
Characters I

Throughout, G denotes a finite group.

1 The character of a representation

Definition 1.1. Let V (or ρV ) be a G-representation. Then the character
χV (or χρV ) of V is the function χV : G→ C defined by:

χV (g) = Tr ρV (g).

Note that, for all g ∈ G, χV (g) is a sum of roots of unity.

Example 1.2. 1. If V is the trivial representation (i.e. dimV = 1 and
ρV (g) = Id for all g ∈ G), then χV (g) = 1 for all g ∈ G. We sometimes
write χ1 or just 1 for this character.

2. More generally, if dimV = 1 and ρV (g)(v) = λ(g), where λ : G→ C∗ is
a homomorphism, then χV = λ. For example, for the one-dimensional
representation V of Z/nZ on C for which λ(k) = e2πik/n, we have
χV (k) = λ(k) = e2πik/n.

3. The group Dn is generated by elements σ and τ , where σ is a counter-
clockwise rotation by the angle 2πk/n and τ is reflection in the x-axis.
For the representation of Dn on V = C2 for which

ρV (σk) = A2πk/n =

(
cos 2πk/n − sin 2πk/n
sin 2πk/n cos 2πk/n

)
;

ρV (σkτ) = B2πk/n =

(
cos 2πk/n sin 2πk/n
sin 2πk/n − cos 2πk/n

)
,

we clearly have:

χV (σk) = 2 cos 2πk/n; χV (σkτ) = 0.
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4. For the 2-dimensional representation V of the quaternion group Q =
{±1,±i,±j,±k} described previously, we have

χV (1) = 2; χV (−1) = −2; χV (±i) = χV (±j) = χV (±k) = 0.

5. For the standard representation of Sn on Cn, the corresponding char-
acter χ satisfies: χ(σ) is the number of i such that σ(i) = i. Hence, if
σ = γ1 · · · γk is a product of disjoint cycles γi of lengths `i > 1, then
χ(σ) = n−

∑k
i=1 `i.

6. More generally, if X is a G-set and ρC[X] is the corresponding permu-
tation representation on C[X], with character χC[X], then

χC[X](g) = #(Xg),

where Xg is the fixed set of g: Xg = {x ∈ X : g ·x = x}. In particular,
if X = G, where G acts on itself by left multiplication, then C[G] is
the regular representation. We write χreg for the character χC[G]. For
the left multiplication action, given g ∈ G and x ∈ G, g fixes x, i.e.
gx = x ⇐⇒ g = 1, and the element 1 fixes every x ∈ G. In other
words, Gg = ∅ if g 6= 1 and G1 = G. Thus:

χreg(g) =

{
#(G), if g = 1;

0, if g 6= 1.

We list some basic properties of characters.

1. If V is the trivial representation, then χV (g) = 1 for all g ∈ G, i.e. χV
is the constant function 1.

2. For every representation V ,

χV (1) = dimV = deg ρV .

This follows since ρV (1) = Id corresponds to the d× d identity matrix
I, where d = dimV = deg ρV , and Tr I = d.

3. For all g, h ∈ G,

χV (hgh−1) = χV (g) .

This follows since by definition

χV (hgh−1) = Tr(ρV (h) ◦ ρV (g) ◦ ρV (h)−1) = Tr ρV (g) = χV (g).
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4. For every g ∈ G,

χV (g−1) = χV (g) .

To see this, note that, for every g ∈ G, ρV (g) ∈ AutV has finite order.
Hence ρV (g) is diagonalizable and its eigenvalues are roots of unity,
in particular complex numbers of absolute value 1. By a homework
problem,

χV (g−1) = Tr ρV (g−1) = Tr ρV (g)−1 = Tr ρV (g) = χV (g).

Next, we see how the character behaves with respect to the standard con-
structions of linear algebra: Suppose that V1, V2, and V areG-representations.
Then:

1. χV1⊕V2 = χV1 + χV2

This is an immediate consequence of the formula Tr(F1⊕F2) = TrF1+
TrF2. Aplying this inductively, we see that χV1⊕···⊕Vk = χV1+· · ·+χVk .
Also, if we let V n = V ⊕ · · · ⊕ V︸ ︷︷ ︸

n times

, then χV n = nχV .

2. χV ∗ = χV

To see this, first recall that TrF = TrF ∗. Now ρV ∗(g) = (ρV (g)−1)∗,
and hence

χV ∗(g) = Tr(ρV ∗(g)) = Tr((ρV (g)−1)∗) = Tr(ρV (g)−1) = Tr(ρV (g)) = χV (g).

3. χHom(V1,V2) = χV1χV2

The argument for this is similar to the argument for (2): Suppose that
F1 ∈ Hom(V1, V1) and that F2 ∈ Hom(V2, V2). Then (F2)∗ ◦ (F1)

∗ is a
linear map from Hom(V1, V2) to Hom(V1, V2). We have, by a homework
problem,

Tr((F2)∗ ◦ (F1)
∗) = (TrF1)(TrF2).

By definition, ρHom(V1,V2) = (ρV2)∗ ◦ (ρ−1V2 )∗. Thus,

χHom(V1,V2)(g) = Tr ρHom(V1,V2)(g)) = Tr((ρV2(g))∗ ◦ (ρV1(g)−1)∗)

= Tr(ρV2(g)) Tr(ρV1(g)−1)) = χV1(g)χV2(g).

4. χV1⊗V2 = χV1χV2

This follows from the fact that Tr(F1 ⊗ F2) = (TrF1)(TrF2).

In particular, we see that the sum, product, and complex conjugates of
characters are characters.
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2 Orthogonality relations

There are many identities involving characters which are called orthogonality
relations. To begin, recall that, given a G-representation V , we have defined
a projection map p : V → V G by

p(v) =
1

#(G)

∑
g∈G

ρV (g)(v).

We also know that Tr p = dimV G by general linear algebra results about
traces. Ccomputing the trace of p in two different ways then gives

dimV G =
1

#(G)

∑
g∈G

χV (g)

Applying this formula to Hom(V1, V2) gives:

dim HomG(V1, V2) =
1

#(G)

∑
g∈G

χV1(g)χV2(g) =
1

#(G)

∑
g∈G

χV1(g)χV2(g)

Finally, if V1 and V2 are irreducible, and using Schur’s lemma, this becomes:

Proposition 2.1. If V1 and V2 are irreducible, then

1

#(G)

∑
g∈G

χV1(g)χV2(g) = dim HomG(V1, V2) =

{
1, if V1 ∼= V2;

0, if V1 is not isomorphic to V2.

It’s convenient to introduce the G-invariant positive definite Hermitian
inner product on the vector space C(G), viewed as the space L2(G) of func-
tions f : G→ C:

〈f1, f2〉 =
1

#(G)

∑
g∈G

f1(g)f2(g).

Thus we can restate the above proposition as: If V1 and V2 are irreducible,
then

〈χV1 , χV2〉 = dim HomG(V1, V2) =

{
1, if V1 ∼= V2;

0, if V1 is not isomorphic to V2
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Corollary 2.2. Write V ∼= V m1
1 ⊕ · · · ⊕ V mk

k , where Vi is irreducible, Vi is
not isomorphic to Vj if i 6= j, and V mi

i is shorthand for the direct sum

Vi ⊕ · · · ⊕ Vi︸ ︷︷ ︸
mi times

.

Then

〈χV , χV 〉 =

k∑
i=1

m2
i

In particular, V is irreducible ⇐⇒ 〈χV , χV 〉 = 1.

Proof. By our formulas, χV =
∑k

i=1miχVi . Then, expanding out the inner
product gives

〈χV , χV 〉 =
∑
i,j

mimj〈χVi , χVj 〉.

As 〈χVi , χVj 〉 is 1 if i = j and 0 otherwise, the sum becomes
∑

im
2
i as

claimed. The final statement follows since, if the mi are positive integers,
then

∑k
i=1m

2
i = 1 ⇐⇒ k = 1 and m1 = 1, which clearly happens ⇐⇒ V

is irreducible.

Corollary 2.3. Write V ∼= V m1
1 ⊕ · · · ⊕ V mk

k as in the previous corollary.
Let W be an irreducible representation. Then

〈χW , χV 〉 =

{
mi, if W ∼= Vi;

0, if W is not isomorphic to Vi for any i.

Hence two representations V and V ′ are isomorphic ⇐⇒ χV = χV ′. In
other words:

The character χV determines the representation V up to iso-
morphism.

Proof. We have seen that χV =
∑k

i=1miχVi , and hence

〈χW , χV 〉 =
k∑
i=1

mi〈χW , χVi〉.

But 〈χW , χVi〉 = 1 ⇐⇒ W ∼= Vi, which can happen for at most one i by the
assumption that Vi is not isomorphic to Vj if i 6= j. Hence 〈χW , χV 〉 = mi

if W ∼= Vi and 〈χW , χV 〉 = 0 if W is not isomorphic to any Vi.
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To see the final statement, clearly, if V ∼= V ′, then χV = χV ′ . Conversely,
suppose that χV = χV ′ . Write V ∼= V m1

1 ⊕ · · · ⊕ V mk
k as above. Then

〈χVi , χV ′〉 = 〈χVi , χV 〉 = mi,

and 〈χW , χV ′〉 = 〈χW , χV 〉 = 0 if W is an irreducible representation not
isomorphic to Vi for some i. Hence V ′ ∼= V m1

1 ⊕ · · · ⊕ V mk
k , and thus V ′ ∼=

V .

Definition 2.4. If V is a representation and W is an irreducible represen-
tation, we define the multiplicity of W in V to be the nonnegative integer
〈χW , χV 〉.

3 The regular representation

Our goal now will be to apply the results of the previous section to the reg-
ular representation C[G], whose character χC[G] = χreg we have computed.
In fact, χreg(1) = #(G) and χreg(g) = 0 if g 6= 1.

Proposition 3.1. Let W be an irreducible representation. Then

〈χW , χreg〉 = dimW

Proof. By definition and the above remarks,

〈χW , χreg〉 =
1

#(G)

∑
g∈G

χW (g)χreg(g) =
χW (1) ·#(G)

#(G)
= dimW.

Corollary 3.2. Write

C[G] ∼= W d1
1 ⊕ · · · ⊕W

dh
h ,

where the Wi are irreducible and, for i 6= j, Wi is not isomorphic to Wj.
Then:

(i) di = dimWi.

(ii) Every irreducible representation of V is isomorphic to Wi for a unique
i. In particular, there are only finitely many irreducible G-representa-
tions up to isomorphism.

6



Proof. The first statement follows from the previous proposition and Corol-
lary 2.3. The second follows similarly, since if W is an irreducible represen-
tation, then 〈χW , χreg〉 = dimW > 0 and hence W ∼= Wi for some i.

Corollary 3.3. If W1, . . . ,Wh are the finitely many distinct irreducible G-
representations up to isomorphism and di = dimWi, then

h∑
i=1

d2i = #(G)

h∑
i=1

diχWi(g) =

{
#(G), if g = 1;

0, if g 6= 1.

Proof. We prove the second identity first. Since C[G] ∼= W d1
1 ⊕ · · · ⊕W

dh
h ,

χreg =
h∑
i=1

diχWi .

The result then follows from our calculation of χreg. The first identity is
then a consequence, since, for every i, χWi(1) = dimWi = di.
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