Characters II: Class functions

1 Class functions

Definition 1.1. A function $f: G \to \mathbb{C}$ is a class function or central if, for all $g, x \in G$, $f(xgx^{-1}) = f(g) \iff$ for all $g, x \in G$, f(xg) = f(gx). Equivalently, f is constant on conjugacy classes of G, i.e. $y \in C(x) \implies$ f(y) = f(x). We define $Z \subseteq L^2(G) = \mathbb{C}[G]$ to be the vector space of all class functions.

Note that the positive definite Hermitian inner product $\langle \cdot, \cdot \rangle$ on $L^2(G)$ defines a positive definite Hermitian inner product $\langle \cdot, \cdot \rangle$ on Z by restriction.

Example 1.2. 1) If V is a G-representation and χ_V is its character, then χ_V is a class function.

2) Let $x \in G$ and let C(x) be the conjugacy class of x. Define the characteristic function $f_{C(x)}$ as follows:

$$f_{C(x)}(g) = \begin{cases} 1, & \text{if } g \in C(x); \\ 0, & \text{if } g \notin C(x). \end{cases}$$

Then $f_{C(x)}$ is a class function and the set of $f_{C(x)}$ is clearly a basis for Z. It is an orthogonal basis of Z with respect to the Hermitian inner product, i.e. $\langle f_{C(x)}, f_{C(y)} \rangle = 0$ if $C(x) \neq C(y)$, but it is not unitary as

$$\langle f_{C(x)}, f_{C(x)} \rangle = \frac{\#(C(x))}{\#(G)}$$

Finally, it is clear that dim Z is equal to the number of conjugacy classes of G, since the $f_{C(x)}$ are a basis for Z.

Let V be a G-representation and let $f: G \to \mathbb{C}$ be a function. Define a linear map $F_{V,f}: V \to V$ by:

$$F_{V,f} = \sum_{g \in G} f(g) \rho_V(g).$$

Clearly, if $V \cong V_1 \oplus V_2$, then $F_{V_1 \oplus V_2, f} = F_{V_1, f} \oplus F_{V_2, f}$.

Proposition 1.3. Let $f: G \to \mathbb{C}$ be a class function, and let V be an irreducible G-representation. If $F_{V,f}$ is defined as above, then $F_{V,f} = t \operatorname{Id}$, where

$$t = \frac{\#(G)\langle f, \overline{\chi_V}\rangle}{\dim V}.$$

Proof. First we claim that, for a class function f, $F_{V,f}$ is a G-morphism (for every G-representation, not necessarily irreducible). We must show that

$$\rho_V(h) \circ F_{V,f} \circ \rho_V(h)^{-1} = F_{V,f}.$$

Using the definition of $F_{V,f}$,

$$\rho_{V}(h) \circ F_{V,f} \circ \rho_{V}(h)^{-1} = \sum_{g \in G} f(g)\rho_{V}(h) \circ \rho_{V}(g) \circ \rho_{V}(h)^{-1}$$
$$= \sum_{g \in G} f(g)\rho_{V}(hgh^{-1})$$
$$= \sum_{g \in G} f(hgh^{-1})\rho_{V}(hgh^{-1})$$
$$= \sum_{g \in G} f(g)\rho_{V}(g) = F_{V,f},$$

where we have used the fact that f is a class function to conclude that $f(g) = f(hgh^{-1})$, and also the fact that, for a fixed $h \in G$, the elements hgh^{-1} run through all elements of G.

Thus $F_{V,f}$ is a *G*-morphism. By Schur's lemma, if *V* is irreducible, then $F_{V,f} = t \operatorname{Id}$ for some $t \in \mathbb{C}$. Taking traces, we find that

$$\operatorname{Tr} F_{V,f} = t(\dim V)$$

On the other hand, by definition,

$$\operatorname{Tr} F_{V,f} = \sum_{g \in G} f(g)\chi_V(g) = \#(G)\langle f, \overline{\chi_V} \rangle.$$

Equating these gives the formula for t.

Proposition 1.4. (i) If f is a class function and $\langle f, \chi_V \rangle = 0$ for all irreducible representations V, then f = 0.

(ii) If V_1, \ldots, V_h are the irreducible representations of G, in the sense that V_1, \ldots, V_h are irreducible representations such that (1) For $i \neq j$, V_i is not isomorphic to V_j and (2) Every irreducible G-representation is isomorphic to V_i for some i, then the characters $\chi_{V_1}, \ldots, \chi_{V_h}$ are a unitary basis for Z, the vector space of class functions.

Proof. (i) If V is an irreducible representation of G, then V^* is irreducible as well, by a HW problem. Thus, since $\chi_{V^*} = \overline{\chi_V}$, the hypothesis of (i) implies that $\langle f, \overline{\chi_V} \rangle = 0$ for every irreducible representation V of G. By Proposition 1.3,

$$F_{V,f} = \sum_{g \in G} f(g)\rho_V(g) = 0.$$

Since every representation is a direct sum of irreducible representations, it follows that $\sum_{g \in G} f(g)\rho_V(g) = 0$ for every representation V. In particular, taking $V = \mathbb{C}[G]$, it follows that

$$F_{\mathbb{C}[G],f} = \sum_{g \in G} f(g)\rho_{\mathbb{C}[G]}(g) = 0.$$

Let $1 = 1 \cdot 1$ be the identity element of the ring $\mathbb{C}[G]$ (the coefficient of $1 \in G$ is 1, and the coefficient of $g \neq 1$ is 0). Then $F_{\mathbb{C}[G],f}(1) = 0$. But $\rho_{\mathbb{C}[G]}(g)(1) = g \cdot 1 = g$, so

$$\sum_{g \in G} f(g)\rho_{\mathbb{C}[G]}(g)(1) = \sum_{g \in G} f(g) \cdot g = 0.$$

It follows that f(g) = 0 for all g, i.e. f = 0.

(ii) Since $\langle \chi_{V_i}, \chi_{V_j} \rangle = 0$ if $i \neq j$ and = 1 for i = j, the functions $\chi_{V_i}, \ldots, \chi_{V_h}$ are a linearly independent subset of Z. To see that they are basis, it suffices to show that they span Z. Equivalently, it suffices to show that $\{\chi_{V_i}, \ldots, \chi_{V_h}\}^{\perp} = \{0\}$. But this follows from (1).

Corollary 1.5. The number of irreducible representations of G up to isomorphism as above is equal to the number of conjugacy classes of G.

Proof. By (ii) of the above proposition, the number of irreducible representations of G up to isomorphism is equal to dim Z. On the other hand, dim Z is equal to the number of conjugacy classes of G, and equating these two expressions for dim Z gives the proof of the lemma.

Corollary 1.6. The group G is abelian \iff every irreducible representation of G has dimension one.

Proof. We have seen that, if G is abelian, then every irreducible representation of G has dimension one. Conversely, suppose that every irreducible representation of G has dimension one, and let h denote as usual the number of such up to isomorphism. Since $\sum_{i=1}^{h} d_i^2 = \#(G)$, It follows that h = #(G). Since h is also the number of conjugacy classes of G, this number is also #(G). Clearly, this is only possible if every conjugacy class has exactly one element. But this implies that G is abelian.

We also have the following orthogonality relations:

Proposition 1.7. With V_1, \ldots, V_h as above and $\chi_{V_1}, \ldots, \chi_{V_h}$ the corresponding characters, then, for all $x \in G$,

$$\sum_{i=1}^{h} |\chi_{V_i}(x)|^2 = \frac{\#(G)}{\#(C(x))}$$

whereas for all $y \in G$, if $y \notin C(x)$, then

$$\boxed{\sum_{i=1}^{h} \chi_{V_i}(x) \overline{\chi_{V_i}(y)} = 0}$$

Proof. Let C(x) be a conjugacy class in G and let $f_{C(x)}$ be the characteristic function of C(x). Since $\chi_{V_1}, \ldots, \chi_{V_h}$ is a basis for the space of class functions, there exist $t_i \in \mathbb{C}$ such that

$$f_{C(x)} = \sum_{i=1}^{h} t_i \chi_{V_i}$$

Taking inner products, and using the orthogonality relations, we find that

$$t_i = \left\langle \sum_{j=1}^h t_j \chi_{V_j}, \chi_{V_i} \right\rangle = \left\langle f_{C(x)}, \chi_{V_i} \right\rangle = \frac{1}{\#(G)} \sum_{g \in G} f_{C(x)}(g) \overline{\chi_{V_i}(g)}$$

But $f_{C(x)}(g) = 0$ if g is not conjugate to x and = 1 if g is conjugate to x, so the last sum above is a sum of $\overline{\chi_{V_i}(g)}$ for all g conjugate to x. For such an $x, \overline{\chi_{V_i}(g)} = \overline{\chi_{V_i}(x)}$ since χ_{V_i} is a class function, and the total number of possible g is #(C(x)). Thus $t_i = \frac{\#(C(x))}{\#(G)} \overline{\chi_{V_i}(x)}$. Hence

$$f_{C(x)} = \sum_{i=1}^{h} \frac{\#(C(x))}{\#(G)} \overline{\chi_{V_i}(x)} \chi_{V_i}.$$

Plugging in x, we see that

$$1 = f_{C(x)}(x) = \sum_{i=1}^{h} \frac{\#(C(x))}{\#(G)} \overline{\chi_{V_i}(x)} \chi_{V_i}(x) = \frac{\#(C(x))}{\#(G)} \sum_{i=1}^{h} |\chi_{V_i}(x)|^2,$$

which gives the first formula above. For the second, plug in a $y \notin C(x)$ to get

$$0 = f_{C(x)}(y) = \sum_{i=1}^{h} \frac{\#(C(x))}{\#(G)} \overline{\chi_{V_i}(x)} \chi_{V_i}(y),$$

and hence $\sum_{i=1}^{h} \overline{\chi_{V_i}(x)} \chi_{V_i}(y) = 0$. Taking complex conjugates gives

$$\sum_{i=1}^{h} \chi_{V_i}(x) \overline{\chi_{V_i}(y)} = 0$$

as well.

2 Character tables

Given a group G, its character table is an $h \times h$ matrix (or table), where we plot the conjugacy classes $C(x_1), \ldots, C(x_h)$ of G horizontally, typically starting with $C(1) = \{1\}$, and the distinct irreducible representations V_1, \ldots, V_h of G (up to isomorphism) vertically, typically starting with the trivial representation, and the corresponding entry in the table is the common value of χ_{V_i} on any element of $C(x_j)$. For example, the character table of S_3 is given as follows:

	1	(i,j)	(i, j, k)
1	1	1	1
ε	1	-1	1
χ_{W_2}	2	0	-1

Here, we have symbolically denoted the conjugacy class of all 2-cycles by (i, j), and similarly for 3-cycles. As for the list of characters of irreducible representations, the trivial representation $\mathbb{C}(1)$ has character the trivial homomorphism, or constant function 1, and the other dimension one representation $\mathbb{C}(\varepsilon)$ has character ε , where $\varepsilon: S_3 \to \{\pm 1\}$ is the sign homomorphism. The orthogonality relations imply that the columns of the table are orthogonal, viewed as vectors in \mathbb{C}^3 under the Hermitian inner product, and the sums of the absolute values squared as we go down a column are equal to 6/#(C(x)), where C(x) is the corresponding conjugacy class, hence (reading from left to right) 6, 2, 3 respectively.

Γ		