (i,Ox,wp) =0
and
wx = &t (i,O0x,wp) = i*(wp(d)) = i*(O(d—n—1)) = Ox(d—n—1)


https://stacks.math.columbia.edu/tag/01E6
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