Characters I

Throughout, G denotes a **finite** group.

1 The character of a representation

Definition 1.1. Let V (or ρ_V) be a *G*-representation. Then the character χ_V (or χ_{ρ_V}) of *V* is the function $\chi_V : G \to \mathbb{C}$ defined by:

$$\chi_V(g) = \operatorname{Tr} \rho_V(g)$$

Note that, for all $g \in G$, $\chi_V(g)$ is a sum of roots of unity.

- **Example 1.2.** 1. If V is the trivial representation (i.e. dim V = 1 and $\rho_V(g) = \text{Id}$ for all $g \in G$), then $\chi_V(g) = 1$ for all $g \in G$. We sometimes write χ_1 or just 1 for this character.
 - 2. More generally, if dim V = 1 and $\rho_V(g)(v) = \lambda(g)$, where $\lambda \colon G \to \mathbb{C}^*$ is a homomorphism, then $\chi_V = \lambda$. For example, for the one-dimensional representation V of $\mathbb{Z}/n\mathbb{Z}$ on \mathbb{C} for which $\lambda(k) = e^{2\pi i k/n}$, we have $\chi_V(k) = \lambda(k) = e^{2\pi i k/n}$.
 - 3. The group D_n is generated by elements σ and τ , where σ is a counterclockwise rotation by the angle $2\pi k/n$ and τ is reflection in the *x*-axis. For the representation of D_n on $V = \mathbb{C}^2$ for which

$$\rho_V(\sigma^k) = A_{2\pi k/n} = \begin{pmatrix} \cos 2\pi k/n & -\sin 2\pi k/n \\ \sin 2\pi k/n & \cos 2\pi k/n \end{pmatrix};$$
$$\rho_V(\sigma^k \tau) = B_{2\pi k/n} = \begin{pmatrix} \cos 2\pi k/n & \sin 2\pi k/n \\ \sin 2\pi k/n & -\cos 2\pi k/n \end{pmatrix},$$

we clearly have:

$$\chi_V(\sigma^k) = 2\cos 2\pi k/n; \qquad \chi_V(\sigma^k \tau) = 0.$$

4. For the 2-dimensional representation V of the quaternion group $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ described previously, we have

$$\chi_V(1) = 2;$$
 $\chi_V(-1) = -2;$ $\chi_V(\pm i) = \chi_V(\pm j) = \chi_V(\pm k) = 0.$

- 5. For the standard representation of S^n on \mathbb{C}^n , the corresponding character χ satisfies: $\chi(\sigma)$ is the number of i such that $\sigma(i) = i$. Hence, if $\sigma = \gamma_1 \cdots \gamma_k$ is a product of disjoint cycles γ_i of lengths $\ell_i > 1$, then $\chi(\sigma) = n - \sum_{i=1}^k \ell_i$.
- 6. More generally, if X is a G-set and $\rho_{\mathbb{C}[X]}$ is the corresponding permutation representation on $\mathbb{C}[X]$, with character $\chi_{\mathbb{C}[X]}$, then

$$\chi_{\mathbb{C}[X]}(g) = \#(X^g),$$

where X^g is the fixed set of $g: X^g = \{x \in X : g \cdot x = x\}$. In particular, if X = G, where G acts on itself by left multiplication, then $\mathbb{C}[G]$ is the regular representation. We write χ_{reg} for the character $\chi_{\mathbb{C}[G]}$. For the left multiplication action, given $g \in G$ and $x \in G$, g fixes x, i.e. $gx = x \iff g = 1$, and the element 1 fixes every $x \in G$. In other words, $G^g = \emptyset$ if $g \neq 1$ and $G^1 = G$. Thus:

$$\chi_{\rm reg}(g) = \begin{cases} \#(G), & \text{if } g = 1; \\ 0, & \text{if } g \neq 1. \end{cases}$$

We list some basic properties of characters.

- 1. If V is the trivial representation, then $\chi_V(g) = 1$ for all $g \in G$, i.e. χ_V is the constant function 1.
- 2. For every representation V,

$$\chi_V(1) = \dim V = \deg \rho_V$$

This follows since $\rho_V(1) = \text{Id corresponds to the } d \times d$ identity matrix I, where $d = \dim V = \deg \rho_V$, and Tr I = d.

3. For all $g, h \in G$,

 $\chi_V(hgh^{-1}) = \chi_V(g) \,.$

This follows since by definition

$$\chi_V(hgh^{-1}) = \operatorname{Tr}(\rho_V(h) \circ \rho_V(g) \circ \rho_V(h)^{-1}) = \operatorname{Tr}\rho_V(g) = \chi_V(g).$$

4. For every $g \in G$,

$$\boxed{\chi_V(g^{-1}) = \overline{\chi_V(g)}}.$$

To see this, note that, for every $g \in G$, $\rho_V(g) \in \operatorname{Aut} V$ has finite order. Hence $\rho_V(g)$ is diagonalizable and its eigenvalues are roots of unity, in particular complex numbers of absolute value 1. By a homework problem,

$$\chi_V(g^{-1}) = \operatorname{Tr} \rho_V(g^{-1}) = \operatorname{Tr} \rho_V(g)^{-1} = \overline{\operatorname{Tr} \rho_V(g)} = \overline{\chi_V(g)}.$$

Next, we see how the character behaves with respect to the standard constructions of linear algebra: Suppose that V_1 , V_2 , and V are G-representations. Then:

1. $\chi_{V_1 \oplus V_2} = \chi_{V_1} + \chi_{V_2}$

This is an immediate consequence of the formula $\operatorname{Tr}(F_1 \oplus F_2) = \operatorname{Tr} F_1 + \operatorname{Tr} F_2$. Aplying this inductively, we see that $\chi_{V_1 \oplus \cdots \oplus V_k} = \chi_{V_1} + \cdots + \chi_{V_k}$. Also, if we let $V^n = \underbrace{V \oplus \cdots \oplus V}_{V_k}$, then $\chi_{V^n} = n\chi_V$.

$$n\ {\rm times}$$

2. $\chi_{V^*} = \overline{\chi_V}$

To see this, first recall that $\operatorname{Tr} F = \operatorname{Tr} F^*$. Now $\rho_{V^*}(g) = (\rho_V(g)^{-1})^*$, and hence

$$\chi_{V^*}(g) = \operatorname{Tr}(\rho_{V^*}(g)) = \operatorname{Tr}((\rho_V(g)^{-1})^*) = \operatorname{Tr}(\rho_V(g)^{-1}) = \operatorname{Tr}(\rho_V(g)) = \chi_V(g)$$

3. $\chi_{\operatorname{Hom}(V_1,V_2)} = \overline{\chi_{V_1}}\chi_{V_2}$

The argument for this is similar to the argument for (2): Suppose that $F_1 \in \text{Hom}(V_1, V_1)$ and that $F_2 \in \text{Hom}(V_2, V_2)$. Then $(F_2)_* \circ (F_1)^*$ is a linear map from $\text{Hom}(V_1, V_2)$ to $\text{Hom}(V_1, V_2)$. We have, by a homework problem,

$$\operatorname{Tr}((F_2)_* \circ (F_1)^*) = (\operatorname{Tr} F_1)(\operatorname{Tr} F_2).$$

By definition, $\rho_{\text{Hom}(V_1,V_2)} = (\rho_{V_2})_* \circ (\rho_{V_2}^{-1})^*$. Thus,

$$\begin{aligned} \chi_{\operatorname{Hom}(V_1,V_2)}(g) &= \operatorname{Tr} \rho_{\operatorname{Hom}(V_1,V_2)}(g)) = \operatorname{Tr}((\rho_{V_2}(g))_* \circ (\rho_{V_1}(g)^{-1})^*) \\ &= \operatorname{Tr}(\rho_{V_2}(g)) \operatorname{Tr}(\rho_{V_1}(g)^{-1})) = \overline{\chi_{V_1}(g)} \chi_{V_2}(g). \end{aligned}$$

4. $\chi_{V_1 \otimes V_2} = \chi_{V_1} \chi_{V_2}$

This follows from the fact that $\operatorname{Tr}(F_1 \otimes F_2) = (\operatorname{Tr} F_1)(\operatorname{Tr} F_2)$.

In particular, we see that the sum, product, and complex conjugates of characters are characters.

2 Orthogonality relations

There are many identities involving characters which are called orthogonality relations. To begin, recall that, given a G-representation V, we have defined a projection map $p: V \to V^G$ by

$$p(v) = \frac{1}{\#(G)} \sum_{g \in G} \rho_V(g)(v).$$

We also know that $\operatorname{Tr} p = \dim V^G$ by general linear algebra results about traces. Ccomputing the trace of p in two different ways then gives

$$\dim V^G = \frac{1}{\#(G)} \sum_{g \in G} \chi_V(g)$$

Applying this formula to $Hom(V_1, V_2)$ gives:

$$\dim \operatorname{Hom}^{G}(V_{1}, V_{2}) = \frac{1}{\#(G)} \sum_{g \in G} \overline{\chi_{V_{1}}(g)} \chi_{V_{2}}(g) = \frac{1}{\#(G)} \sum_{g \in G} \chi_{V_{1}}(g) \overline{\chi_{V_{2}}(g)}$$

Finally, if V_1 and V_2 are irreducible, and using Schur's lemma, this becomes:

Proposition 2.1. If V_1 and V_2 are irreducible, then

$$\left|\frac{1}{\#(G)}\sum_{g\in G}\chi_{V_1}(g)\overline{\chi_{V_2}(g)}\right| = \dim \operatorname{Hom}^G(V_1, V_2) = \begin{cases} 1, & \text{if } V_1 \cong V_2;\\ 0, & \text{if } V_1 \text{ is not isomorphic to } V_2. \end{cases}$$

It's convenient to introduce the *G*-invariant positive definite Hermitian inner product on the vector space $\mathbb{C}(G)$, viewed as the space $L^2(G)$ of functions $f: G \to \mathbb{C}$:

$$\langle f_1, f_2 \rangle = \frac{1}{\#(G)} \sum_{g \in G} f_1(g) \overline{f_2(g)}.$$

Thus we can restate the above proposition as: If V_1 and V_2 are irreducible, then

$$\langle \chi_{V_1}, \chi_{V_2} \rangle = \dim \operatorname{Hom}^G(V_1, V_2) = \begin{cases} 1, & \text{if } V_1 \cong V_2; \\ 0, & \text{if } V_1 \text{ is not isomorphic to } V_2 \end{cases}$$

Corollary 2.2. Write $V \cong V_1^{m_1} \oplus \cdots \oplus V_k^{m_k}$, where V_i is irreducible, V_i is not isomorphic to V_j if $i \neq j$, and $V_i^{m_i}$ is shorthand for the direct sum

$$\underbrace{V_i \oplus \cdots \oplus V_i}_{m_i \ times}.$$

Then

$$\langle \chi_V, \chi_V \rangle = \sum_{i=1}^k m_i^2$$

In particular, V is irreducible $\iff \langle \chi_V, \chi_V \rangle = 1.$

Proof. By our formulas, $\chi_V = \sum_{i=1}^k m_i \chi_{V_i}$. Then, expanding out the inner product gives

$$\langle \chi_V, \chi_V \rangle = \sum_{i,j} m_i m_j \langle \chi_{V_i}, \chi_{V_j} \rangle.$$

As $\langle \chi_{V_i}, \chi_{V_j} \rangle$ is 1 if i = j and 0 otherwise, the sum becomes $\sum_i m_i^2$ as claimed. The final statement follows since, if the m_i are positive integers, then $\sum_{i=1}^k m_i^2 = 1 \iff k = 1$ and $m_1 = 1$, which clearly happens $\iff V$ is irreducible.

Corollary 2.3. Write $V \cong V_1^{m_1} \oplus \cdots \oplus V_k^{m_k}$ as in the previous corollary. Let W be an irreducible representation. Then

$$\langle \chi_W, \chi_V \rangle = \begin{cases} m_i, & \text{if } W \cong V_i; \\ 0, & \text{if } W \text{ is not isomorphic to } V_i \text{ for any } i. \end{cases}$$

Hence two representations V and V' are isomorphic $\iff \chi_V = \chi_{V'}$. In other words:

The character χ_V determines the representation V up to isomorphism.

Proof. We have seen that $\chi_V = \sum_{i=1}^k m_i \chi_{V_i}$, and hence

$$\langle \chi_W, \chi_V \rangle = \sum_{i=1}^k m_i \langle \chi_W, \chi_{V_i} \rangle.$$

But $\langle \chi_W, \chi_{V_i} \rangle = 1 \iff W \cong V_i$, which can happen for at most one *i* by the assumption that V_i is not isomorphic to V_j if $i \neq j$. Hence $\langle \chi_W, \chi_V \rangle = m_i$ if $W \cong V_i$ and $\langle \chi_W, \chi_V \rangle = 0$ if *W* is not isomorphic to any V_i .

To see the final statement, clearly, if $V \cong V'$, then $\chi_V = \chi_{V'}$. Conversely, suppose that $\chi_V = \chi_{V'}$. Write $V \cong V_1^{m_1} \oplus \cdots \oplus V_k^{m_k}$ as above. Then

$$\langle \chi_{V_i}, \chi_{V'} \rangle = \langle \chi_{V_i}, \chi_V \rangle = m_i,$$

and $\langle \chi_W, \chi_{V'} \rangle = \langle \chi_W, \chi_V \rangle = 0$ if W is an irreducible representation not isomorphic to V_i for some i. Hence $V' \cong V_1^{m_1} \oplus \cdots \oplus V_k^{m_k}$, and thus $V' \cong V$.

Definition 2.4. If V is a representation and W is an irreducible representation, we define the *multiplicity of* W in V to be the nonnegative integer $\langle \chi_W, \chi_V \rangle$.

3 The regular representation

Our goal now will be to apply the results of the previous section to the regular representation $\mathbb{C}[G]$, whose character $\chi_{\mathbb{C}[G]} = \chi_{\text{reg}}$ we have computed. In fact, $\chi_{\text{reg}}(1) = \#(G)$ and $\chi_{\text{reg}}(g) = 0$ if $g \neq 1$.

Proposition 3.1. Let W be an irreducible representation. Then

$$\langle \chi_W, \chi_{\rm reg} \rangle = \dim W$$

Proof. By definition and the above remarks,

$$\langle \chi_W, \chi_{\text{reg}} \rangle = \frac{1}{\#(G)} \sum_{g \in G} \chi_W(g) \overline{\chi_{\text{reg}}(g)} = \frac{\chi_W(1) \cdot \#(G)}{\#(G)} = \dim W.$$

Corollary 3.2. Write

$$\mathbb{C}[G] \cong W_1^{d_1} \oplus \cdots \oplus W_h^{d_h},$$

where the W_i are irreducible and, for $i \neq j$, W_i is not isomorphic to W_j . Then:

- (i) $d_i = \dim W_i$.
- (ii) Every irreducible representation of V is isomorphic to W_i for a unique i. In particular, there are only finitely many irreducible G-representations up to isomorphism.

Proof. The first statement follows from the previous proposition and Corollary 2.3. The second follows similarly, since if W is an irreducible representation, then $\langle \chi_W, \chi_{\text{reg}} \rangle = \dim W > 0$ and hence $W \cong W_i$ for some i. \Box

Corollary 3.3. If W_1, \ldots, W_h are the finitely many distinct irreducible *G*-representations up to isomorphism and $d_i = \dim W_i$, then

$$\sum_{i=1}^{h} d_i^2 = \#(G)$$

$$\sum_{i=1}^{h} d_i \chi_{W_i}(g) = \begin{cases} \#(G), & \text{if } g = 1; \\ 0, & \text{if } g \neq 1. \end{cases}$$

Proof. We prove the second identity first. Since $\mathbb{C}[G] \cong W_1^{d_1} \oplus \cdots \oplus W_h^{d_h}$,

$$\chi_{\rm reg} = \sum_{i=1}^h d_i \chi_{W_i}.$$

The result then follows from our calculation of χ_{reg} . The first identity is then a consequence, since, for every i, $\chi_{W_i}(1) = \dim W_i = d_i$.