Characters I

Throughout, G denotes a finite group.

1 The character of a representation

Definition 1.1. Let V (or ρ_{V}) be a G-representation. Then the character χ_{V} (or $\chi_{\rho_{V}}$) of V is the function $\chi_{V}: G \rightarrow \mathbb{C}$ defined by:

$$
\chi_{V}(g)=\operatorname{Tr} \rho_{V}(g) .
$$

Note that, for all $g \in G, \chi_{V}(g)$ is a sum of roots of unity.
Example 1.2. 1. If V is the trivial representation (i.e. $\operatorname{dim} V=1$ and $\rho_{V}(g)=\mathrm{Id}$ for all $\left.g \in G\right)$, then $\chi_{V}(g)=1$ for all $g \in G$. We sometimes write χ_{1} or just 1 for this character.
2. More generally, if $\operatorname{dim} V=1$ and $\rho_{V}(g)(v)=\lambda(g)$, where $\lambda: G \rightarrow \mathbb{C}^{*}$ is a homomorphism, then $\chi_{V}=\lambda$. For example, for the one-dimensional representation V of $\mathbb{Z} / n \mathbb{Z}$ on \mathbb{C} for which $\lambda(k)=e^{2 \pi i k / n}$, we have $\chi_{V}(k)=\lambda(k)=e^{2 \pi i k / n}$.
3. The group D_{n} is generated by elements σ and τ, where σ is a counterclockwise rotation by the angle $2 \pi k / n$ and τ is reflection in the x-axis. For the representation of D_{n} on $V=\mathbb{C}^{2}$ for which

$$
\begin{aligned}
\rho_{V}\left(\sigma^{k}\right)=A_{2 \pi k / n} & =\left(\begin{array}{cc}
\cos 2 \pi k / n & -\sin 2 \pi k / n \\
\sin 2 \pi k / n & \cos 2 \pi k / n
\end{array}\right) ; \\
\rho_{V}\left(\sigma^{k} \tau\right)=B_{2 \pi k / n} & =\left(\begin{array}{cc}
\cos 2 \pi k / n & \sin 2 \pi k / n \\
\sin 2 \pi k / n & -\cos 2 \pi k / n
\end{array}\right),
\end{aligned}
$$

we clearly have:

$$
\chi_{V}\left(\sigma^{k}\right)=2 \cos 2 \pi k / n ; \quad \chi_{V}\left(\sigma^{k} \tau\right)=0
$$

4. For the 2-dimensional representation V of the quaternion group $Q=$ $\{ \pm 1, \pm i, \pm j, \pm k\}$ described previously, we have

$$
\chi_{V}(1)=2 ; \quad \chi_{V}(-1)=-2 ; \quad \chi_{V}(\pm i)=\chi_{V}(\pm j)=\chi_{V}(\pm k)=0 .
$$

5. For the standard representation of S^{n} on \mathbb{C}^{n}, the corresponding character χ satisfies: $\chi(\sigma)$ is the number of i such that $\sigma(i)=i$. Hence, if $\sigma=\gamma_{1} \cdots \gamma_{k}$ is a product of disjoint cycles γ_{i} of lengths $\ell_{i}>1$, then $\chi(\sigma)=n-\sum_{i=1}^{k} \ell_{i}$.
6. More generally, if X is a G-set and $\rho_{\mathbb{C}[X]}$ is the corresponding permutation representation on $\mathbb{C}[X]$, with character $\chi_{\mathbb{C}[X]}$, then

$$
\chi_{\mathbb{C}[X]}(g)=\#\left(X^{g}\right),
$$

where X^{g} is the fixed set of $g: X^{g}=\{x \in X: g \cdot x=x\}$. In particular, if $X=G$, where G acts on itself by left multiplication, then $\mathbb{C}[G]$ is the regular representation. We write χ_{reg} for the character $\chi_{\mathbb{C}[G]}$. For the left multiplication action, given $g \in G$ and $x \in G, g$ fixes x, i.e. $g x=x \Longleftrightarrow g=1$, and the element 1 fixes every $x \in G$. In other words, $G^{g}=\emptyset$ if $g \neq 1$ and $G^{1}=G$. Thus:

$$
\chi_{\mathrm{reg}}(g)= \begin{cases}\#(G), & \text { if } g=1 ; \\ 0, & \text { if } g \neq 1\end{cases}
$$

We list some basic properties of characters.

1. If V is the trivial representation, then $\chi_{V}(g)=1$ for all $g \in G$, i.e. χ_{V} is the constant function 1 .
2. For every representation V,

$$
\chi_{V}(1)=\operatorname{dim} V=\operatorname{deg} \rho_{V} \text {. }
$$

This follows since $\rho_{V}(1)=$ Id corresponds to the $d \times d$ identity matrix I, where $d=\operatorname{dim} V=\operatorname{deg} \rho_{V}$, and $\operatorname{Tr} I=d$.
3. For all $g, h \in G$,

$$
\chi_{V}\left(h g h^{-1}\right)=\chi_{V}(g) \text {. }
$$

This follows since by definition

$$
\chi_{V}\left(h g h^{-1}\right)=\operatorname{Tr}\left(\rho_{V}(h) \circ \rho_{V}(g) \circ \rho_{V}(h)^{-1}\right)=\operatorname{Tr} \rho_{V}(g)=\chi_{V}(g) .
$$

4. For every $g \in G$,

$$
\chi_{V}\left(g^{-1}\right)=\overline{\chi_{V}(g)} \text {. }
$$

To see this, note that, for every $g \in G, \rho_{V}(g) \in$ Aut V has finite order. Hence $\rho_{V}(g)$ is diagonalizable and its eigenvalues are roots of unity, in particular complex numbers of absolute value 1. By a homework problem,

$$
\chi_{V}\left(g^{-1}\right)=\operatorname{Tr} \rho_{V}\left(g^{-1}\right)=\operatorname{Tr} \rho_{V}(g)^{-1}=\overline{\operatorname{Tr} \rho_{V}(g)}=\overline{\chi_{V}(g)} .
$$

Next, we see how the character behaves with respect to the standard constructions of linear algebra: Suppose that V_{1}, V_{2}, and V are G-representations. Then:

1. $\chi_{V_{1} \oplus V_{2}}=\chi_{V_{1}}+\chi_{V_{2}}$

This is an immediate consequence of the formula $\operatorname{Tr}\left(F_{1} \oplus F_{2}\right)=\operatorname{Tr} F_{1}+$
$\operatorname{Tr} F_{2}$. Aplying this inductively, we see that $\chi_{V_{1} \oplus \cdots \oplus V_{k}}=\chi_{V_{1}}+\cdots+\chi_{V_{k}}$. Also, if we let $V^{n}=\underbrace{V \oplus \cdots \oplus V}_{n \text { times }}$, then $\chi_{V^{n}}=n \chi_{V}$.
2. $\chi_{V^{*}}=\overline{\chi_{V}}$

To see this, first recall that $\operatorname{Tr} F=\operatorname{Tr} F^{*}$. Now $\rho_{V^{*}}(g)=\left(\rho_{V}(g)^{-1}\right)^{*}$, and hence
$\chi_{V^{*}}(g)=\operatorname{Tr}\left(\rho_{V^{*}}(g)\right)=\operatorname{Tr}\left(\left(\rho_{V}(g)^{-1}\right)^{*}\right)=\operatorname{Tr}\left(\rho_{V}(g)^{-1}\right)=\overline{\operatorname{Tr}\left(\rho_{V}(g)\right)}=\overline{\chi_{V}(g)}$.
3. $\chi_{\operatorname{Hom}\left(V_{1}, V_{2}\right)}=\overline{\chi_{V_{1}}} \chi_{V_{2}}$

The argument for this is similar to the argument for (2): Suppose that $F_{1} \in \operatorname{Hom}\left(V_{1}, V_{1}\right)$ and that $F_{2} \in \operatorname{Hom}\left(V_{2}, V_{2}\right)$. Then $\left(F_{2}\right)_{*} \circ\left(F_{1}\right)^{*}$ is a linear map from $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ to $\operatorname{Hom}\left(V_{1}, V_{2}\right)$. We have, by a homework problem,

$$
\operatorname{Tr}\left(\left(F_{2}\right)_{*} \circ\left(F_{1}\right)^{*}\right)=\left(\operatorname{Tr} F_{1}\right)\left(\operatorname{Tr} F_{2}\right) .
$$

By definition, $\rho_{\mathrm{Hom}\left(V_{1}, V_{2}\right)}=\left(\rho_{V_{2}}\right)_{*} \circ\left(\rho_{V_{2}}^{-1}\right)^{*}$. Thus,

$$
\begin{aligned}
\chi_{\operatorname{Hom}\left(V_{1}, V_{2}\right)}(g) & \left.=\operatorname{Tr} \rho_{\operatorname{Hom}\left(V_{1}, V_{2}\right)}(g)\right)=\operatorname{Tr}\left(\left(\rho_{V_{2}}(g)\right)_{*} \circ\left(\rho_{V_{1}}(g)^{-1}\right)^{*}\right) \\
& \left.=\operatorname{Tr}\left(\rho_{V_{2}}(g)\right) \operatorname{Tr}\left(\rho_{V_{1}}(g)^{-1}\right)\right)=\overline{\chi_{V_{1}}(g)} \chi_{V_{2}}(g) .
\end{aligned}
$$

4. $\chi_{V_{1} \otimes V_{2}}=\chi_{V_{1}} \chi_{V_{2}}$

This follows from the fact that $\operatorname{Tr}\left(F_{1} \otimes F_{2}\right)=\left(\operatorname{Tr} F_{1}\right)\left(\operatorname{Tr} F_{2}\right)$.
In particular, we see that the sum, product, and complex conjugates of characters are characters.

2 Orthogonality relations

There are many identities involving characters which are called orthogonality relations. To begin, recall that, given a G-representation V, we have defined a projection map $p: V \rightarrow V^{G}$ by

$$
p(v)=\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g)(v) .
$$

We also know that $\operatorname{Tr} p=\operatorname{dim} V^{G}$ by general linear algebra results about traces. Ccomputing the trace of p in two different ways then gives

$$
\operatorname{dim} V^{G}=\frac{1}{\#(G)} \sum_{g \in G} \chi_{V}(g)
$$

Applying this formula to $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ gives:

$$
\operatorname{dim} \operatorname{Hom}^{G}\left(V_{1}, V_{2}\right)=\frac{1}{\#(G)} \sum_{g \in G} \overline{\chi_{V_{1}}(g)} \chi_{V_{2}}(g)=\frac{1}{\#(G)} \sum_{g \in G} \chi_{V_{1}}(g) \overline{\chi_{V_{2}}(g)}
$$

Finally, if V_{1} and V_{2} are irreducible, and using Schur's lemma, this becomes:
Proposition 2.1. If V_{1} and V_{2} are irreducible, then

$$
\frac{1}{\#(G)} \sum_{g \in G} \chi_{V_{1}}(g) \overline{\chi_{V_{2}}(g)}=\operatorname{dim} \operatorname{Hom}^{G}\left(V_{1}, V_{2}\right)= \begin{cases}1, & \text { if } V_{1} \cong V_{2} \\ 0, & \text { if } V_{1} \text { is not isomorphic to } V_{2} .\end{cases}
$$

It's convenient to introduce the G-invariant positive definite Hermitian inner product on the vector space $\mathbb{C}(G)$, viewed as the space $L^{2}(G)$ of functions $f: G \rightarrow \mathbb{C}$:

$$
\left\langle f_{1}, f_{2}\right\rangle=\frac{1}{\#(G)} \sum_{g \in G} f_{1}(g) \overline{f_{2}(g)} .
$$

Thus we can restate the above proposition as: If V_{1} and V_{2} are irreducible, then

$$
\left\langle\chi_{V_{1}}, \chi_{V_{2}}\right\rangle=\operatorname{dim} \operatorname{Hom}^{G}\left(V_{1}, V_{2}\right)= \begin{cases}1, & \text { if } V_{1} \cong V_{2} ; \\ 0, & \text { if } V_{1} \text { is not isomorphic to } V_{2}\end{cases}
$$

Corollary 2.2. Write $V \cong V_{1}^{m_{1}} \oplus \cdots \oplus V_{k}^{m_{k}}$, where V_{i} is irreducible, V_{i} is not isomorphic to V_{j} if $i \neq j$, and $V_{i}^{m_{i}}$ is shorthand for the direct sum

$$
\underbrace{V_{i} \oplus \cdots \oplus V_{i}}_{m_{i} \text { times }}
$$

Then

$$
\left\langle\chi_{V}, \chi_{V}\right\rangle=\sum_{i=1}^{k} m_{i}^{2}
$$

In particular, V is irreducible $\Longleftrightarrow\left\langle\chi_{V}, \chi_{V}\right\rangle=1$.
Proof. By our formulas, $\chi_{V}=\sum_{i=1}^{k} m_{i} \chi_{V_{i}}$. Then, expanding out the inner product gives

$$
\left\langle\chi_{V}, \chi_{V}\right\rangle=\sum_{i, j} m_{i} m_{j}\left\langle\chi_{V_{i}}, \chi_{V_{j}}\right\rangle .
$$

As $\left\langle\chi_{V_{i}}, \chi_{V_{j}}\right\rangle$ is 1 if $i=j$ and 0 otherwise, the sum becomes $\sum_{i} m_{i}^{2}$ as claimed. The final statement follows since, if the m_{i} are positive integers, then $\sum_{i=1}^{k} m_{i}^{2}=1 \Longleftrightarrow k=1$ and $m_{1}=1$, which clearly happens $\Longleftrightarrow V$ is irreducible.

Corollary 2.3. Write $V \cong V_{1}^{m_{1}} \oplus \cdots \oplus V_{k}^{m_{k}}$ as in the previous corollary. Let W be an irreducible representation. Then

$$
\left\langle\chi_{W}, \chi_{V}\right\rangle= \begin{cases}m_{i}, & \text { if } W \cong V_{i} ; \\ 0, & \text { if } W \text { is not isomorphic to } V_{i} \text { for any } i .\end{cases}
$$

Hence two representations V and V^{\prime} are isomorphic $\Longleftrightarrow \chi_{V}=\chi_{V^{\prime}}$. In other words:

The character χ_{V} determines the representation V up to isomorphism.
Proof. We have seen that $\chi_{V}=\sum_{i=1}^{k} m_{i} \chi_{V_{i}}$, and hence

$$
\left\langle\chi_{W}, \chi_{V}\right\rangle=\sum_{i=1}^{k} m_{i}\left\langle\chi_{W}, \chi_{V_{i}}\right\rangle .
$$

But $\left\langle\chi_{W}, \chi_{V_{i}}\right\rangle=1 \Longleftrightarrow W \cong V_{i}$, which can happen for at most one i by the assumption that V_{i} is not isomorphic to V_{j} if $i \neq j$. Hence $\left\langle\chi_{W}, \chi_{V}\right\rangle=m_{i}$ if $W \cong V_{i}$ and $\left\langle\chi_{W}, \chi_{V}\right\rangle=0$ if W is not isomorphic to any V_{i}.

To see the final statement, clearly, if $V \cong V^{\prime}$, then $\chi_{V}=\chi_{V^{\prime}}$. Conversely, suppose that $\chi_{V}=\chi_{V^{\prime}}$. Write $V \cong V_{1}^{m_{1}} \oplus \cdots \oplus V_{k}^{m_{k}}$ as above. Then

$$
\left\langle\chi_{V_{i}}, \chi_{V^{\prime}}\right\rangle=\left\langle\chi_{V_{i}}, \chi_{V}\right\rangle=m_{i},
$$

and $\left\langle\chi_{W}, \chi_{V^{\prime}}\right\rangle=\left\langle\chi_{W}, \chi_{V}\right\rangle=0$ if W is an irreducible representation not isomorphic to V_{i} for some i. Hence $V^{\prime} \cong V_{1}^{m_{1}} \oplus \cdots \oplus V_{k}^{m_{k}}$, and thus $V^{\prime} \cong$ V.

Definition 2.4. If V is a representation and W is an irreducible representation, we define the multiplicity of W in V to be the nonnegative integer $\left\langle\chi_{W}, \chi_{V}\right\rangle$.

3 The regular representation

Our goal now will be to apply the results of the previous section to the regular representation $\mathbb{C}[G]$, whose character $\chi_{\mathbb{C}[G]}=\chi_{\text {reg }}$ we have computed. In fact, $\chi_{\mathrm{reg}}(1)=\#(G)$ and $\chi_{\mathrm{reg}}(g)=0$ if $g \neq 1$.

Proposition 3.1. Let W be an irreducible representation. Then

$$
\left\langle\chi_{W}, \chi_{\mathrm{reg}}\right\rangle=\operatorname{dim} W
$$

Proof. By definition and the above remarks,

$$
\left\langle\chi_{W}, \chi_{\mathrm{reg}}\right\rangle=\frac{1}{\#(G)} \sum_{g \in G} \chi_{W}(g) \overline{\chi_{\mathrm{reg}}(g)}=\frac{\chi_{W}(1) \cdot \#(G)}{\#(G)}=\operatorname{dim} W
$$

Corollary 3.2. Write

$$
\mathbb{C}[G] \cong W_{1}^{d_{1}} \oplus \cdots \oplus W_{h}^{d_{h}}
$$

where the W_{i} are irreducible and, for $i \neq j, W_{i}$ is not isomorphic to W_{j}. Then:
(i) $d_{i}=\operatorname{dim} W_{i}$.
(ii) Every irreducible representation of V is isomorphic to W_{i} for a unique i. In particular, there are only finitely many irreducible G-representations up to isomorphism.

Proof. The first statement follows from the previous proposition and Corollary 2.3. The second follows similarly, since if W is an irreducible representation, then $\left\langle\chi_{W}, \chi_{\text {reg }}\right\rangle=\operatorname{dim} W>0$ and hence $W \cong W_{i}$ for some i.

Corollary 3.3. If W_{1}, \ldots, W_{h} are the finitely many distinct irreducible G representations up to isomorphism and $d_{i}=\operatorname{dim} W_{i}$, then

$$
\sum_{i=1}^{h} d_{i}^{2}=\#(G)
$$

$$
\sum_{i=1}^{h} d_{i} \chi_{W_{i}}(g)= \begin{cases}\#(G), & \text { if } g=1 \\ 0, & \text { if } g \neq 1\end{cases}
$$

Proof. We prove the second identity first. Since $\mathbb{C}[G] \cong W_{1}^{d_{1}} \oplus \cdots \oplus W_{h}^{d_{h}}$,

$$
\chi_{\mathrm{reg}}=\sum_{i=1}^{h} d_{i} \chi_{W_{i}} .
$$

The result then follows from our calculation of $\chi_{\text {reg. }}$. The first identity is then a consequence, since, for every $i, \chi_{W_{i}}(1)=\operatorname{dim} W_{i}=d_{i}$.

