SHEAVES ON THE SPECTRUM OF A RING

Throughout A is a ring. We set X = Spec(A). We denote \mathcal{B} the set of principal opens of X (AKA standard opens). In a formula

$$\mathcal{B} = \{ U \subset X \mid \exists f \in A, \ U = D(f) \}$$

Sheaves on a basis: see Tag 009H

Think of \mathcal{B} as a category: the objects are the elements of \mathcal{B} and the morphisms are the inclusions. A *presheaf* \mathcal{F} on \mathcal{B} is a contravariant functor from \mathcal{B} to the category of sets (or abelian groups, rings, etc). Similarly for presheaves of modules over a given presheaf of rings. We say \mathcal{F} is a *sheaf on* \mathcal{B} if and only if for every covering¹

$$\mathcal{U}: U = U_1 \cup \ldots \cup U_n$$

with $U, U_i \in \mathcal{B}$ we have that

$$\mathcal{F}(U) \longrightarrow \prod_{i} \mathcal{F}(U_{i}) \xrightarrow{\longrightarrow} \prod_{i_{0} < i_{1}} \mathcal{F}(U_{i_{0}} \cap U_{i_{1}})$$

is an equalizer diagram. Observe that this makes sense because

 $U,U'\in\mathcal{B}\Rightarrow U\cap U'\in\mathcal{B}$

as you can easily verify.

Lemma 0.1. The category of sheaves on X and sheaves on \mathcal{B} are equivalent via the functor which takes a sheaf on X and restricts it to \mathcal{B} .

Proof. This is a copy of Tag 009O

If $\mathcal{F}|_{\mathcal{B}}$ denotes the restriction of \mathcal{F} on X to \mathcal{B} (as in the equivalence of Lemma 0.1), then we have for $x \in X$ the equality

 $\mathcal{F}_x = \operatorname{colim}_{x \in U \in \mathcal{B}} \mathcal{F}(U) = \operatorname{colim}_{x \in U \in \mathcal{B}} \mathcal{F}|_{\mathcal{B}}(U)$

Hence we can directly compute the stalks in terms of the sheaf on \mathcal{B} .

The structure sheaf: see Tag 01HR

For every $U \in \mathcal{B}$ choose an element $f \in A$ such that U = D(f). The we set

$$\mathcal{O}_X(U) = A_f$$

If $U = D(f) \supset V = D(g)$, then we can write $g^n = af$ for some n > 0 and $a \in A$ (small detail omitted) and we define the restriction mapping for \mathcal{O}_X as the map of A-algebras

$$\mathcal{O}_X(U) = A_f \longrightarrow A_g = \mathcal{O}_X(V)$$

sending b/f^m to ba^m/g^{nm} . It is easy to see this is a presheaf of rings.

The sheaf of modules M associate to an A-module M: see Tag 01HR

Let M be an A-module. For every $U \in \mathcal{B}$ choose an element $f \in A$ such that U = D(f). The we set

$$M(U) = M_f$$

¹Since every element of \mathcal{B} is quasi-compact we only need to consider finite coverings.

If $U = D(f) \supset V = D(g)$, then we can write $g^n = af$ for some n > 0 and $a \in A$ (small detail omitted) and we define the restriction mapping for \widetilde{M} as the map of A-modules

$$\widetilde{M}(U) = M_f \longrightarrow M_g = \widetilde{M}(V)$$

sending x/f^m to $a^m x/g^{nm}$. It is easy to see this is a presheaf of modules over \mathcal{O}_X . Also, observe that $\mathcal{O}_X = \widetilde{A}$, and hence if we prove \widetilde{M} is a sheaf, then the same thing holds for \mathcal{O}_X .

Sheaf property: To check the sheaf property consider a covering

$$\mathcal{U}: U = U_1 \cup \ldots \cup U_n$$

with $U, U_i \in \mathcal{B}$. Write U = D(f) and $U_i = D(f_i)$. To check the sheaf property it suffices to check

$$0 \to M_f \to \prod_{i_0} M_{f_{i_0}} \to \prod_{i_0 < i_1} M_{f_{i_0} f_{i_1}} \to \dots$$

is exact. The fact that $U = \bigcup U_i$ implies that

$$M_{f_{i_0}\dots f_{i_p}} = (M_f)_{f_{i_0}\dots f_{i_p}}$$

and that f_1, \ldots, f_n generate the unit ideal in the ring A_f . Hence the alternating Čech complex for \mathcal{U} and $\widetilde{\mathcal{M}}$ is the complex of Lemma 0.2 for the ring A_f , the module M_f , and the elements $f_1/1, \ldots, f_n/1$ of A_f .

Lemma 0.2. Let A be a ring, let M be an A-module, let $f_1, \ldots, f_n \in A$ generate the unit ideal. Then the complex

$$0 \to M \to \prod_{i_0} M_{f_{i_0}} \to \prod_{i_0 < i_1} M_{f_{i_0} f_{i_1}} \to \dots$$

is exact.

Proof. Two steps: first if f_i is a unit in A for some i, then one writes an explicit homotopy, next, one proves the lemma below to deduce the general case from this special case.

Lemma 0.3. Let A be a ring, let $M_1 \to M_2 \to M_3$ be a complex of A-modules, let $f_1, \ldots, f_n \in A$ generate the unit ideal. Then $M_1 \to M_2 \to M_3$ is exact if and only if for each i the complex

$$(M_1)_{f_i} \to (M_2)_{f_i} \to (M_3)_{f_i}$$

is exact.

Proof. Using that localization is exact this reduces to the statement: if an A-module H satisfies $H_{f_i} = 0$ for i = 1, ..., n, then H = 0. This is proved by considering an element $x \in H$ and observing that the annihilator ideal of x contains $f_i^{N_i}$ for some $N_i > 0$. Since $f_1^{N_1}, \ldots, f_n^{N_n}$ is the unit ideal of A, we conclude that x = 0. See Tag 00EN for more results of this nature.

Proposition 0.4. The higher cohomology groups of the structure sheaf \mathcal{O}_X and of the sheaves \widetilde{M} vanish.

Proof. The discussion and lemmas above show that for any open covering $\mathcal{U} : U = U_1 \cup \ldots \cup U_n$ with $U, U_i \in \mathcal{B}$ the higher Čech cohomology of \widetilde{M} vanishes. Thus we may apply Tag 01EW. See also Tag 01XB.