Schemes

Exercises 2

Schemes – examples are important

Let \mathcal{C} be the category of locally ringed spaces. An affine scheme is an object in \mathcal{C} isomorphic in \mathcal{C} to a pair of the form (Spec A, \mathcal{O}_A). A scheme is an object (X, \mathcal{O}_X) of \mathcal{C} such that every point $x \in X$ has an open neighbourhood $U \subset X$ such that the pair $(U, \mathcal{O}_X|_U)$ is an affine scheme.

- 1. Suppose that X is a scheme whose underlying topological space has 2 points. Show that X is an affine scheme.
- **2.** Give an example of an affine scheme (X, \mathcal{O}_X) and an open $U \subset X$ such that $(U, \mathcal{O}_X | U)$ is not an affine scheme.
- **3.** Given an example of a pair of affine schemes (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) , an open subscheme $(U, \mathcal{O}_X|_U)$ of X and a morphism of schemes $(U, \mathcal{O}_X|_U) \to (Y, \mathcal{O}_Y)$ that does not extend to a morphism of schemes $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$.
- **4.** Give an example of a scheme X, a field K, and a morphism of ringed spaces Spec $K \to X$ which is NOT a morphism of schemes.
- 5. Do all the exercises in Hartshorne, Chapter II, Sections 1 and 2... Just kidding!

Remark. When (X, \mathcal{O}_X) is a ringed space and $U \subset X$ is an open subset then $(U, \mathcal{O}_X|_U)$ is a ringed space. Notation: $\mathcal{O}_U = \mathcal{O}_X|_U$. There is a canonical morphisms of ringed spaces

$$j: (U, \mathcal{O}_U) \longrightarrow (X, \mathcal{O}_X).$$

If (X, \mathcal{O}_X) is a locally ringed space, so is (U, \mathcal{O}_U) and j is a morphism of locally ringed spaces. If (X, \mathcal{O}_X) is a scheme so is (U, \mathcal{O}_U) and j is a morphism of schemes. We say that (U, \mathcal{O}_U) is an *open subscheme* of (X, \mathcal{O}_X) and that j is an *open immersion*. More generally, any morphism $j' : (V, \mathcal{O}_V) \to (X, \mathcal{O}_X)$ that is *isomorphic* to a morphism $j : (U, \mathcal{O}_U) \to (X, \mathcal{O}_X)$ as above is called an open immersion.