Characters II: Class functions

1 Class functions

Definition 1.1. A function $f: G \rightarrow \mathbb{C}$ is a class function or central if, for all $g, x \in G, f\left(x g x^{-1}\right)=f(g) \Longleftrightarrow$ for all $g, x \in G, f(x g)=f(g x)$. Equivalently, f is constant on conjugacy classes of G, i.e. $y \in C(x) \Longrightarrow$ $f(y)=f(x)$. We define $Z \subseteq L^{2}(G)=\mathbb{C}[G]$ to be the vector space of all class functions.

Note that the positive definite Hermitian inner product $\langle\cdot, \cdot\rangle$ on $L^{2}(G)$ defines a positive definite Hermitian inner product $\langle\cdot, \cdot\rangle$ on Z by restriction.
Example 1.2. 1) If V is a G-representation and χ_{V} is its character, then χ_{V} is a class function.
2) Let $x \in G$ and let $C(x)$ be the conjugacy class of x. Define the characteristic function $f_{C(x)}$ as follows:

$$
f_{C(x)}(g)= \begin{cases}1, & \text { if } g \in C(x) \\ 0, & \text { if } g \notin C(x)\end{cases}
$$

Then $f_{C(x)}$ is a class function and the set of $f_{C(x)}$ is clearly a basis for Z. It is an orthogonal basis of Z with respect to the Hermitian inner product, i.e. $\left\langle f_{C(x)}, f_{C(y)}\right\rangle=0$ if $C(x) \neq C(y)$, but it is not unitary as

$$
\left\langle f_{C(x)}, f_{C(x)}\right\rangle=\frac{\#(C(x))}{\#(G)}
$$

Finally, it is clear that $\operatorname{dim} Z$ is equal to the number of conjugacy classes of G, since the $f_{C(x)}$ are a basis for Z.

Let V be a G-representation and let $f: G \rightarrow \mathbb{C}$ be a function. Define a linear map $F_{V, f}: V \rightarrow V$ by:

$$
F_{V, f}=\sum_{g \in G} f(g) \rho_{V}(g) .
$$

Clearly, if $V \cong V_{1} \oplus V_{2}$, then $F_{V_{1} \oplus V_{2}, f}=F_{V_{1}, f} \oplus F_{V_{2}, f}$.

Proposition 1.3. Let $f: G \rightarrow \mathbb{C}$ be a class function, and let V be an irreducible G-representation. If $F_{V, f}$ is defined as above, then $F_{V, f}=t \mathrm{Id}$, where

$$
t=\frac{\#(G)\langle f, \overline{\chi V}\rangle}{\operatorname{dim} V}
$$

Proof. First we claim that, for a class function $f, F_{V, f}$ is a G-morphism (for every G-representation, not necessarily irreducible). We must show that

$$
\rho_{V}(h) \circ F_{V, f} \circ \rho_{V}(h)^{-1}=F_{V, f} .
$$

Using the definition of $F_{V, f}$,

$$
\begin{aligned}
\rho_{V}(h) \circ F_{V, f} \circ \rho_{V}(h)^{-1} & =\sum_{g \in G} f(g) \rho_{V}(h) \circ \rho_{V}(g) \circ \rho_{V}(h)^{-1} \\
& =\sum_{g \in G} f(g) \rho_{V}\left(h g h^{-1}\right) \\
& =\sum_{g \in G} f\left(h g h^{-1}\right) \rho_{V}\left(h g h^{-1}\right) \\
& =\sum_{g \in G} f(g) \rho_{V}(g)=F_{V, f},
\end{aligned}
$$

where we have used the fact that f is a class function to conclude that $f(g)=f\left(h g h^{-1}\right)$, and also the fact that, for a fixed $h \in G$, the elements $h g h^{-1}$ run through all elements of G.

Thus $F_{V, f}$ is a G-morphism. By Schur's lemma, if V is irreducible, then $F_{V, f}=t$ Id for some $t \in \mathbb{C}$. Taking traces, we find that

$$
\operatorname{Tr} F_{V, f}=t(\operatorname{dim} V) .
$$

On the other hand, by definition,

$$
\operatorname{Tr} F_{V, f}=\sum_{g \in G} f(g) \chi_{V}(g)=\#(G)\left\langle f, \overline{\chi_{V}}\right\rangle
$$

Equating these gives the formula for t.
Proposition 1.4. (i) If f is a class function and $\left\langle f, \chi_{V}\right\rangle=0$ for all irreducible representations V, then $f=0$.
(ii) If V_{1}, \ldots, V_{h} are the irreducible representations of G, in the sense that V_{1}, \ldots, V_{h} are irreducible representations such that (1) For $i \neq j, V_{i}$ is not isomorphic to V_{j} and (2) Every irreducible G-representation is isomorphic to V_{i} for some i, then the characters $\chi_{V_{1}}, \ldots, \chi_{V_{h}}$ are a unitary basis for Z, the vector space of class functions.

Proof. (i) If V is an irreducible representation of G, then V^{*} is irreducible as well, by a HW problem. Thus, since $\chi_{V^{*}}=\overline{\chi_{V}}$, the hypothesis of (i) implies that $\left\langle f, \overline{\chi_{V}}\right\rangle=0$ for every irreducible representation V of G. By Proposition 1.3,

$$
F_{V, f}=\sum_{g \in G} f(g) \rho_{V}(g)=0 .
$$

Since every representation is a direct sum of irreducible representations, it follows that $\sum_{g \in G} f(g) \rho_{V}(g)=0$ for every representation V. In particular, taking $V=\mathbb{C}[G]$, it follows that

$$
F_{\mathbb{C}[G], f}=\sum_{g \in G} f(g) \rho_{\mathbb{C}[G]}(g)=0 .
$$

Let $1=1 \cdot 1$ be the identity element of the ring $\mathbb{C}[G]$ (the coefficient of $1 \in G$ is 1 , and the coefficient of $g \neq 1$ is 0$)$. Then $F_{\mathbb{C}[G], f}(1)=0$. But $\rho_{\mathbb{C}[G]}(g)(1)=g \cdot 1=g$, so

$$
\sum_{g \in G} f(g) \rho_{\mathbb{C}[G]}(g)(1)=\sum_{g \in G} f(g) \cdot g=0 .
$$

It follows that $f(g)=0$ for all g, i.e. $f=0$.
(ii) Since $\left\langle\chi_{V_{i}}, \chi_{V_{j}}\right\rangle=0$ if $i \neq j$ and $=1$ for $i=j$, the functions $\chi_{V_{i}}, \ldots, \chi_{V_{h}}$ are a linearly independent subset of Z. To see that they are basis, it suffices to show that they span Z. Equivalently, it suffices to show that $\left\{\chi_{V_{i}}, \ldots, \chi_{V_{h}}\right\}^{\perp}=\{0\}$. But this follows from (1).

Corollary 1.5. The number of irreducible representations of G up to isomorphism as above is equal to the number of conjugacy classes of G.
Proof. By (ii) of the above proposition, the number of irreducible representations of G up to isomorphism is equal to $\operatorname{dim} Z$. On the other hand, $\operatorname{dim} Z$ is equal to the number of conjugacy classes of G, and equating these two expressions for $\operatorname{dim} Z$ gives the proof of the lemma.

Corollary 1.6. The group G is abelian \Longleftrightarrow every irreducible representation of G has dimension one.
Proof. We have seen that, if G is abelian, then every irreducible representation of G has dimension one. Conversely, suppose that every irreducible representation of G has dimension one, and let h denote as usual the number of such up to isomorphism. Since $\sum_{i=1}^{h} d_{i}^{2}=\#(G)$, It follows that $h=\#(G)$. Since h is also the number of conjugacy classes of G, this number is also $\#(G)$. Clearly, this is only possible if every conjugacy class has exactly one element. But this implies that G is abelian.

We also have the following orthogonality relations:
Proposition 1.7. With V_{1}, \ldots, V_{h} as above and $\chi_{V_{1}}, \ldots, \chi_{V_{h}}$ the corresponding characters, then, for all $x \in G$,

$$
\sum_{i=1}^{h}\left|\chi_{V_{i}}(x)\right|^{2}=\frac{\#(G)}{\#(C(x))}
$$

whereas for all $y \in G$, if $y \notin C(x)$, then

$$
\sum_{i=1}^{h} \chi_{V_{i}}(x) \overline{\chi_{V_{i}}(y)}=0
$$

Proof. Let $C(x)$ be a conjugacy class in G and let $f_{C(x)}$ be the characteristic function of $C(x)$. Since $\chi_{V_{1}}, \ldots, \chi_{V_{h}}$ is a basis for the space of class functions, there exist $t_{i} \in \mathbb{C}$ such that

$$
f_{C(x)}=\sum_{i=1}^{h} t_{i} \chi_{V_{i}} .
$$

Taking inner products, and using the orthogonality relations, we find that

$$
t_{i}=\left\langle\sum_{j=1}^{h} t_{j} \chi_{V_{j}}, \chi_{V_{i}}\right\rangle=\left\langle f_{C(x)}, \chi_{V_{i}}\right\rangle=\frac{1}{\#(G)} \sum_{g \in G} f_{C(x)}(g) \overline{\chi_{V_{i}}(g)} .
$$

But $f_{C(x)}(g)=0$ if g is not conjugate to x and $=1$ if g is conjugate to x, so the last sum above is a sum of $\overline{\chi_{V_{i}}(g)}$ for all g conjugate to x. For such an $x, \overline{\chi_{V_{i}}(g)}=\overline{\chi_{V_{i}}(x)}$ since $\chi_{V_{i}}$ is a class function, and the total number of possible g is $\#(C(x))$. Thus $t_{i}=\frac{\#(C(x))}{\#(G)} \overline{\chi_{V_{i}}(x)}$. Hence

$$
f_{C(x)}=\sum_{i=1}^{h} \frac{\#(C(x))}{\#(G)} \overline{\chi_{V_{i}}(x)} \chi_{V_{i}} .
$$

Plugging in x, we see that

$$
1=f_{C(x)}(x)=\sum_{i=1}^{h} \frac{\#(C(x))}{\#(G)} \overline{\chi_{V_{i}}(x)} \chi_{V_{i}}(x)=\frac{\#(C(x))}{\#(G)} \sum_{i=1}^{h}\left|\chi_{V_{i}}(x)\right|^{2},
$$

which gives the first formula above. For the second, plug in a $y \notin C(x)$ to get

$$
0=f_{C(x)}(y)=\sum_{i=1}^{h} \frac{\#(C(x))}{\#(G)}{\bar{\chi} V_{i}(x)}^{\chi_{V_{i}}}(y)
$$

and hence $\sum_{i=1}^{h} \overline{\chi_{V_{i}}(x)} \chi_{V_{i}}(y)=0$. Taking complex conjugates gives

$$
\sum_{i=1}^{h} \chi_{V_{i}}(x) \overline{\chi_{V_{i}}(y)}=0
$$

as well.

2 Character tables

Given a group G, its character table is an $h \times h$ matrix (or table), where we plot the conjugacy classes $C\left(x_{1}\right), \ldots, C\left(x_{h}\right)$ of G horizontally, typically starting with $C(1)=\{1\}$, and the distinct irreducible representations V_{1}, \ldots, V_{h} of G (up to isomorphism) vertically, typically starting with the trivial representation, and the corresponding entry in the table is the common value of $\chi_{V_{i}}$ on any element of $C\left(x_{j}\right)$. For example, the character table of S_{3} is given as follows:

	1	(i, j)	(i, j, k)
1	1	1	1
ε	1	-1	1
$\chi_{W_{2}}$	2	0	-1

Here, we have symbolically denoted the conjugacy class of all 2-cycles by (i, j), and similarly for 3 -cycles. As for the list of characters of irreducible representations, the trivial representation $\mathbb{C}(1)$ has character the trivial homomorphism, or constant function 1 , and the other dimension one representation $\mathbb{C}(\varepsilon)$ has character ε, where $\varepsilon: S_{3} \rightarrow\{ \pm 1\}$ is the sign homomorphism. The orthogonality relations imply that the columns of the table are orthogonal, viewed as vectors in \mathbb{C}^{3} under the Hermitian inner product, and the sums of the absolute values squared as we go down a column are equal to $6 / \#(C(x))$, where $C(x)$ is the corresponding conjugacy class, hence (reading from left to right) $6,2,3$ respectively.

