The Fourier transform

1 Structure of the group algebra

Before we begin, we make some general remarks about algebras. Let k be a field and let A be a k-vector space. We say (somewhat informally) that A is a k-algebra if there is a k-bilinear form $A \times A \rightarrow A$, whose value at (a, b) we denote by $a b$. Bilinearity implies the left and right distributive laws (for all $a, b, a_{1}, a_{2}, b_{1}, b_{2} \in A$)

$$
\begin{aligned}
& \left(a_{1}+a_{2}\right) b=a_{1} b+a_{2} b ; \\
& a\left(b_{1}+b_{2}\right)=a b_{1}+a b_{2},
\end{aligned}
$$

as well as the property that, for all $a, b \in A$ and $t \in k$,

$$
(t a) b=a(t b)=t(a b) .
$$

Usually we shall just call A an algebra if the field k is clear from the context. The algebra A is associative if multiplication is associative i.e. for all $a, b, c \in$ $A,(a b) c=a(b c)$, and unital if there is a multiplicative identity, i.e. an element usually denoted by 1 such that, for all $a \in A, 1 a=a 1=a$. Note that, in this case, $1=0 \Longleftrightarrow A=\{0\}$. Otherwise, the map $k \rightarrow A$ defined by $t \mapsto t \cdot 1$ is injective and identifies k with the subset $k \cdot 1=\{t \cdot 1: t \in k\}$ of A. For us, all algebras will be associative and unital (although there are many interesting classes of non-associative algebras). A k-algebra homomorphism $f: A \rightarrow B$ is a function from A to B which is both a k-linear map and a ring homomorphism; equivalently, f is k-linear and $f(a b)=f(a) f(b)$ for all $a, b \in A$. If A and B are unital, then we will also require that $f(1)=1$. The algebra homomorphism f is an isomorphism if it is a bijection. In this case, f^{-1} is also an algebra homomorphism. A subalgebra A^{\prime} of A is defined in the obvious way, as a vector subspace closed under multiplication. If A is unital then we also require that $1 \in A^{\prime}$. In this case, $k \cdot 1$ is a subalgebra of A and is in fact the smallest subalgebra of A.

Definition 1.1. The center $Z A$ of A is the set of elements which commute with every element of A :

$$
Z A=\{a \in A: a b=b a \text { for all } b \in A\} .
$$

It is easy to check from the definitions that $Z A$ is a subalgebra of A. Note that, if A is unital, then $1 \in Z A$, and more generally the subalgebra $k \cdot 1$ is contained in $Z A$.

Example 1.2.1) The set $\mathbb{M}_{d}(k)$ of $d \times d$ matrices with coefficients in k is an associative, unital k-algebra, with multiplicative identity the identity matrix I. It is a linear algebra fact that the center of $\mathbb{M}_{d}(k)$ is exactly $k \cdot I=\{t I: t \in k\}$. In other words, the only $d \times d$ matrices which commute with all $d \times d$ matrices are scalar multiples of the identity matrix.
2) The group algebra $k[G]$ is an associative, unital k-algebra, with multiplicative identity $1=1 \cdot 1$, where the first 1 is the multiplicative identity in k and the second is the multiplicative identity in G. We can identify $k[G]$ with $L^{2}(G)$ (for $k=\mathbb{C}$) and multiplication with convolution of functions. We shall describe the center of $k[G]$ shortly.
3) Given two algebras A_{1} and A_{2}, we can define the product algebra $A_{1} \times A_{2}$ to be the Cartesian product as a vector space together with componentwise multiplication, i.e. given by

$$
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}, a_{2} b_{2}\right) .
$$

Perhaps confusingly, we write the product algebra as $A_{1} \times A_{2}$ and not $A_{1} \oplus$ A_{2}, because the product algebra as we have defined it is a product in the category of k-algebras, not a coproduct. (The coproduct of A_{1} and A_{2} is $A_{1} \otimes A_{2}$.) Concretely, what this means is that, if A is an algebra and $f_{1}: A \rightarrow$ A_{1} and $f_{2}: A \rightarrow A_{2}$ are algebra homomorphisms, then $\left(f_{1}, f_{2}\right): A \rightarrow A_{1} \times A_{2}$ is an algebra homomorphism, and every algebra homomorphism from A to $A_{1} \times A_{2}$ arises in this way.

It is easy to see that $A_{1} \times A_{2}$ is associative $\Longleftrightarrow A_{1}$ and A_{2} are associative, and that $A_{1} \times A_{2}$ is unital $\Longleftrightarrow A_{1}$ and A_{2} are unital, in which case the multiplicative identity in $A_{1} \times A_{2}$ is $(1,1)$. Finally, the center $Z\left(A_{1} \times A_{2}\right)$ is $Z A_{1} \times Z A_{2}$.

Definition 1.3. Let A be an associative and unital k-algebra. A representation of A on a vector space V is a k-algebra homomorphism $\rho: A \rightarrow$ End $V=\operatorname{Hom}(V, V)$.

Note that, if $t \in k$, then $\rho(t \alpha)(v)=t(\rho(\alpha))(v)=t(\rho(\alpha)(v))$. In particular, since A is unital, $\rho(t \cdot 1)(v)=t v$ and so the representation is compatible
with, and determines, the vector space structure on V in the obvious sense. Using this, it is straightforward to show that a representation of A on V is the same thing as a (left) A-module V.

Now suppose that G is a finite group and that ρ_{V} is a G-representation. We claim that there is a natural way to extend ρ_{V} to give a representation of the group algebra $\mathbb{C}[G]$ (also denoted ρ_{V}) as follows: define

$$
\rho_{V}\left(\sum_{g \in G} t_{g} \cdot g\right)=\sum_{g \in G} t_{g} \rho_{V}(g) \in \operatorname{End} V .
$$

Viewing $\mathbb{C}[G]$ as $L^{2}(G)$, this formula gives

$$
\rho_{V}(f)=\sum_{g \in G} f(g) \rho_{V}(g)=F_{V, f},
$$

in the notation of the handout "Characters II," p. 1.
Lemma 1.4. With notation as above, ρ_{V} is an algebra homomorphism from $\mathbb{C}[G]$ to End V.
Proof. This is essentially just a consequence of the way multiplication is defined in $\mathbb{C}[G]$. We have

$$
\begin{gathered}
\rho_{V}\left(\sum_{g \in G} t_{g} \cdot g \sum_{g \in G} s_{g} \cdot g\right)=\rho_{V}\left(\sum_{g \in G}\left(\sum_{h_{1} h_{2}=g} t_{h_{1}} s_{h_{2}}\right) \cdot g\right) \\
=\sum_{g \in G}\left(\sum_{h_{1} h_{2}=g} t_{h_{1}} s_{h_{2}}\right) \rho_{V}(g) .
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
\rho_{V}\left(\sum_{g \in G} t_{g} \cdot g\right) \rho_{V}\left(\sum_{g \in G} s_{g} \cdot g\right)=\left(\sum_{g \in G} t_{g} \rho_{V}(g)\right)\left(\sum_{g \in G} s_{g} \rho_{V}(g)\right) \\
=\sum_{h_{1}, h_{2} \in G} t_{h_{1}} s_{h_{2}} \rho_{V}\left(h_{1}\right) \rho_{V}\left(h_{2}\right)=\sum_{h_{1}, h_{2} \in G} t_{h_{1}} s_{h_{2}} \rho_{V}\left(h_{1} h_{2}\right) .
\end{gathered}
$$

By grouping together all the terms $t_{h_{1}} s_{h_{2}} \rho_{V}\left(h_{1} h_{2}\right)$ in the last summation for which $h_{1} h_{2}=g$, we have

$$
\sum_{h_{1}, h_{2} \in G} t_{h_{1}} s_{h_{2}} \rho_{V}\left(h_{1} h_{2}\right)=\sum_{g \in G}\left(\sum_{h_{1} h_{2}=g} t_{h_{1}} s_{h_{2}}\right) \cdot \rho_{V}(g) .
$$

Comparing, we see that ρ_{V} is a homomorphism as desired.

Remark 1.5. 1) In fact, every algebra representation of $\mathbb{C}[G]$, i.e. every algebra homomorphism from $\mathbb{C}[G]$ to End V where V is a vector space, arises in this way: given an algebra homomorphism $\rho_{V}: \mathbb{C}[G] \rightarrow \operatorname{End} V$, we can restrict ρ_{V} to $G \subseteq \mathbb{C}[G]$. Then $\rho_{V}(g)$ is invertible, since $\rho_{V}(g) \rho_{V}\left(g^{-1}\right)=$ $\rho_{V}\left(g g^{-1}\right)=\rho_{V}(1)=\mathrm{Id}$, and then clearly the restriction of ρ_{V} to G defines a homomorphism $G \rightarrow$ Aut V.
2) Viewing $\mathbb{C}[G]$ as $L^{2}(G)$, the lemma says that, for all $f_{1}, f_{2} \in L^{2}(G)$,

$$
\rho_{V}\left(f_{1} * f_{2}\right)=\rho_{V}\left(f_{1}\right) \cdot \rho_{V}\left(f_{2}\right),
$$

where the last product is composition in End V (or matrix multiplication after choosing a basis to identify End V with $\mathbb{M}_{d}(\mathbb{C})$).
3) If V and W are two representations, then we can define

$$
\left(\rho_{V}, \rho_{W}\right): \mathbb{C}[G] \rightarrow \operatorname{End} V \times \operatorname{End} W
$$

as in Example 1.2(3). There is also a natural algebra homomorphism

$$
\text { End } V \times \operatorname{End} W \rightarrow \operatorname{End}(V \oplus W)
$$

which sends a pair $\left(F_{1}, F_{2}\right)$ to the linear map $F_{1} \oplus F_{2}$ (compare the handout on linear algebra, comment after Remark 7.4). Clearly the composition

$$
\mathbb{C}[G] \xrightarrow{\left(\rho_{V}, \rho_{W}\right)} \operatorname{End} V \times \operatorname{End} W \rightarrow \operatorname{End}(V \oplus W)
$$

is $\rho_{V \oplus W}$.
Example 1.6. 1) For the trivial representation $\rho=\rho_{\mathbb{C}(1)}, \rho(g)=1 \in \mathbb{C}$ for every $g \in G$. Hence $\rho\left(\sum_{g \in G} t_{g} \cdot g\right)=\sum_{g \in G} t_{g}$, and it is not hard to check directly that this defines a \mathbb{C}-algebra homomorphism from $\mathbb{C}[G]$ to \mathbb{C}.
2) Let $V=\mathbb{C}[G]$ be the regular representation, so that $\rho_{V}=\rho_{\text {reg }}$. Then we claim that $\rho_{\text {reg }}(\alpha): \mathbb{C}[G] \rightarrow \mathbb{C}[G]$ is left multiplication by α :

$$
\rho_{\mathrm{reg}}(\alpha)(\beta)=\alpha \beta
$$

To see this, first suppose that $\alpha=g$ and that $\beta=\sum_{h \in G} s_{h} \cdot h$. Then

$$
\rho_{V}(g)(\beta)=\rho_{V}(g)\left(\sum_{h \in G} s_{h} \cdot h\right)=\sum_{h \in G} s_{h} \cdot(g h),
$$

by the definition of the regular representation. Thus $\rho_{V}(g)(\beta)=g \cdot \beta$ by the definition of multiplication in $\mathbb{C}[G]$. The case where $\alpha=\sum_{g \in G} t_{g} \cdot g$ then follows since

$$
\begin{aligned}
\rho_{\mathrm{reg}}(\alpha)(\beta) & =\sum_{g \in G} t_{g} \rho_{V}(g)(\beta)=\sum_{g \in G} t_{g}(g \cdot \beta) \\
& =\left(\sum_{g \in G} t_{g} \cdot g\right) \cdot \beta=\alpha \cdot \beta,
\end{aligned}
$$

since multiplication in $\mathbb{C}[G]$ distributes over addition.
For a finite group G, let V_{1}, \ldots, V_{h} denote the distinct irreducible representations of G up to isomorphism. If $d_{i}=\operatorname{dim} V_{i}$, then End $V_{i} \cong \mathbb{M}_{d_{i}}(\mathbb{C})$ after we have chosen a basis. For each i, we have the \mathbb{C}-algebra homomorphism $\rho_{V_{i}}: \mathbb{C}[G] \rightarrow$ End V_{i} and hence the \mathbb{C}-algebra homomorphism
$\rho=\left(\rho_{V_{1}}, \ldots, \rho_{V_{h}}\right): \mathbb{C}[G] \rightarrow$ End $V_{1} \times \cdots \times \operatorname{End} V_{h} \cong \mathbb{M}_{d_{1}}(\mathbb{C}) \times \cdots \times \mathbb{M}_{d_{h}}(\mathbb{C})$,
where the above isomorphism is of \mathbb{C}-algebras (and the products are given the product algebra structure as described in Example 1.2 (3). Viewing $\mathbb{C}[G]$ as $L^{2}(G)$, we denote the image $\rho(f)$ of f by \hat{f} and call it the Fourier transform of f, for reasons which we will explain later. Note that $\widehat{f_{1} * f_{2}}=$ $\hat{f}_{1} \hat{f}_{2}$, which just says that ρ is an algebra homomorphism.

Theorem 1.7 (Wedderburn). The map ρ is an isomorphism. In particular, as \mathbb{C}-algebras,

$$
\mathbb{C}[G] \cong \mathbb{M}_{d_{1}}(\mathbb{C}) \times \cdots \times \mathbb{M}_{d_{h}}(\mathbb{C})
$$

Proof. First, since ρ is a homomorphism, it suffices to show that it is a bijection. Next,

$$
\operatorname{dim} \mathbb{C}[G]=\#(G)=\sum_{i=1}^{h} d_{i}^{2}=\operatorname{dim}\left(\mathbb{M}_{d_{1}}(\mathbb{C}) \times \cdots \times \mathbb{M}_{d_{h}}(\mathbb{C})\right)
$$

As ρ is a linear map between two finite dimensional vector spaces of the same dimension, ρ is a bijection $\Longleftrightarrow \rho$ is injective $\Longleftrightarrow \operatorname{Ker} \rho=0$.

Thus assume that $\rho(\alpha)=0$. We must show that $\alpha=0$. By definition, $\rho_{V_{i}}(\alpha)=0$ for every irreducible representation V_{i}. Using (3) of Remark 1.5, it then follows that $\rho_{V}(\alpha)=0$ for every representation V. In particular, taking $V=\mathbb{C}[G]$, viewed as the regular representation, it follows that $\rho_{\text {reg }}(\alpha)=0$. By Example 1.6(2), this says that multiplication by α on $\mathbb{C}[G]$
is identically 0 , i.e. $\alpha \cdot \beta=0$ for all $\beta \in \mathbb{C}[G]$. Taking $\beta=1$, we see that $0=\alpha \cdot 1=\alpha$. Hence $\alpha=0$. It follows that ρ is injective and thus an isomorphism.

Remark 1.8. If k has characteristic zero but is not necessarily algebraically closed, then one can show that, as k-algebras,

$$
k[G] \cong \mathbb{M}_{n_{1}}\left(D_{1}\right) \times \cdots \times \mathbb{M}_{n_{k}}\left(D_{k}\right)
$$

where the D_{k} are division algebras, possibly fields, containing k. For example,

$$
\mathbb{Q}[\mathbb{Z} / n \mathbb{Z}] \cong \mathbb{Q} \times \mathbb{Q}\left(e^{2 \pi i / n}\right)
$$

It is also possible for non-commutative division algebras to appear. For example, if Q is the quaternion group, then

$$
\mathbb{R}[Q] \cong \mathbb{R}^{4} \times \mathbb{H}
$$

Next, we relate the isomorphism in Wedderburn's theorem to the center of $\mathbb{C}[G]$. We have stated (without proof) that the center of $\mathbb{M}_{d}(\mathbb{C})$ is $\mathbb{C} \cdot \mathrm{Id}$. Thus the center of $\mathbb{M}_{d_{1}}(\mathbb{C}) \times \cdots \times \mathbb{M}_{d_{h}}(\mathbb{C})$ is $\mathbb{C} \cdot \operatorname{Id} \times \cdots \times \mathbb{C} \cdot$ Id. As for $\mathbb{C}[G]$, it is a little easier to describe its center using the incarnation $\mathbb{C}[G] \cong L^{2}(G)$.
Proposition 1.9. The center of $L^{2}(G)$ under the operation of convolution is the vector subspace Z of class functions.

Proof. Since $\left\{\delta_{x}: x \in G\right\}$ is a basis for $L^{2}(G)$, a function $f \in L^{2}(G)$ is in the center of $L^{2}(G) \Longleftrightarrow$ for all $x \in G, \delta_{x} * f=f * \delta_{x} \Longleftrightarrow$ for all $x \in G$ and all $g \in G, \delta_{x} * f(g)=f * \delta_{x}(g)$. We have seen in the HW that $\delta_{x} * f(g)=f\left(x^{-1} g\right)$ and that $f * \delta_{x}(g)=f\left(g x^{-1}\right)$. Thus f is in the center of $L^{2}(G) \Longleftrightarrow$ for all $x, g \in G, f\left(x^{-1} g\right)=f\left(g x^{-1}\right) \Longleftrightarrow$ for all $x, g \in G$, $f(x g)=f(g x)$ (replacing x^{-1} by $\left.x\right) \Longleftrightarrow f$ is a class function.

Via the isomorphism ρ, the center of $\mathbb{C}[G]$ has to correspond to the center of $\mathbb{M}_{d_{1}}(\mathbb{C}) \times \cdots \times \mathbb{M}_{d_{h}}(\mathbb{C})$. In fact, we have already computed the image $\rho(f)$ of a class function f, in Proposition 1.3 of the handout "Characters II:"

$$
\rho(f)=\left(t_{1} \operatorname{Id}, \ldots, t_{h} \mathrm{Id}\right)
$$

where $t_{i}=\frac{\#(G)\left\langle f, \bar{\chi}_{V_{i}}\right\rangle}{d_{i}}$.
To conclude this section, we give a formula for ρ^{-1} :

Proposition 1.10 (Fourier inversion). Given $\left(A_{1}, \ldots, A_{h}\right) \in$ End $V_{1} \times \cdots \times$ End $V_{h} \cong \mathbb{M}_{d_{1}}(\mathbb{C}) \times \cdots \times \mathbb{M}_{d_{h}}(\mathbb{C}), \rho^{-1}\left(A_{1}, \ldots, A_{h}\right)=\sum_{g} t_{g} \cdot g$, where

$$
t_{g}=\frac{1}{\#(G)} \sum_{i=1}^{h} d_{i} \operatorname{Tr}\left(\rho_{V_{i}}\left(g^{-1}\right) A_{i}\right)
$$

Proof. By linearity, it is enough to check this formula for $\left(A_{1}, \ldots, A_{h}\right)=$ $\rho(x)=\rho\left(\delta_{x}\right)$, identifying the basis vector $x \in \mathbb{C}[G]$ with the basis element $\delta_{x} \in L^{2}(G)$. In other words, we can take $A_{i}=\rho_{V_{i}}(x)$. Then

$$
\operatorname{Tr}\left(\rho_{V_{i}}\left(g^{-1}\right) A_{i}\right)=\operatorname{Tr}\left(\rho_{V_{i}}\left(g^{-1}\right) \rho_{V_{i}}(x)\right)=\operatorname{Tr}\left(\rho_{V_{i}}\left(g^{-1} x\right)\right)=\chi_{V_{i}}\left(g^{-1} x\right),
$$

and so we want to show that $t_{g}=1$ if $g=x$ and $t_{g}=0$ otherwise, where

$$
t_{g}=\frac{1}{\#(G)} \sum_{i=1}^{h} d_{i} \chi_{V_{i}}\left(g^{-1} x\right)
$$

But as $\sum_{i=1}^{h} d_{i} \chi_{V_{i}}=\chi_{\text {reg }}$ is the character of the regular representation,

$$
\sum_{i=1}^{h} d_{i} \chi_{V_{i}}\left(g^{-1} x\right)= \begin{cases}\#(G), & \text { if } g^{-1} x=1 \\ 0, & \text { otherwise }\end{cases}
$$

This implies that $t_{g}=1$ if $g^{-1} x=1$, i.e. $g=x$, and $t_{g}=0$ otherwise, as claimed.

2 A basis for $L^{2}(G)$

We have seen that the characters of the distinct irreducible representations are a unitary basis for the space of class functions. It is natural to ask if we can use representation theory to find a basis for all of $L^{2}(G)$. We shall outline how to do so.

Lemma 2.1. Let V and W be two irreducible G-representations and let $F: V \rightarrow W$ be a linear map. Define

$$
p(F)=\frac{1}{\#(G)} \sum_{g \in G} \rho_{W}(g) \circ F \circ \rho_{V}(g)^{-1} .
$$

Then:
(i) If V and W are not isomorphic, then $p(F)=0$.
(ii) If $V=W$, then

$$
p(F)=\frac{\operatorname{Tr} F}{\operatorname{dim} V} \operatorname{Id} .
$$

Proof. (i) We have seen that p is a projection onto $\operatorname{Hom}^{G}(V, W)$. But if V and W are not isomorphic, then $\operatorname{Hom}^{G}(V, W)=0$ by Schur's lemma. Thus $p(F)=0$.
(ii) Again by Schur's lemma, if V is irreducible, then $\operatorname{Hom}^{G}(V, W) \cong \mathbb{C} \cdot$ Id. Thus $p(F)=t \mathrm{Id}$ for some $t \in \mathbb{C}$. Taking the trace, we see that

$$
\operatorname{Tr}(p(F))=\operatorname{Tr}(t \mathrm{Id})=t \operatorname{dim} V .
$$

On the other hand,

$$
\operatorname{Tr}(p(F))=\frac{1}{\#(G)} \sum_{g \in G} \operatorname{Tr}\left(\rho_{V}(g) \circ F \circ \rho_{V}(g)^{-1}\right)=\frac{1}{\#(G)} \sum_{g \in G} \operatorname{Tr} F,
$$

using the identity that $\operatorname{Tr}\left(A B A^{-1}\right)=\operatorname{Tr} B$ for every invertible matrix A. Thus $\operatorname{Tr}(p(F))=\operatorname{Tr} F$. Comparing this with $\operatorname{Tr}(p(F))=t \operatorname{dim} V$ gives $t=\operatorname{Tr} F / \operatorname{dim} V$, which is the formula of (ii).

We now interpret the lemma in terms of the matrix coefficients of $\rho_{V}(g)$ and $\rho_{W}(g)$:

Corollary 2.2. Let V and W be two irreducible G-representations and suppose that v_{1}, \ldots, v_{d} is a basis for V and w_{1}, \ldots, w_{e} is a basis for W. For $g \in G$, let $\rho_{V}(g)_{i j}$ be the $(i, j)^{\text {th }}$ entry in the matrix for $\rho_{V}(g)$ corresponding to the basis v_{1}, \ldots, v_{d}, and similarly for $\rho_{W}(g)_{i j}$. Then
(i) If V and W are not isomorphic, then, for all $i, j, 1 \leq i, j \leq d$ and all $k, \ell, 1 \leq k, \ell \leq e$,

$$
\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}\left(g^{-1}\right)_{i j} \rho_{W}(g)_{k \ell}=0
$$

(ii) If $V=W$ and $v_{i}=w_{i}$ for all i, then for all $i, j, k, \ell, 1 \leq i, j, k, \ell \leq d$,

$$
\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}\left(g^{-1}\right)_{i j} \rho_{V}(g)_{k \ell}= \begin{cases}\frac{1}{\operatorname{dim} V}, & \text { if } i=\ell \text { and } j=k ; \\ 0, & \text { otherwise } .\end{cases}
$$

Proof. Let $F_{r s}: V \rightarrow W$ be the linear map defined by $F_{r s}\left(v_{r}\right)=w_{s}$ and $F_{r s}\left(v_{i}\right)=0, i \neq r$. Then a computation shows that

$$
\rho_{W}(g) \circ F_{r s} \circ \rho_{V}(g)^{-1}\left(v_{i}\right)=\sum_{\ell=1}^{e} \rho_{V}\left(g^{-1}\right)_{r i} \rho_{W}(g)_{\ell s} w_{\ell} .
$$

Hence, summing over all $g \in G$ and dividing by $\#(G)$, we see that

$$
p\left(F_{r s}\right)\left(v_{i}\right)=\sum_{\ell=1}^{e}\left(\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}\left(g^{-1}\right)_{r i} \rho_{W}(g)_{\ell s}\right) w_{\ell} .
$$

If V and W are not isomorphic, then, for all $r, s, p\left(F_{r s}\right)=0$, so $p\left(F_{r s}\right)\left(v_{i}\right)=0$ for all i. This says that, for all r, s, i, ℓ, the coefficient of w_{ℓ} in $p\left(F_{r s}\right)\left(v_{i}\right)$ is 0 , which is (i) (with a different labeling of the indices). As for (ii), we know that $p\left(F_{r s}\right)$ is of the form $t \cdot$ Id, in particular it only has nonzero entries along the diagonal. Moreover, the diagonal entry for v_{i} in $\rho_{V}(g) \circ F_{r s} \circ \rho_{V}(g)^{-1}\left(v_{i}\right)$ is $\rho_{V}\left(g^{-1}\right)_{r i} \rho_{V}(g)_{i s}$. Again, summing over $g \in G$ and dividing by $\#(G)$, we see that

$$
\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}\left(g^{-1}\right)_{r i} \rho_{V}(g)_{j s}= \begin{cases}\frac{\operatorname{Tr} F_{r s}}{\operatorname{dim} V}, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

Since $\operatorname{Tr} F_{r s}=0$ if $r \neq s$ and $\operatorname{Tr} F_{r r}=1$, we get the formula in (ii).
The appearance of the term $\rho_{V}\left(g^{-1}\right)_{i j}$ is hard to exploit, since in general there is no good formula for $\rho_{V}\left(g^{-1}\right)$ in terms of $\rho_{V}(g)$. However, if $\rho_{V}(g)$ is unitary with respect to the basis v_{1}, \ldots, v_{d}, then things are much better:

$$
\rho_{V}\left(g^{-1}\right)=\rho_{V}(g)^{-1}={ }^{*} \rho_{V}(g)
$$

is the adjoint matrix, and hence

$$
\rho_{V}\left(g^{-1}\right)_{i j}={\overline{\rho_{V}(g)}}_{j i} .
$$

Thus

$$
\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}\left(g^{-1}\right)_{i j} \rho_{W}(g)_{k \ell}=\frac{1}{\#(G)} \sum_{g \in G}{\overline{\rho_{V}\left(g^{-1}\right)_{j i}} \rho_{W}(g)_{k \ell}=\left\langle\left(\rho_{W}\right)_{k \ell},\left(\rho_{V}\right)_{j i}\right\rangle ~}_{\text {. }}
$$

In this case, the formulas of (i) and (ii) above read:
(i) If V and W are not isomorphic, then, for all $i, j, 1 \leq i, j \leq d$ and all $k, \ell, 1 \leq k, \ell \leq e$,

$$
\left\langle\left(\rho_{W}\right)_{k \ell},\left(\rho_{V}\right)_{j i}\right\rangle=0 .
$$

(ii) If $V=W$ and $v_{i}=w_{i}$ for all i, then for all $i, j, k, \ell, 1 \leq i, j, k, \ell \leq d$,

$$
\left\langle\left(\rho_{V}\right)_{k \ell},\left(\rho_{V}\right)_{j i}\right\rangle= \begin{cases}\frac{1}{\operatorname{dim} V}, & \text { if } i=\ell \text { and } j=k ; \\ 0, & \text { otherwise } .\end{cases}
$$

Summarizing, we obtain:
Theorem 2.3. Let V_{1}, \ldots, V_{h} be the distinct irreducible representations of G up to isomorphism and let $d_{i}=\operatorname{dim} V_{i}$. We suppose that, for each i, we have chosen a G-invariant Hermitian inner product on V_{i} and a unitary basis $v_{1}, \ldots, v_{d_{i}}$ for this inner product and let $\left(\rho_{V_{i}}(g)_{r s}\right)$ be the (unitary) matrix for $\rho_{V_{i}}(g)$ with respect to this basis. For each $i, 1 \leq i \leq h$ and for r, s with $1 \leq r, s \leq d_{i}$, set

$$
f_{i, r, s}(g)=\sqrt{d_{i}} \rho_{V_{i}}(g)_{r s} .
$$

Then the normalized matrix coefficients $f_{i, r, s}(g)$ are a basis for $L^{2}(G)$.
Proof. The calculations above show that the functions $f_{i, r, s}$ are orthonormal, in the sense that $\left\langle f_{i, r, s}, f_{j, t, u}\right\rangle=0$ unless $i=j, r=t, s=u$, and $\left\langle f_{i, r, s}, f_{i, r, s}\right\rangle=1$. In particular they are linearly independent. But the number of such functions is $\sum_{i=1}^{h} d_{i}^{2}=\#(G)$, and so they must be a basis for $L^{2}(G)$.

Remark 2.4. For every representation V of G, a G-invariant positive definite Hermitian inner product always exists on V : choose an arbitrary positive definite Hermitian inner product H_{0} on V and average over G, i.e. set

$$
H(v, w)=\frac{1}{\#(G)} \sum_{g \in G} H_{0}\left(\rho_{V}(g)(v), \rho_{V}(g)(w)\right) .
$$

It is clear that H is a positive definite Hermitian inner product, and the usual arguments show that H is G-invariant, i.e. that

$$
H\left(\rho_{V}(g)(v), \rho_{V}(g)(w)\right)=H(v, w)
$$

for all $v, w \in V$ and $g \in G$. Thus the matrices for $\rho_{V}(g)$ with respect to a unitary basis are unitary.

The G-invariant positive definite Hermitian inner product H is not necessarily unique. However, if V is irreducible, then an argument with Schur's lemma shows that every other G-invariant positive definite Hermitian inner product H^{\prime} is of the form $t H$ for some positive real number t. However, we omit the details.

3 The Fourier transform for finite abelian groups

In this section, we assume that G is a finite abelian group.
Definition 3.1. The dual group \widehat{G} is the set of homomorphisms $\lambda: G \rightarrow \mathbb{C}^{*}$. Thus in particular $\widehat{G} \subseteq L^{2}(G)$. It is easy to check that (for an arbitrary, not necessarily abelian group G) that \widehat{G} is a group under pointwise multiplication of homomorphisms, i.e. if we define the product $\lambda_{1} \lambda_{2}$ by

$$
\left(\lambda_{1} \lambda_{2}\right)(g)=\lambda_{1}(g) \lambda_{2}(g) .
$$

The multiplicative inverse of λ is $\lambda^{-1}=1 / \lambda$ (not the inverse function!), which is again a homomorphism from G to \mathbb{C}^{*}. Note that, as $\lambda(g)$ has finite order, $\lambda(g)$ has absolute value one, and hence $\lambda^{-1}=\bar{\lambda}$.

Beginning with the next lemma, however, we strongly use the fact that G is abelian.

Lemma 3.2. $\#(\widehat{G})=\#(G)$. Moreover, the $\lambda \in \widehat{G}$ are a unitary basis of $L^{2}(G)$ with respect to the Hermitian inner product.

Proof. For a finite abelian group G, if V_{1}, \ldots, V_{h} are the irreducible representations, with $d_{i}=\operatorname{dim} V_{i}$, then we have seen that $d_{i}=1$ for all i and that $h=\#(G)$. Then the V_{i} are necessarily of the form $\mathbb{C}\left(\lambda_{i}\right), \lambda_{i} \in \widehat{G}$ and each element of \widehat{G} appears exactly once as a λ_{i}. Thus $h=\#(\widehat{G})=\#(G)$.

To see the final statement, we know that, for a general finite group G, the characters are a basis for the space of class functions. For an abelian group, a character is just an element of \widehat{G} and a class function is just a function, so that \widehat{G} is a basis of $L^{2}(G)$. It is a unitary basis by the orthogonality relations for characters (or by an easy direct argument in this case): $\langle\mu, \lambda\rangle=1$ if $\lambda=\mu$ and $\langle\mu, \lambda\rangle=0$ otherwise.

Example 3.3. For $G=\mathbb{Z} / n \mathbb{Z}$, every homomorphism $\lambda: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C}^{*}$ is of the form $\lambda_{a}($ here a is an integer $\bmod n)$, where

$$
\lambda_{a}(k)=e^{2 \pi i a k / n} .
$$

In particular, $\lambda_{a}(1)=e^{2 \pi i a / n}$ is an element of μ_{n}, ie. an element of \mathbb{C}^{*} of order n, which determines and is determined by the homomorphism. Also, by the rules of exponents $\lambda_{a} \cdot \lambda_{b}=\lambda_{a+b}$, and $\lambda_{a}=1 \Longleftrightarrow a=0$ as an element of $\mathbb{Z} / n \mathbb{Z}$. Thus $a \mapsto \lambda_{a}$ is an isomorphism from $\mathbb{Z} / n \mathbb{Z}$ to $\widehat{\mathbb{Z} / n \mathbb{Z}}$.

More generally, every finite abelian group G is isomorphic to \widehat{G}, but there is no "natural" choice of isomorphism.

Definition 3.4. For a finite abelian group G, and a function $f \in L^{2}(G)$, we define the Fourier transform $\hat{f} \in L^{2}(\widehat{G})$ by:

$$
\hat{f}(\lambda)=\sum_{g \in G} f(g) \overline{\lambda(g)}=\#(G)\langle f, \lambda\rangle .
$$

Thus the Fourier transform is a linear map $F T: L^{2}(G) \rightarrow L^{2}(\widehat{G})$.
Remark 3.5. Other normalizations are also possible. For example, one could define $\hat{f}(\lambda)$ to be $\langle f, \lambda\rangle$ or $\langle f, \bar{\lambda}\rangle$, with minor changes in the formulas below. In fact, we will use a different normalization in the nonabelian case.

The main point in what follows is that there are two different and interesting bases for $L^{2}(G)$. The first is $\left\{\delta_{x}: x \in X\right\}$. This is almost but not quite unitary with respect to the Hermitian inner product on $L^{2}(G)$: in fact,

$$
\left\langle\delta_{x}, \delta_{y}\right\rangle= \begin{cases}0, & \text { if } x \neq y \\ \frac{1}{\#(G)}, & \text { if } x=y\end{cases}
$$

The second basis is the unitary basis \widehat{G}. Given $f \in L^{2}(G)$, the coefficient of f with respect to the basis element δ_{x} for the basis $\left\{\delta_{x}: x \in X\right\}$ is by definition $f(x)$. The coefficient of f with respect to the basis element λ for the unitary basis \widehat{G} is

$$
\langle f, \lambda\rangle=\frac{1}{\#(G)} \hat{f}(\lambda) .
$$

In much of what follows, the arguments will boil down to comparing these two different descriptions of a function f.

Example 3.6. (1) For $G=\mathbb{Z} / n \mathbb{Z}$, and using the remarks above to identify $\lambda_{a} \in \widehat{\mathbb{Z} / n \mathbb{Z}}$ with $a \in \mathbb{Z} / n \mathbb{Z}$, we have

$$
\hat{f}(a)=\sum_{k=0}^{n-1} f(k) e^{-2 \pi i a k / n} .
$$

(2) For a general abelian group G and $x \in G$, we have

$$
\hat{\delta}_{x}(\lambda)=\overline{\lambda(x)}=\lambda^{-1}(x) .
$$

Thus $\hat{\delta}_{x}=\mathrm{ev}_{x} \circ \sigma=\overline{\operatorname{ev}}_{x}$, where $\mathrm{ev}_{x} \in L^{2}(\widehat{G})$ is evaluation at x and $\sigma: \widehat{G} \rightarrow$ \widehat{G} is complex conjugation of homomorphisms.
(3) Since $\widehat{G} \subseteq L^{2}(G)$, we can also form the Fourier transform $\hat{\mu}$ of a $\mu \in \widehat{G}$.

Claim 3.7. $\hat{\mu}=\#(G) \delta_{\mu}$.
Proof. By definition, $\hat{\mu}(\lambda)=\#(G)\langle\mu, \lambda\rangle$. But $\langle\mu, \lambda\rangle=\delta_{\mu}(\lambda)$, so that $\hat{\mu}=$ $\#(G) \delta_{\mu}$.

Theorem 3.8. For all $f, f_{1}, f_{2} \in L^{2}(G)$,
(i)

$$
f=\frac{1}{\#(G)} \sum_{\lambda \in \widehat{G}} \hat{f}(\lambda) \lambda
$$

(Fourier inversion)
(ii)

$$
\left\langle f_{1}, f_{2}\right\rangle=\frac{1}{\#(G)}\left\langle\hat{f}_{1}, \hat{f}_{2}\right\rangle
$$

(Plancherel formula)
(iii)

$$
\widehat{f_{1} * f_{2}}=\hat{f}_{1} \hat{f}_{2} \text { and } \widehat{f_{1} f_{2}}=\frac{1}{\#(G)}\left(\hat{f}_{1} * \hat{f}_{2}\right)
$$

Proof. (i) Since \widehat{G} is a unitary basis for $L^{2}(G)$,

$$
f=\sum_{\lambda \in \widehat{G}}\langle f, \lambda\rangle \lambda=\frac{1}{\#(G)} \sum_{\lambda \in \widehat{G}} \hat{f}(\lambda) \lambda .
$$

(ii) Again using the fact that \widehat{G} is a unitary basis for $L^{2}(G)$,

$$
\begin{aligned}
\left\langle f_{1}, f_{2}\right\rangle & =\sum_{\lambda \in \widehat{G}}\left\langle f_{1}, \lambda\right\rangle \overline{\left\langle f_{1}, \lambda\right\rangle}=\frac{1}{\#(G)^{2}} \sum_{\lambda \in \widehat{G}} \hat{f}_{1}(\lambda) \overline{\hat{f}_{2}(\lambda)} \\
& =\frac{1}{\#(G)}\left\langle\hat{f}_{1}, \hat{f}_{2}\right\rangle .
\end{aligned}
$$

(iii) In fact, we have essentially proved the first formula, see (2) of Remark 1.5. The point is that, in the abelian case, we have defined $\rho: L^{2}(G) \rightarrow$ \mathbb{C}^{h}, where $h=\#(G)$, by setting $\rho_{\mathbb{C}(\lambda)}(f)=\sum_{g \in G} f(g) \lambda(g)=\#(G)\langle f, \bar{\lambda}\rangle$. Thus $\rho_{\mathbb{C}(\lambda)}(f)=\hat{f}(\bar{\lambda})$. By Remark 1.5, $\rho_{\mathbb{C}(\lambda)}\left(f_{1} * f_{2}\right)=\rho_{\mathbb{C}(\lambda)}\left(f_{1}\right) \rho_{\mathbb{C}(\lambda)}\left(f_{2}\right)$, and this proves the formula up to conjugating λ.

It is however easy to give a direct proof. It suffices by linearity to check the formula for $f_{1}=\delta_{x}$ and $f_{2}=f$ an arbitrary element of $L^{2}(G)$, since the δ_{x} are a basis for $L^{2}(G)$. Recall that $\left(\delta_{x} * f\right)(g)=f\left(x^{-1} g\right)$. Then

$$
\begin{aligned}
\widehat{\delta_{x} * f}(\lambda) & =\sum_{g \in G} f\left(x^{-1} g\right) \overline{\lambda(g)}=\sum_{g \in G} f(g) \overline{\lambda(x g)} \\
& =\overline{\lambda(x)} \sum_{g \in G} f(g) \overline{\lambda(g)}=\overline{\lambda(x)} \hat{f}(\lambda) .
\end{aligned}
$$

But $\overline{\lambda(x)}=\hat{\delta}_{x}(\lambda)$, by (2) of Example 3.6, and so

$$
\widehat{\delta_{x} * f}=\hat{\delta}_{x} \hat{f}
$$

as claimed.
To prove the second formula in (iii), it is enough to check it for $f_{1}=\mu \in$ $\widehat{G} \subseteq L^{2}(G)$ and $f_{2}=f$ arbitrary, using the fact that \widehat{G} is a basis for $L^{2}(G)$. Here $\mu f(g)=\mu(g) f(g)$, so that

$$
\begin{aligned}
\widehat{\mu f}(\lambda) & =\sum_{g \in G} \mu(g) f(g) \overline{\lambda(g)}=\sum_{g \in G} f(g) \overline{\left(\mu^{-1} \lambda\right)(g)} \\
& =\hat{f}\left(\mu^{-1} \lambda\right)=\delta_{\mu} * \hat{f} .
\end{aligned}
$$

By (3) of Example 3.6, $\hat{\mu}=\#(G) \delta_{\mu}$. Thus

$$
\widehat{\mu f}=\frac{1}{\#(G)} \hat{\mu} * \hat{f}
$$

as claimed.
We give another interpretation of Fourier inversion as follows. Since \widehat{G} is a finite abelian group, we can consider its dual group $\widehat{\widehat{G}}$. By a homework problem, we have the homomorphism ev: $G \rightarrow \widehat{\widehat{G}}$ defined by $\operatorname{ev}(g)(\lambda)=$ $\lambda(g)$, and it is an isomorphism. Thus, we can view $L^{2}(\widehat{\widehat{G}})$ as $L^{2}(G)$ and must compute the value $\hat{\hat{f}}$ on $g \in G$.
Proposition 3.9. $\hat{\hat{f}}(g)=\#(G) f\left(g^{-1}\right)$.
Proof. By definition of the Fourier transform,

$$
\begin{aligned}
\hat{\hat{f}}(g) & =\sum_{\lambda \in \widehat{G}} \hat{f}(\lambda) \overline{\operatorname{ev}(g)(\lambda)}=\sum_{\lambda \in \widehat{G}} \hat{f}(\lambda) \overline{\lambda(g)} \\
& =\sum_{\lambda \in \widehat{G}} \sum_{h \in G} f(h) \overline{\lambda(h) \lambda(g)}=\sum_{h \in G} f(h)\left(\sum_{\lambda \in \widehat{G}} \overline{\lambda(h g)}\right) .
\end{aligned}
$$

But the sum over all $\lambda \in \widehat{G}$ of $\overline{\lambda(g h)}=\lambda^{-1}(g h)$ is the same as the sum over all λ of $\lambda(g h)$, so that

$$
\sum_{\lambda \in \widehat{G}} \overline{\lambda(h g)}=\sum_{\lambda \in \widehat{G}} \lambda(h g)= \begin{cases}\#(G), & \text { if } g h=1, \text { i.e. } h=g^{-1} \\ 0, & \text { otherwise. }\end{cases}
$$

Thus $\hat{\hat{f}}(g)=f\left(g^{-1}\right) \#(G)$.

4 The non-abelian case

We will now reinterpret the results of Section 1 in the language of the previous section. For a finite group G, choose a set of irreducible representations V_{1}, \ldots, V_{h} of V in the usual way and set $\operatorname{dim} V_{i}=d_{i}$. We will think of the set $\left\{V_{1}, \ldots, V_{h}\right\}$ as the set of irreducible representations of G up to isomorphism, and will denote this set by \widehat{G}. Note that, for a nonabelian G, \widehat{G} is just a set, not a group, and there is no set $\widehat{\widehat{G}}$. We have defined an isomorphism
$\rho=\left(\rho_{V_{1}}, \ldots, \rho_{V_{h}}\right): \mathbb{C}[G] \rightarrow$ End $V_{1} \times \cdots \times$ End $V_{h} \cong \mathbb{M}_{d_{1}}(\mathbb{C}) \times \cdots \times \mathbb{M}_{d_{h}}(\mathbb{C})$, and will view this rather as an isomorphism from $L^{2}(G)$ to End $V_{1} \times \cdots \times$ End V_{h}. The $i^{\text {th }}$ component of $\rho(f)$ is then

$$
\rho_{V_{i}}(f)=F_{V_{i}, f}=\sum_{g \in G} f(g) \rho_{V_{i}}(g) .
$$

We think of this as defining a "function" \hat{f} whose value at V_{i} is the linear $\operatorname{map} \rho_{V_{i}}(f)=F_{V_{i}, f}: V_{i} \rightarrow V_{i}$.

This construction differs from the Fourier transform of an abelian group in two ways: First, in the abelian case, V_{i} is one-dimensional and thus End V_{i} can be identified with \mathbb{C}, and we can identify the set $\left\{V_{1}, \ldots, V_{h}\right\}$ with \widehat{G}. Thus \hat{f} is defined on \widehat{G} and it has a well-defined value in \mathbb{C}, so it is just a function, i.e. an element of $L^{2}(\widehat{G})$. Second, we used the normalization $\hat{f}(\lambda)=\sum_{g \in G} f(g) \overline{\lambda(g)}$, so the above definition defines what we had previously defined to be $\hat{f}\left(\lambda^{-1}\right)$, not $\hat{f}(\lambda)$. This is one of many annoying normalization issues, but we will not try to be consistent here.

Finally, we will define the adjoint ${ }^{*} A$ of an $A \in$ End $V_{i} \cong \mathbb{M}_{d_{i}}(\mathbb{C})$ by taking the adjoint with respect to some G-invariant positive definite Hermitian inner product H on V_{i}, i.e. ${ }^{*} A$ is defined by the property that

$$
H(A v, w)=H\left(v,{ }^{*} A w\right)
$$

for all $v, w \in V_{i}$. As in the discussion in Remark 2.4, such an H exists and is unique up to multiplication by a positive real number, and the adjoint is the same for all possible choices of H. In particular, since $\rho_{V_{i}}(g)$ is unitary with respect to H, we have ${ }^{*} \rho_{V_{i}}(g)=\rho_{V_{i}}(g)^{-1}$.

With this said, we have the non-abelian analogue of Theorem 3.8:
Theorem 4.1. For all $f, f_{1}, f_{2} \in L^{2}(G)$,

$$
\begin{equation*}
f=\frac{1}{\#(G)} \sum_{i=1}^{h} d_{i} \operatorname{Tr}\left(\rho_{V_{i}}(g)^{-1} \hat{f}\left(V_{i}\right)\right) \tag{i}
\end{equation*}
$$

(Fourier inversion)
(ii)

$$
\left\langle f_{1}, f_{2}\right\rangle=\frac{1}{\#(G)^{2}} \sum_{i=1}^{h} d_{i} \operatorname{Tr}\left(\hat{f}_{1}\left(V_{i}\right) \cdot *\left(\hat{f}_{1}\left(V_{i}\right)\right)\right.
$$ (Plancherel formula)

(iii)

$$
\widehat{f_{1} * f_{2}}=\hat{f}_{1} \hat{f}_{2}
$$

Proof. We have proved (i) (in a slightly different notation) in Proposition 1.10. And (iii) follows from Lemma 1.4 (see also (2) of Remark 1.5). So we must show (ii). Since $\left\{\delta_{x}: x \in G\right\}$ is a basis for $L^{2}(G)$, it is enough to check (ii), using the bilinearity of both sides, for $f_{1}=\delta_{x}$ and $f_{2}=\delta_{y}$, for all $x, y \in G$. In this case,

$$
\left\langle\delta_{x}, \delta_{y}\right\rangle= \begin{cases}\frac{1}{\#(G)}, & \text { if } x=y \\ 0, & \text { otherwise }\end{cases}
$$

Moreover, by definition, $\hat{\delta}_{x}\left(V_{i}\right)=\rho_{V_{i}}(x)$. Thus, the right hand side of (ii) is equal to

$$
\begin{aligned}
\frac{1}{\#(G)^{2}} \sum_{i=1}^{h} d_{i} \operatorname{Tr}\left(\rho_{V_{i}}(x) \cdot{ }^{*} \rho_{V_{i}}(y)\right) & =\frac{1}{\#(G)^{2}} \sum_{i=1}^{h} d_{i} \operatorname{Tr}\left(\rho_{V_{i}}(x) \rho_{V_{i}}(y)^{-1}\right) \\
& =\frac{1}{\#(G)^{2}} \sum_{i=1}^{h} d_{i} \operatorname{Tr}\left(\rho_{V_{i}}\left(x y^{-1}\right)\right) \\
& =\frac{1}{\#(G)^{2}} \sum_{i=1}^{h} d_{i} \chi_{V_{i}}\left(x y^{-1}\right)=\frac{1}{\#(G)^{2}} \chi_{\mathrm{reg}}\left(x y^{-1}\right) .
\end{aligned}
$$

But $\chi_{\mathrm{reg}}\left(x y^{-1}\right)=\#(G)$ if $x=y$ and $\chi_{\mathrm{reg}}\left(x y^{-1}\right)=0$ otherwise. Thus we see that the right hand side of (ii) is equal to $\left\langle\delta_{x}, \delta_{y}\right\rangle$ as claimed.

