
Representations

1 Basic definitions

If V is a k-vector space, we denote by AutV the group of k-linear iso-
morphisms F : V → V and by EndV the k-vector space of k-linear maps
F : V → V . Thus, if V = kn, then AutV ∼= GL(n, k) and EndV ∼= Mn(k).
In general, if V is a finite dimensional vector space of dimension n, then a
choice of basis defines a group isomorphism AutV ∼= GL(n, k) and a vector
space EndV ∼= Mn(k).

From now on, unless otherwise stated, k = C, i.e all vector
spaces are C-vector spaces, all linear maps are C-linear, and all
vector subspaces are closed under scalar multiplication by C.

Definition 1.1. Let G be a group. A representation of G on V is a
homomorphism ρ : G → AutV , where V is a finite dimensional C-vector
space. Equivalently, for all g ∈ G, ρ(g) : V → V is a linear map satisfying:
ρ(g)(ρ(h)(v)) = ρ(gh)(v) and ρ(1) = Id, i.e. a representation is equivalent
to an action of G on V by linear maps. The degree deg ρ is by definition
dimV . Finally, a choice of basis of V identifies ρ with a homomorphism
(also denoted ρ) from G to GL(n,C). Changing the basis replaces ρ by
TρT−1, where T is an invertible matrix.

We will usually abbreviate the data of the representation ρ : G→ AutV
by ρ, or frequently by V , with the understanding that the vector space V
includes the data of the homomorphism ρ or of the G-action. Given V , we
often denote the corresponding homomorphism by ρV , especially if there are
several different G-representations under discussion.

Remark 1.2. For a general field k and a finite dimensional k-vector space V
(and we are especially interested in the case k = R or k = Q), we can speak
of a k-representation, i.e. a homomorphism G → AutV . After choosing a
k-basis, this amounts to a homomorphism G → GL(n, k). Note that, if k
is a subfield of a larger field K, there is an obvious inclusion GL(n, k) ⊆
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GL(n,K) which realizes GL(n, k) as a subgroup of GL(n,K). For example,
the group of n × n invertible matrices with real (or rational) coefficients
is a subgroup of GL(n,C). To say that V is a real representation, or a
rational representation of G, is to say that we can find a representation and
an appropriate basis so that all of the corresponding matrices have real or
rational entries. As we will see, this is not always possible.

Conversely, the field C is also a vector space over R of dimension 2,
with basis 1, i. Similarly, Cn is a real vector space of dimension 2n, with
R-basis e1, ie1, e2, ie2, . . . , en, ien. Moreover, a C-linear map F : Cn → Cn is
clearly R-linear as well, giving an inclusion homomorphism ι : GL(n,C) →
GL(2n,R). For example, in case n = 1, GL(1,C) = C∗, and the above
homomorphism is given by

ι(a+ bi) =

(
a −b
b a

)
.

For a general finite extensionK of a field k (in case you have taken Modern
Algebra II), we can view K as a k-vector space whose dimension over k is
by definition the field degree [K : k]. Then Kn can be viewed as a k-vector
space of dimension [K : k]n.

Example 1.3. (0) For V = {0} the vector space of dimension zero, AutV =
{Id} and there is a unique G-representation on V . However, this represen-
tation is uninteresting and we will systematically exclude it most of the
time.

(1) dimV = 1, ρ(g) = Id for all g ∈ G. We call V the trivial representation.
More generally, we can take dimV arbitrary but still set ρ(g) = Id for all
g ∈ G (i.e. ρ : G→ AutV is the trivial homomorphism). Unlike the case of
the zero representation above, the trivial representation plays an important
role.

(2) If dimV = 1, AutV ∼= C∗ acting by multiplication, and a representation
ρ is the same as a homomorphism G→ C∗.
(3) If G is finite, then the regular representation ρreg is defined as follows:
V = C[G], the free vector space with basis G, and the homomorphism ρreg
is defined by:

ρreg(h)

∑
g∈G

tg · g

 =
∑
g∈G

tg · (hg) =
∑
g∈G

th−1g · g.

Viewing C[G] as the space of functions f : G→ C, the G-action is given by

ρ(g)(f) = f ◦ L−1g ,
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where Lg : G → G is left multiplication by g. Notice that we take L−1g not
Lg, which is necessary to keep the order right, and that this is already built
into the above formula for ρreg.

(4) More generally, if X is a finite G-set, then C[X] is a G-representation
via

ρ(h)

(∑
x∈X

tx · x

)
=
∑
x∈X

tx · (h · x) =
∑
x∈X

th−1x · x.

Again, we can view C[X] as the vector space of functions f : X → C, and
the action on functions is given by ρ(g)(f) = f ◦ L−1g , where Lg : X → X is
the function defined by Lg(x) = g · x.

For example, Cn is a representation of the symmetric group Sn (the
standard representation) via: if σ ∈ Sn, then ρ(σ)(ei) = eσ(i), and hence

ρ(σ)

(
n∑
i=1

tiei

)
=

n∑
i=1

tieσ(i) =

n∑
i=1

tσ−1(i)ei.

(5) If G = Z, then a homomorphism ρ : G → GL(n,C) is uniquely deter-
mined by ρ(1) = A, since then ρ(n) = An for all n ∈ Z.

(6) If ρ is a G-representation and H is a subgroup of G, then we can restrict
the function ρ to H to obtain a homomorphism ρ|H : H → AutV . We
denote this representation of H by ResGH ρ. More generally, if f : G′ → G is
a homomorphism, then ρ ◦ f : G′ → AutV is a G′-representation.

2 Invariant subspaces and morphisms

Definition 2.1. A vector subspace of a G-representation V is a G-invariant
subspace if, for all g ∈ G, ρ(g)(W ) = W ⇐⇒ for all g ∈ G, ρ(g)(W ) ⊆ W
(since then we also have ρ(g−1)(W ) = (ρ(g)−1)(W ) ⊆ W , hence W ⊆
ρ(g)(W )). In this case, W is also a G-representation via the action of G on
V : For w ∈W , we set ρW (w) = ρV (w).

In the definition, we allow for the possibility that W = {0}, see (1)
below.

Example 2.2. (1) {0} and V are always G-invariant subspaces.

(2) For the standard representation Cn of Sn, W1 = {(t, . . . , t) : t ∈ C} and
W2 = {(t1, . . . , tn) :

∑n
i=1 ti = 0} are Sn-invariant.

(3) If W is a one dimensional G-invariant subspace of V , then W = C · v
where v is a (nonzero) common eigenvector for G, i.e. ρ(g)(v) = λ(g)v for
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some λ(g) ∈ C∗, and necessarily λ : G→ C∗ is a homomorphism. Conversely,
if v is a (nonzero) common eigenvector for G, then C ·v is a one dimensional
G-invariant subspace of V .

(4) An easy argument shows that the intersection of two G-invariant sub-
spaces is again G-invariant.

(5) If W1 is a G-invariant subspace of V and W2 is a G-invariant subspace
of W1, then clearly W2 is a G-invariant subspace of V .

Definition 2.3. For a G-representation V , V G is defined as for G-sets:

V G = {v ∈ V : ρ(g)(v) = v for all g ∈ G}.

It is a vector subspace of V , in fact a G-invariant subspace (possibly {0}).
For example, (Cn)Sn = W1 in the above notation.

Definition 2.4. If V1 and V2 are two G-representations, a G-morphism or
simply a morphism or an intertwining operator is a linear map F : V1 → V2
such that, for all g ∈ G, F ◦ ρV1(g) = ρV2(g) ◦F . Equivalently, for all g ∈ G,

ρV2(g) ◦ F ◦ ρV1(g)−1 = F.

The composition of two G-morphisms is a G-morphism. The set of all G-
morphisms F : V →W is clearly a vector subspace of Hom(V,W ); we denote
it by HomG(V,W ). The function F is a G-isomorphism or simply an isomor-
phism if F is a linear isomorphism; in this case F−1 is also a G-morphism.
The composition of two G-isomorphisms is a G-isomorphism. We use the
symbol ∼= to denote G-isomorphism if the meaning is clear from the context.

Example 2.5. (1) If V is a G-representation and t ∈ C, then t Id : V → V
is a G-isomorphism.

(2) IfG is abelian and V is aG-representation, then ρV (h) is aG-isomorphism
from V to itself for all h ∈ G, because, for all g ∈ G,

ρV (h) ◦ ρV (g) = ρV (hg) = ρV (gh) = ρV (g) ◦ ρV (h).

More generally, for an arbitrary G, if V is a G-representation, then ρV (h) is
a G-isomorphism for all h ∈ Z(G).

(3) For G = Sn, V1 = Cn with the usual permutation representation of
Sn, and V2 = C viewed as the trivial representation of Sn, the linear map
F (t1, . . . , tn) =

∑n
i=1 ti is an Sn-morphism of representations.

We leave the following as an exercise:
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Lemma 2.6. If V1 and V2 are two G-representations and F : V1 → V2 is a
G-morphism, then KerF is a G-invariant subspace of V1 and ImF is a G-
invariant subspace of V2. More generally, for every G-invariant subspace W2

of V2, F−1(W2) is a G-invariant subspace of V1, and, for every G-invariant
subspace W1 of V1, F (W1) is a G-invariant subspace of V2.

3 New G-representations from old

In this section, we describe how the standard linear algebra constructions
lead to methods of constructing representations.

(1) If V1 and V2 are G-representations, then V1⊕V2 is also a representation,
via:

ρV1⊕V2(g)(v1, v2) = (ρV1(g)(v1), ρV2(g)(v2)).

In terms of matrices, for appropriate choices of bases, ρV1⊕V2(g) is written
in block diagonal form:

ρV1⊕V2(g) =

(
ρV1(g) O
O ρV2(g)

)
.

We are especially interested in internal direct sums. In fact, we have the
following:

Lemma 3.1. Let V be a G-representation. If W1, W2 are two G-invariant
subspaces of V such that V is the (internal) direct sum of the subspaces W1

and W2, then the direct sum map W1 ⊕W2 → V is a G-isomorphism.

Proof. The linear map F : W1 ⊕W2 → V defined by F (w,w2) = w1 + w2 is
a linear isomorphism, and we have to show that it is a G-morphism. Note
that, by definition, if wi ∈Wi, then ρV (wi) = ρWi(wi). Then

ρV ◦ F (w1, w2) = ρV (w1 + w2) = ρV (w1) + ρV (w2) = ρW1(w1) + ρW2(w2)

= F (ρW1(w1), ρW2(w2)) = F ◦ ρW1⊕W2(w1, w2).

Thus F is a G-morphism.

(2) If V is aG-representation, then V ∗ = Hom(V,C) is also aG-representation
via

ρV ∗(g)(f) = f ◦ ρV (g−1) = f ◦ (ρV (g)−1).

The inverse is necessary to keep ρV ∗ a homomorphism.

5



(3) More generally, if V1 and V2 are G-representations, then Hom(V1, V2) is
as well, via

ρHom(V1,V2)(g)(F ) = ρV2(g) ◦ F ◦ ρV1(g−1).

Here (2) is a special case where we view C as the trivial representation of G.
With this definition, the fixed subspace (Hom(V1, V2))

G = HomG(V1, V2),
the space of G-morphisms from V1 to V2.

(4) Finally, if V1 and V2 are G-representations, then V1 ⊗ V2 is as well, via

ρV1⊗V2 = ρV1 ⊗ ρV2 .

It is easy to check that the “natural” isomorphisms V ∼= V ∗∗ and
Hom(V,W ) ∼= V ∗ ⊗ W are all G-isomorphisms. However, in general V ∗

is not G-isomorphic to V .

4 Irreducible representations

Definition 4.1. A G-representation V is irreducible if V 6= {0}, and the
only G-invariant subspaces of V are V and {0}. A G-representation V is
reducible if it is not irreducible.

Example 4.2. (1) If dimV = 1, then V is irreducible.

(2) A two dimensional representation is reducible ⇐⇒ there exists a com-
mon nonzero eigenvector for G.

(3) The standard representation Cn of Sn is not irreducible, since it has the
two subspaces W1, W2. However, W1 is irreducible because dimW1 = 1,
and we will see that W2 is also irreducible for every n ≥ 2.

Lemma 4.3. If V 6= {0}, then there exists a G-invariant subspace W 6= {0}
of V which is an irreducible G-representation.

Proof. The proof is by complete induction on dimV . If dimV = 1, then
V is irreducible and we can take W = V . For the inductive step, suppose
that the result has been proved for all representations of degree less than n.
Let V be a representation of degree n. If V is irreducible, then as before
we can take W = V . If V is not irreducible, then there exists a G-invariant
subspace V ′ of V with 1 ≤ deg V ′ < deg V = n. By the inductive hypothesis,
there exists a G-invariant subspace W 6= {0} of V ′ which is an irreducible
G-representation. Then W is a nonzero G-invariant subspace of V which
is an irreducible G-representation. This completes the inductive step and
hence the proof.
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Lemma 4.4. Let F : V →W be a morphism of G-representations.

(i) If V is irreducible, then F is either 0 or injective.

(ii) If W is irreducible, then F is either 0 or surjective.

(iii) If both V and W are irreducible, then F is either 0 or an isomorphism.

Proof. (i) We have seen that KerF is a G-invariant subspace of V . Hence
either KerF{0} or KerF = V . In the first case, F is injective, and in the
second case F = 0.

(ii) Similarly, ImF is a G-invariant subspace of W . Hence either ImF = {0}
or ImF = W . In the first case, F = 0, and in the second case F is surjective.

(iii) This follows from (i) and (ii).

Proposition 4.5 (Schur’s lemma). Let V be an irreducible G-representation
and let F ∈ HomG(V, V ). Then there exists a t ∈ C such that F = t Id.
Hence, if V and W are two irreducible G-representations, then either V is
not isomorphic to W and HomG(V,W ) = 0, or V is isomorphic to W and
dim HomG(V,W ) = 1.

Proof. We have seen that every element of HomG(V, V ) is either 0 or an iso-
morphism. Let F ∈ HomG(V, V ). Then there exists a (nonzero) eigenvector
v ∈ V , i.e. a nonzero v ∈ V such that there exists a t ∈ C with F (v) = tv.
Thus, the G-morphism F − t Id is not invertible, since v ∈ Ker(F − t Id) and
v 6= 0. It follows that F − t Id = 0. Hence F = t Id.

For the proof of the last statement, if V and W are not isomorphic, then,
by (iii) of Lemma 4.4, HomG(V,W ) = 0. If V is G-isomorphic to W , we
may as well assume that V = W , and then the argument above shows that
HomG(V, V ) ∼= C, hence has dimension one.

Remark 4.6. The proof above used the fact that the characteristic poly-
nomial of F had a root, which follows since every nonzero polynomial with
coefficients in C has a root in C. In the terminology of Modern Algebra
II, C is algebraically closed. In general, for a field k, we have defined k-
representations and can speak of a k-representation V 6= {0} as being k-
irreducible, i.e. there are no G-invariant k-subspaces of V except for {0}
and V . The proof of Schur’s lemma then shows that HomG(V, V ) is a divi-
sion ring containing k as a subfield. There exist examples of R-irreducible
R-representations V for which the ring HomG(V, V ) is isomorphic to C, and
examples where HomG(V, V ) is isomorphic to H.
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We turn next to the construction of G-invariant projections. Here, the
methods will only work in the case of a finite group (although we shall
make some remarks about other cases later).

Proposition 4.7. Let G be a finite group. Suppose that V is a G-represen-
tation, and define p : V → V

p(v) =
1

#(G)

∑
g∈G

ρV (g)(v).

Then p is a G-morphism with Im p = V G and p(v) = v for all v ∈ V G, i.e.
p is a G-invariant projection from V to V G. Hence, as G-representations,
V ∼= V G ⊕W , where W = Ker p is a G-invariant subspace.

Proof. First, if v ∈ V G, then by definition ρV (g)(v) = v for all g ∈ G. Thus

p(v) =
1

#(G)

∑
g∈G

ρV (g)(v) =
1

#(G)

∑
g∈G

v =
1

#(G)
(#(G)v) = v.

In particular, V G ⊆ Im p.
Next, if h ∈ G and v ∈ V , then

ρV (h)p(v) = ρV (h)

 1

#(G)

∑
g∈G

ρV (g)(v)

 =
1

#(G)

∑
g∈G

ρV (h) ◦ ρV (g)(v)

=
1

#(G)

∑
g∈G

ρV (hg)(v).

But, as g runs through G, hg also runs through the elements of G. Hence

1

#(G)

∑
g∈G

ρV (hg)(v) =
1

#(G)

∑
g∈G

ρV (g)(v) = p(v).

Thus, for all v ∈ V and h ∈ G, ρV (h)p(v) = p(v). Hence Im p ⊆ V G, and so
Im p = V G since we have already showed that V G ⊆ Im p. It follows that
V ∼= W ⊕ V G (internal direct sum), where W = Ker p.

Next we show that p is a G-morphism. This is a very similar argument
to the proof above that Im p ⊆ V G. Since the G-action on Im p = V G is
trivial, it suffices to show that p ◦ ρV (h) = p for all h ∈ G. But

p ◦ ρV (h) =
1

#(G)

∑
g∈G

ρV (g) ◦ ρV (h) =
1

#(G)

∑
g∈G

ρV (gh).
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As before, as g runs through G, gh also runs through the elements of G.
Thus

1

#(G)

∑
g∈G

ρV (gh) =
1

#(G)

∑
g∈G

ρV (g) = p,

so that p ◦ ρV (h) = p = ρV (h) ◦ p for all h ∈ G.
Finally, since p is a G-morphism, W = Ker p is a G-invariant subspace

of V . We have seen that, as G-representations, V ∼= W ⊕ V G.

Remark 4.8. If V G = {0}, then Proposition 4.7 tells us that, for all v ∈ V ,∑
g∈G

ρV (g)(v) = 0.

Definition 4.9. V is decomposable if there exist two nonzero G-invariant
subspaces W1, W2 of V such that V ∼= W1 ⊕W2. V is completely reducible
if V 6= 0 and there exist irreducible G-representations V1, . . . , Vk such that
V ∼= V1 ⊕ · · · ⊕ Vk. For example, an irreducible representation is completely
reducible (take k = 1 above). Clearly, if V ∼= W1 ⊕ W2 and W1,W2 are
completely reducible, then V is completely reducible as well.

Theorem 4.10 (Maschke’s theorem). If G is finite and W is a G-invariant
subspace of G, then there exists a G-invariant subspace W ′ of V such that
V ∼= W ⊕W ′.

Proof. We will find a G-morphism p : V → V such that Im p ⊆ W and
p(w) = w for all w ∈ W . Setting W ′ = Ker p, it then follows that W ′ is
also G-invariant, and that V is the internal direct sum of W and W ′. Then
Lemma 3.1 implies that the sum map W ⊕W ′ → V is an isomorphism of
G-representations.

To find p, begin by choosing an arbitrary linear map p0 : V → V such
that Im p0 ⊆ W and p0(w) = w for all w ∈ W . For example, choose a
basis w1, . . . , wa, wa+1, . . . , wn of V such that w1, . . . , wa is a basis of W and
define p0 by defining it on the basis vectors wi by defining

p0(wi) =

{
wi, if i ≤ a;

0, if i > a.

Then set

p =
1

#(G)

∑
g∈G

ρV (g) ◦ p0 ◦ ρV (g)−1 =
1

#(G)

∑
g∈G

ρHom(V,V )(g)(p0),
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viewing p0 as an element of the G-representation Hom(V, V ). By Proposi-
tion 4.7, p ∈ HomG(V, V ), so that p is a G-morphism. Since Im p0 ⊆W and
W is G-invariant, Im p ⊆ W . Finally, if w ∈ W , then ρV (g)−1(w) ∈ W as
well, again since W is G-invariant. Then p0(ρV (g)−1(w)) = ρV (g)−1(w) by
construction, and so

p(w) =
1

#(G)

∑
g∈G

ρV (g)(p0(ρV (g)−1(w))) =
1

#(G)

∑
g∈G

ρV (g)(ρV (g)−1(w))

=
1

#(G)

∑
g∈G

w = w.

Thus p has the desired properties.

Corollary 4.11. If G is finite, then every nonzero G-representation V is
completely reducible.

Proof. The proof is by complete induction on the degree of aG-representation.
If dimV = 1, then V is irreducible and so (as we have already noted) it is
completely reducible. Now suppose that the corollary has been proved for
all representations of degree less than n. If V is a representation of degree
n, first suppose that V is irreducible. Then as above V is completely re-
ducible. Otherwise, V is reducible, so there exists a G-invariant subspace
W of V with 0 < degW < n. By Maschke’s theorem, V is G-isomorphic to
W ⊕W ′, where degW ′ = n − degW , and hence 0 < degW ′ < n as well.
By the inductive hypothesis, W and W ′ are completely reducible. Thus,
V ∼= W ⊕W ′ is completely reducible as well.

Corollary 4.12. Suppose that G is a finite abelian group. Then every
nonzero G-representation V is a direct sum of one dimensional representa-
tions. Equivalently, there is a basis of V consisting of common eigenvectors
for G.

Proof. It is clearly enough to prove that, if G is a finite abelian group,
then every irreducible representation of G is one-dimensional. Let V be
an irreducible G-representation. In particular V 6= 0. By Schur’s lemma,
HomG(V, V ) = C · Id. On the other hand, we have seen that, if G is abelian,
then, for every g ∈ G, ρV (g) ∈ HomG(V, V ), and hence ρV (g) = λ(g) Id for
some λ(g) ∈ C∗. Thus, choosing some nonzero v ∈ V , ρV (g) = λ(g)v for
every g ∈ G. It follows that the one-dimensional subspace C · v = span{v}
is a G-invariant, nonzero subspace of V . Since V is irreducible, V = C · v
and hence V is one-dimensional.
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Corollary 4.13. If A ∈ GL(n,C) is a matrix of finite order d, then A is
diagonalizable and its eigenvalues are dth roots of unity.

Proof. If A has order d, then A defines a representation of Z/dZ on Cn by:
ρ(k) = Ak. Then by the previous corollary, Cn is a direct sum of eigenspaces
for A. Since Ad = Id, it is clear that all of the eigenvalues of A are dth roots
of unity.

Corollary 4.14. If G is a finite group and V is a G-representation, then,
for all g ∈ G, the linear map ρV (g) : V → V is diagonalizable, and its
eigenvalues are dth roots of unity, where d divides #(G).

Proof. Every element g of G has finite order dividing #(G), by Lagrange’s
theorem. Moreover, ρV (g) has finite order dividing the order of g, and hence
dividing #(G). Then apply the previous corollary.

Remark 4.15. For a not necessarily finite group G, a G-representation V is
unitary if there exists a positive definite Hermitian inner product H which
is G-invariant, i.e. for which H(ρV (g)v, ρV (g)w) = H(v, w), for all v, w ∈ V
and g ∈ G. If V is unitary, then there exists a basis of V for which ρV (g)
is unitary for all g ∈ G, i.e. there exists a choice of basis for which ρV is a
homomorphism to U(n). Every unitary representation satisfies Maschke’s
theorem, because if W ⊆ V is G-invariant, then W⊥ is also G-invariant and
V ∼= W ⊕W⊥. If G is finite, then there always exists a G-invariant positive
definite Hermitian inner product H: start with an arbitrary positive definite
Hermitian inner product H0, and set

H(v, w) =
∑
g∈G

H0(ρV (g)v, ρV (g)w).

Then H is G-invariant.

Example 4.16. We have seen that every A ∈ GL(n,C) defines a represen-
tation of Z on Cn, via ρ(n) = An. In particular, defines a Z-representation

on C2 by taking A =

(
1 1
0 1

)
and hence An =

(
1 n
0 1

)
. Note that Ane1 = e1

and Ane2 = e2 + ne1. Thus C · e1 is a Z-invariant subspace. In fact, it is
the unique Z-invariant subspace: if W 6= {0},C2 is an invariant subspace,
then dimW = 1 and W = C ·w where w is a nonzero eigenvector for A and
hence An. But A has a unique nonzero eigenvector up to a scalar, namely e1.
It follows that the Z-representation C2 is not completely reducible. Hence
there is no Z-invariant positive definite Hermitian inner product on C2.

From now on, G will always denote a finite group.
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