Representations

1 Basic definitions

If V is a k-vector space, we denote by Aut V the group of k-linear isomorphisms $F: V \rightarrow V$ and by End V the k-vector space of k-linear maps $F: V \rightarrow V$. Thus, if $V=k^{n}$, then Aut $V \cong G L(n, k)$ and End $V \cong \mathbb{M}_{n}(k)$. In general, if V is a finite dimensional vector space of dimension n, then a choice of basis defines a group isomorphism Aut $V \cong G L(n, k)$ and a vector space End $V \cong \mathbb{M}_{n}(k)$.

From now on, unless otherwise stated, $k=\mathbb{C}$, i.e all vector spaces are \mathbb{C}-vector spaces, all linear maps are \mathbb{C}-linear, and all vector subspaces are closed under scalar multiplication by \mathbb{C}.

Definition 1.1. Let G be a group. A representation of G on V is a homomorphism $\rho: G \rightarrow$ Aut V, where V is a finite dimensional \mathbb{C}-vector space. Equivalently, for all $g \in G, \rho(g): V \rightarrow V$ is a linear map satisfying: $\rho(g)(\rho(h)(v))=\rho(g h)(v)$ and $\rho(1)=\mathrm{Id}$, i.e. a representation is equivalent to an action of G on V by linear maps. The $\operatorname{degree} \operatorname{deg} \rho$ is by definition $\operatorname{dim} V$. Finally, a choice of basis of V identifies ρ with a homomorphism (also denoted ρ) from G to $G L(n, \mathbb{C})$. Changing the basis replaces ρ by $T \rho T^{-1}$, where T is an invertible matrix.

We will usually abbreviate the data of the representation $\rho: G \rightarrow$ Aut V by ρ, or frequently by V, with the understanding that the vector space V includes the data of the homomorphism ρ or of the G-action. Given V, we often denote the corresponding homomorphism by ρ_{V}, especially if there are several different G-representations under discussion.

Remark 1.2. For a general field k and a finite dimensional k-vector space V (and we are especially interested in the case $k=\mathbb{R}$ or $k=\mathbb{Q}$), we can speak of a k-representation, i.e. a homomorphism $G \rightarrow$ Aut V. After choosing a k-basis, this amounts to a homomorphism $G \rightarrow G L(n, k)$. Note that, if k is a subfield of a larger field K, there is an obvious inclusion $G L(n, k) \subseteq$
$G L(n, K)$ which realizes $G L(n, k)$ as a subgroup of $G L(n, K)$. For example, the group of $n \times n$ invertible matrices with real (or rational) coefficients is a subgroup of $G L(n, \mathbb{C})$. To say that V is a real representation, or a rational representation of G, is to say that we can find a representation and an appropriate basis so that all of the corresponding matrices have real or rational entries. As we will see, this is not always possible.

Conversely, the field \mathbb{C} is also a vector space over \mathbb{R} of dimension 2 , with basis $1, i$. Similarly, \mathbb{C}^{n} is a real vector space of dimension $2 n$, with \mathbb{R}-basis $e_{1}, i e_{1}, e_{2}, i e_{2}, \ldots, e_{n}, i e_{n}$. Moreover, a \mathbb{C}-linear map $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is clearly \mathbb{R}-linear as well, giving an inclusion homomorphism $\iota: G L(n, \mathbb{C}) \rightarrow$ $G L(2 n, \mathbb{R})$. For example, in case $n=1, G L(1, \mathbb{C})=\mathbb{C}^{*}$, and the above homomorphism is given by

$$
\iota(a+b i)=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

For a general finite extension K of a field k (in case you have taken Modern Algebra II), we can view K as a k-vector space whose dimension over k is by definition the field degree $[K: k]$. Then K^{n} can be viewed as a k-vector space of dimension $[K: k] n$.
Example 1.3. (0) For $V=\{0\}$ the vector space of dimension zero, Aut $V=$ $\{\mathrm{Id}\}$ and there is a unique G-representation on V. However, this representation is uninteresting and we will systematically exclude it most of the time.
(1) $\operatorname{dim} V=1, \rho(g)=$ Id for all $g \in G$. We call V the trivial representation. More generally, we can take $\operatorname{dim} V$ arbitrary but still set $\rho(g)=$ Id for all $g \in G$ (i.e. $\rho: G \rightarrow$ Aut V is the trivial homomorphism). Unlike the case of the zero representation above, the trivial representation plays an important role.
(2) If $\operatorname{dim} V=1$, Aut $V \cong \mathbb{C}^{*}$ acting by multiplication, and a representation ρ is the same as a homomorphism $G \rightarrow \mathbb{C}^{*}$.
(3) If G is finite, then the regular representation ρ_{reg} is defined as follows: $V=\mathbb{C}[G]$, the free vector space with basis G, and the homomorphism $\rho_{\text {reg }}$ is defined by:

$$
\rho_{\mathrm{reg}}(h)\left(\sum_{g \in G} t_{g} \cdot g\right)=\sum_{g \in G} t_{g} \cdot(h g)=\sum_{g \in G} t_{h^{-1} g} \cdot g
$$

Viewing $\mathbb{C}[G]$ as the space of functions $f: G \rightarrow \mathbb{C}$, the G-action is given by

$$
\rho(g)(f)=f \circ L_{g}^{-1}
$$

where $L_{g}: G \rightarrow G$ is left multiplication by g. Notice that we take L_{g}^{-1} not L_{g}, which is necessary to keep the order right, and that this is already built into the above formula for ρ_{reg}.
(4) More generally, if X is a finite G-set, then $\mathbb{C}[X]$ is a G-representation via

$$
\rho(h)\left(\sum_{x \in X} t_{x} \cdot x\right)=\sum_{x \in X} t_{x} \cdot(h \cdot x)=\sum_{x \in X} t_{h^{-1} x} \cdot x .
$$

Again, we can view $\mathbb{C}[X]$ as the vector space of functions $f: X \rightarrow \mathbb{C}$, and the action on functions is given by $\rho(g)(f)=f \circ L_{g}^{-1}$, where $L_{g}: X \rightarrow X$ is the function defined by $L_{g}(x)=g \cdot x$.

For example, \mathbb{C}^{n} is a representation of the symmetric group S_{n} (the standard representation) via: if $\sigma \in S_{n}$, then $\rho(\sigma)\left(e_{i}\right)=e_{\sigma(i)}$, and hence

$$
\rho(\sigma)\left(\sum_{i=1}^{n} t_{i} e_{i}\right)=\sum_{i=1}^{n} t_{i} e_{\sigma(i)}=\sum_{i=1}^{n} t_{\sigma^{-1}(i)} e_{i}
$$

(5) If $G=\mathbb{Z}$, then a homomorphism $\rho: G \rightarrow G L(n, \mathbb{C})$ is uniquely determined by $\rho(1)=A$, since then $\rho(n)=A^{n}$ for all $n \in \mathbb{Z}$.
(6) If ρ is a G-representation and H is a subgroup of G, then we can restrict the function ρ to H to obtain a homomorphism $\rho \mid H: H \rightarrow$ Aut V. We denote this representation of H by $\operatorname{Res}_{H}^{G} \rho$. More generally, if $f: G^{\prime} \rightarrow G$ is a homomorphism, then $\rho \circ f: G^{\prime} \rightarrow$ Aut V is a G^{\prime}-representation.

2 Invariant subspaces and morphisms

Definition 2.1. A vector subspace of a G-representation V is a G-invariant subspace if, for all $g \in G, \rho(g)(W)=W \Longleftrightarrow$ for all $g \in G, \rho(g)(W) \subseteq W$ (since then we also have $\rho\left(g^{-1}\right)(W)=\left(\rho(g)^{-1}\right)(W) \subseteq W$, hence $W \subseteq$ $\rho(g)(W))$. In this case, W is also a G-representation via the action of G on $V:$ For $w \in W$, we set $\rho_{W}(w)=\rho_{V}(w)$.

In the definition, we allow for the possibility that $W=\{0\}$, see (1) below.

Example 2.2. (1) $\{0\}$ and V are always G-invariant subspaces.
(2) For the standard representation \mathbb{C}^{n} of $S_{n}, W_{1}=\{(t, \ldots, t): t \in \mathbb{C}\}$ and $W_{2}=\left\{\left(t_{1}, \ldots, t_{n}\right): \sum_{i=1}^{n} t_{i}=0\right\}$ are S_{n}-invariant.
(3) If W is a one dimensional G-invariant subspace of V, then $W=\mathbb{C} \cdot v$ where v is a (nonzero) common eigenvector for G, i.e. $\rho(g)(v)=\lambda(g) v$ for
some $\lambda(g) \in \mathbb{C}^{*}$, and necessarily $\lambda: G \rightarrow \mathbb{C}^{*}$ is a homomorphism. Conversely, if v is a (nonzero) common eigenvector for G, then $\mathbb{C} \cdot v$ is a one dimensional G-invariant subspace of V.
(4) An easy argument shows that the intersection of two G-invariant subspaces is again G-invariant.
(5) If W_{1} is a G-invariant subspace of V and W_{2} is a G-invariant subspace of W_{1}, then clearly W_{2} is a G-invariant subspace of V.

Definition 2.3. For a G-representation V, V^{G} is defined as for G-sets:

$$
V^{G}=\{v \in V: \rho(g)(v)=v \text { for all } g \in G\}
$$

It is a vector subspace of V, in fact a G-invariant subspace (possibly $\{0\}$). For example, $\left(\mathbb{C}^{n}\right)^{S_{n}}=W_{1}$ in the above notation.

Definition 2.4. If V_{1} and V_{2} are two G-representations, a G-morphism or simply a morphism or an intertwining operator is a linear map $F: V_{1} \rightarrow V_{2}$ such that, for all $g \in G, F \circ \rho_{V_{1}}(g)=\rho_{V_{2}}(g) \circ F$. Equivalently, for all $g \in G$,

$$
\rho_{V_{2}}(g) \circ F \circ \rho_{V_{1}}(g)^{-1}=F .
$$

The composition of two G-morphisms is a G-morphism. The set of all G morphisms $F: V \rightarrow W$ is clearly a vector subspace of $\operatorname{Hom}(V, W)$; we denote it by $\operatorname{Hom}^{G}(V, W)$. The function F is a G-isomorphism or simply an isomorphism if F is a linear isomorphism; in this case F^{-1} is also a G-morphism. The composition of two G-isomorphisms is a G-isomorphism. We use the symbol \cong to denote G-isomorphism if the meaning is clear from the context.

Example 2.5. (1) If V is a G-representation and $t \in \mathbb{C}$, then $t \operatorname{Id}: V \rightarrow V$ is a G-isomorphism.
(2) If G is abelian and V is a G-representation, then $\rho_{V}(h)$ is a G-isomorphism from V to itself for all $h \in G$, because, for all $g \in G$,

$$
\rho_{V}(h) \circ \rho_{V}(g)=\rho_{V}(h g)=\rho_{V}(g h)=\rho_{V}(g) \circ \rho_{V}(h)
$$

More generally, for an arbitrary G, if V is a G-representation, then $\rho_{V}(h)$ is a G-isomorphism for all $h \in Z(G)$.
(3) For $G=S_{n}, V_{1}=\mathbb{C}^{n}$ with the usual permutation representation of S_{n}, and $V_{2}=\mathbb{C}$ viewed as the trivial representation of S_{n}, the linear map $F\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} t_{i}$ is an S_{n}-morphism of representations.

We leave the following as an exercise:

Lemma 2.6. If V_{1} and V_{2} are two G-representations and $F: V_{1} \rightarrow V_{2}$ is a G-morphism, then $\operatorname{Ker} F$ is a G-invariant subspace of V_{1} and $\operatorname{Im} F$ is a G invariant subspace of V_{2}. More generally, for every G-invariant subspace W_{2} of $V_{2}, F^{-1}\left(W_{2}\right)$ is a G-invariant subspace of V_{1}, and, for every G-invariant subspace W_{1} of $V_{1}, F\left(W_{1}\right)$ is a G-invariant subspace of V_{2}.

3 New G-representations from old

In this section, we describe how the standard linear algebra constructions lead to methods of constructing representations.
(1) If V_{1} and V_{2} are G-representations, then $V_{1} \oplus V_{2}$ is also a representation, via:

$$
\rho_{V_{1} \oplus V_{2}}(g)\left(v_{1}, v_{2}\right)=\left(\rho_{V_{1}}(g)\left(v_{1}\right), \rho_{V_{2}}(g)\left(v_{2}\right)\right) .
$$

In terms of matrices, for appropriate choices of bases, $\rho_{V_{1} \oplus V_{2}}(g)$ is written in block diagonal form:

$$
\rho_{V_{1} \oplus V_{2}}(g)=\left(\begin{array}{cc}
\rho_{V_{1}}(g) & O \\
O & \rho_{V_{2}}(g)
\end{array}\right) .
$$

We are especially interested in internal direct sums. In fact, we have the following:

Lemma 3.1. Let V be a G-representation. If W_{1}, W_{2} are two G-invariant subspaces of V such that V is the (internal) direct sum of the subspaces W_{1} and W_{2}, then the direct sum map $W_{1} \oplus W_{2} \rightarrow V$ is a G-isomorphism.

Proof. The linear map $F: W_{1} \oplus W_{2} \rightarrow V$ defined by $F\left(w, w_{2}\right)=w_{1}+w_{2}$ is a linear isomorphism, and we have to show that it is a G-morphism. Note that, by definition, if $w_{i} \in W_{i}$, then $\rho_{V}\left(w_{i}\right)=\rho_{W_{i}}\left(w_{i}\right)$. Then

$$
\begin{aligned}
\rho_{V} \circ F\left(w_{1}, w_{2}\right) & =\rho_{V}\left(w_{1}+w_{2}\right)=\rho_{V}\left(w_{1}\right)+\rho_{V}\left(w_{2}\right)=\rho_{W_{1}}\left(w_{1}\right)+\rho_{W_{2}}\left(w_{2}\right) \\
& =F\left(\rho_{W_{1}}\left(w_{1}\right), \rho_{W_{2}}\left(w_{2}\right)\right)=F \circ \rho_{W_{1} \oplus W_{2}}\left(w_{1}, w_{2}\right) .
\end{aligned}
$$

Thus F is a G-morphism.
(2) If V is a G-representation, then $V^{*}=\operatorname{Hom}(V, \mathbb{C})$ is also a G-representation via

$$
\rho_{V^{*}}(g)(f)=f \circ \rho_{V}\left(g^{-1}\right)=f \circ\left(\rho_{V}(g)^{-1}\right) .
$$

The inverse is necessary to keep $\rho_{V^{*}}$ a homomorphism.
(3) More generally, if V_{1} and V_{2} are G-representations, then $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ is as well, via

$$
\rho_{\text {Hom }\left(V_{1}, V_{2}\right)}(g)(F)=\rho_{V_{2}}(g) \circ F \circ \rho_{V_{1}}\left(g^{-1}\right) .
$$

Here (2) is a special case where we view \mathbb{C} as the trivial representation of G. With this definition, the fixed subspace $\left(\operatorname{Hom}\left(V_{1}, V_{2}\right)\right)^{G}=\operatorname{Hom}^{G}\left(V_{1}, V_{2}\right)$, the space of G-morphisms from V_{1} to V_{2}.
(4) Finally, if V_{1} and V_{2} are G-representations, then $V_{1} \otimes V_{2}$ is as well, via

$$
\rho_{V_{1} \otimes V_{2}}=\rho_{V_{1}} \otimes \rho_{V_{2}} .
$$

It is easy to check that the "natural" isomorphisms $V \cong V^{* *}$ and $\operatorname{Hom}(V, W) \cong V^{*} \otimes W$ are all G-isomorphisms. However, in general V^{*} is not G-isomorphic to V.

4 Irreducible representations

Definition 4.1. A G-representation V is irreducible if $V \neq\{0\}$, and the only G-invariant subspaces of V are V and $\{0\}$. A G-representation V is reducible if it is not irreducible.

Example 4.2. (1) If $\operatorname{dim} V=1$, then V is irreducible.
(2) A two dimensional representation is reducible \Longleftrightarrow there exists a common nonzero eigenvector for G.
(3) The standard representation \mathbb{C}^{n} of S^{n} is not irreducible, since it has the two subspaces W_{1}, W_{2}. However, W_{1} is irreducible because $\operatorname{dim} W_{1}=1$, and we will see that W_{2} is also irreducible for every $n \geq 2$.

Lemma 4.3. If $V \neq\{0\}$, then there exists a G-invariant subspace $W \neq\{0\}$ of V which is an irreducible G-representation.

Proof. The proof is by complete induction on $\operatorname{dim} V$. If $\operatorname{dim} V=1$, then V is irreducible and we can take $W=V$. For the inductive step, suppose that the result has been proved for all representations of degree less than n. Let V be a representation of degree n. If V is irreducible, then as before we can take $W=V$. If V is not irreducible, then there exists a G-invariant subspace V^{\prime} of V with $1 \leq \operatorname{deg} V^{\prime}<\operatorname{deg} V=n$. By the inductive hypothesis, there exists a G-invariant subspace $W \neq\{0\}$ of V^{\prime} which is an irreducible G-representation. Then W is a nonzero G-invariant subspace of V which is an irreducible G-representation. This completes the inductive step and hence the proof.

Lemma 4.4. Let $F: V \rightarrow W$ be a morphism of G-representations.
(i) If V is irreducible, then F is either 0 or injective.
(ii) If W is irreducible, then F is either 0 or surjective.
(iii) If both V and W are irreducible, then F is either 0 or an isomorphism.

Proof. (i) We have seen that $\operatorname{Ker} F$ is a G-invariant subspace of V. Hence either $\operatorname{Ker} F\{0\}$ or $\operatorname{Ker} F=V$. In the first case, F is injective, and in the second case $F=0$.
(ii) Similarly, $\operatorname{Im} F$ is a G-invariant subspace of W. Hence either $\operatorname{Im} F=\{0\}$ or $\operatorname{Im} F=W$. In the first case, $F=0$, and in the second case F is surjective. (iii) This follows from (i) and (ii).

Proposition 4.5 (Schur's lemma). Let V be an irreducible G-representation and let $F \in \operatorname{Hom}^{G}(V, V)$. Then there exists a $t \in \mathbb{C}$ such that $F=t \mathrm{Id}$. Hence, if V and W are two irreducible G-representations, then either V is not isomorphic to W and $\operatorname{Hom}^{G}(V, W)=0$, or V is isomorphic to W and $\operatorname{dim} \operatorname{Hom}^{G}(V, W)=1$.

Proof. We have seen that every element of $\operatorname{Hom}^{G}(V, V)$ is either 0 or an isomorphism. Let $F \in \operatorname{Hom}^{G}(V, V)$. Then there exists a (nonzero) eigenvector $v \in V$, i.e. a nonzero $v \in V$ such that there exists a $t \in \mathbb{C}$ with $F(v)=t v$. Thus, the G-morphism $F-t \mathrm{Id}$ is not invertible, since $v \in \operatorname{Ker}(F-t \mathrm{Id})$ and $v \neq 0$. It follows that $F-t \mathrm{Id}=0$. Hence $F=t \mathrm{Id}$.

For the proof of the last statement, if V and W are not isomorphic, then, by (iii) of Lemma 4.4, $\operatorname{Hom}^{G}(V, W)=0$. If V is G-isomorphic to W, we may as well assume that $V=W$, and then the argument above shows that $\operatorname{Hom}^{G}(V, V) \cong \mathbb{C}$, hence has dimension one.

Remark 4.6. The proof above used the fact that the characteristic polynomial of F had a root, which follows since every nonzero polynomial with coefficients in \mathbb{C} has a root in \mathbb{C}. In the terminology of Modern Algebra II, \mathbb{C} is algebraically closed. In general, for a field k, we have defined k representations and can speak of a k-representation $V \neq\{0\}$ as being k irreducible, i.e. there are no G-invariant k-subspaces of V except for $\{0\}$ and V. The proof of Schur's lemma then shows that $\operatorname{Hom}^{G}(V, V)$ is a division ring containing k as a subfield. There exist examples of \mathbb{R}-irreducible \mathbb{R}-representations V for which the ring $\operatorname{Hom}^{G}(V, V)$ is isomorphic to \mathbb{C}, and examples where $\operatorname{Hom}^{G}(V, V)$ is isomorphic to \mathbb{H}.

We turn next to the construction of G-invariant projections. Here, the methods will only work in the case of a finite group (although we shall make some remarks about other cases later).

Proposition 4.7. Let G be a finite group. Suppose that V is a G-representation, and define $p: V \rightarrow V$

$$
p(v)=\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g)(v) .
$$

Then p is a G-morphism with $\operatorname{Im} p=V^{G}$ and $p(v)=v$ for all $v \in V^{G}$, i.e. p is a G-invariant projection from V to V^{G}. Hence, as G-representations, $V \cong V^{G} \oplus W$, where $W=\operatorname{Ker} p$ is a G-invariant subspace.

Proof. First, if $v \in V^{G}$, then by definition $\rho_{V}(g)(v)=v$ for all $g \in G$. Thus

$$
p(v)=\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g)(v)=\frac{1}{\#(G)} \sum_{g \in G} v=\frac{1}{\#(G)}(\#(G) v)=v
$$

In particular, $V^{G} \subseteq \operatorname{Im} p$.
Next, if $h \in G$ and $v \in V$, then

$$
\begin{aligned}
\rho_{V}(h) p(v) & =\rho_{V}(h)\left(\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g)(v)\right)=\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(h) \circ \rho_{V}(g)(v) \\
& =\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(h g)(v) .
\end{aligned}
$$

But, as g runs through $G, h g$ also runs through the elements of G. Hence

$$
\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(h g)(v)=\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g)(v)=p(v) .
$$

Thus, for all $v \in V$ and $h \in G, \rho_{V}(h) p(v)=p(v)$. Hence $\operatorname{Im} p \subseteq V^{G}$, and so $\operatorname{Im} p=V^{G}$ since we have already showed that $V^{G} \subseteq \operatorname{Im} p$. It follows that $V \cong W \oplus V^{G}$ (internal direct sum), where $W=\operatorname{Ker} p$.

Next we show that p is a G-morphism. This is a very similar argument to the proof above that $\operatorname{Im} p \subseteq V^{G}$. Since the G-action on $\operatorname{Im} p=V^{G}$ is trivial, it suffices to show that $p \circ \rho_{V}(h)=p$ for all $h \in G$. But

$$
p \circ \rho_{V}(h)=\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g) \circ \rho_{V}(h)=\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g h) .
$$

As before, as g runs through $G, g h$ also runs through the elements of G. Thus

$$
\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g h)=\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g)=p
$$

so that $p \circ \rho_{V}(h)=p=\rho_{V}(h) \circ p$ for all $h \in G$.
Finally, since p is a G-morphism, $W=\operatorname{Ker} p$ is a G-invariant subspace of V. We have seen that, as G-representations, $V \cong W \oplus V^{G}$.

Remark 4.8. If $V^{G}=\{0\}$, then Proposition 4.7 tells us that, for all $v \in V$,

$$
\sum_{g \in G} \rho_{V}(g)(v)=0
$$

Definition 4.9. V is decomposable if there exist two nonzero G-invariant subspaces W_{1}, W_{2} of V such that $V \cong W_{1} \oplus W_{2}$. V is completely reducible if $V \neq 0$ and there exist irreducible G-representations V_{1}, \ldots, V_{k} such that $V \cong V_{1} \oplus \cdots \oplus V_{k}$. For example, an irreducible representation is completely reducible (take $k=1$ above). Clearly, if $V \cong W_{1} \oplus W_{2}$ and W_{1}, W_{2} are completely reducible, then V is completely reducible as well.

Theorem 4.10 (Maschke's theorem). If G is finite and W is a G-invariant subspace of G, then there exists a G-invariant subspace W^{\prime} of V such that $V \cong W \oplus W^{\prime}$.

Proof. We will find a G-morphism $p: V \rightarrow V$ such that $\operatorname{Im} p \subseteq W$ and $p(w)=w$ for all $w \in W$. Setting $W^{\prime}=\operatorname{Ker} p$, it then follows that W^{\prime} is also G-invariant, and that V is the internal direct sum of W and W^{\prime}. Then Lemma 3.1 implies that the sum map $W \oplus W^{\prime} \rightarrow V$ is an isomorphism of G-representations.

To find p, begin by choosing an arbitrary linear map $p_{0}: V \rightarrow V$ such that $\operatorname{Im} p_{0} \subseteq W$ and $p_{0}(w)=w$ for all $w \in W$. For example, choose a basis $w_{1}, \ldots, w_{a}, w_{a+1}, \ldots, w_{n}$ of V such that w_{1}, \ldots, w_{a} is a basis of W and define p_{0} by defining it on the basis vectors w_{i} by defining

$$
p_{0}\left(w_{i}\right)= \begin{cases}w_{i}, & \text { if } i \leq a \\ 0, & \text { if } i>a\end{cases}
$$

Then set

$$
p=\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g) \circ p_{0} \circ \rho_{V}(g)^{-1}=\frac{1}{\#(G)} \sum_{g \in G} \rho_{\mathrm{Hom}(V, V)}(g)\left(p_{0}\right),
$$

viewing p_{0} as an element of the G-representation $\operatorname{Hom}(V, V)$. By Proposition 4.7, $p \in \operatorname{Hom}^{G}(V, V)$, so that p is a G-morphism. Since $\operatorname{Im} p_{0} \subseteq W$ and W is G-invariant, $\operatorname{Im} p \subseteq W$. Finally, if $w \in W$, then $\rho_{V}(g)^{-1}(w) \in W$ as well, again since W is G-invariant. Then $p_{0}\left(\rho_{V}(g)^{-1}(w)\right)=\rho_{V}(g)^{-1}(w)$ by construction, and so

$$
\begin{aligned}
p(w) & =\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g)\left(p_{0}\left(\rho_{V}(g)^{-1}(w)\right)\right)=\frac{1}{\#(G)} \sum_{g \in G} \rho_{V}(g)\left(\rho_{V}(g)^{-1}(w)\right) \\
& =\frac{1}{\#(G)} \sum_{g \in G} w=w .
\end{aligned}
$$

Thus p has the desired properties.
Corollary 4.11. If G is finite, then every nonzero G-representation V is completely reducible.

Proof. The proof is by complete induction on the degree of a G-representation. If $\operatorname{dim} V=1$, then V is irreducible and so (as we have already noted) it is completely reducible. Now suppose that the corollary has been proved for all representations of degree less than n. If V is a representation of degree n, first suppose that V is irreducible. Then as above V is completely reducible. Otherwise, V is reducible, so there exists a G-invariant subspace W of V with $0<\operatorname{deg} W<n$. By Maschke's theorem, V is G-isomorphic to $W \oplus W^{\prime}$, where $\operatorname{deg} W^{\prime}=n-\operatorname{deg} W$, and hence $0<\operatorname{deg} W^{\prime}<n$ as well. By the inductive hypothesis, W and W^{\prime} are completely reducible. Thus, $V \cong W \oplus W^{\prime}$ is completely reducible as well.

Corollary 4.12. Suppose that G is a finite abelian group. Then every nonzero G-representation V is a direct sum of one dimensional representations. Equivalently, there is a basis of V consisting of common eigenvectors for G.

Proof. It is clearly enough to prove that, if G is a finite abelian group, then every irreducible representation of G is one-dimensional. Let V be an irreducible G-representation. In particular $V \neq 0$. By Schur's lemma, $\operatorname{Hom}^{G}(V, V)=\mathbb{C} \cdot$ Id. On the other hand, we have seen that, if G is abelian, then, for every $g \in G, \rho_{V}(g) \in \operatorname{Hom}^{G}(V, V)$, and hence $\rho_{V}(g)=\lambda(g)$ Id for some $\lambda(g) \in \mathbb{C}^{*}$. Thus, choosing some nonzero $v \in V, \rho_{V}(g)=\lambda(g) v$ for every $g \in G$. It follows that the one-dimensional subspace $\mathbb{C} \cdot v=\operatorname{span}\{v\}$ is a G-invariant, nonzero subspace of V. Since V is irreducible, $V=\mathbb{C} \cdot v$ and hence V is one-dimensional.

Corollary 4.13. If $A \in G L(n, \mathbb{C})$ is a matrix of finite order d, then A is diagonalizable and its eigenvalues are $d^{\text {th }}$ roots of unity.
Proof. If A has order d, then A defines a representation of $\mathbb{Z} / d \mathbb{Z}$ on \mathbb{C}^{n} by: $\rho(k)=A^{k}$. Then by the previous corollary, \mathbb{C}^{n} is a direct sum of eigenspaces for A. Since $A^{d}=\mathrm{Id}$, it is clear that all of the eigenvalues of A are $d^{\text {th }}$ roots of unity.

Corollary 4.14. If G is a finite group and V is a G-representation, then, for all $g \in G$, the linear map $\rho_{V}(g): V \rightarrow V$ is diagonalizable, and its eigenvalues are $d^{\text {th }}$ roots of unity, where d divides $\#(G)$.
Proof. Every element g of G has finite order dividing \# (G), by Lagrange's theorem. Moreover, $\rho_{V}(g)$ has finite order dividing the order of g, and hence dividing $\#(G)$. Then apply the previous corollary.

Remark 4.15. For a not necessarily finite group G, a G-representation V is unitary if there exists a positive definite Hermitian inner product H which is G-invariant, i.e. for which $H\left(\rho_{V}(g) v, \rho_{V}(g) w\right)=H(v, w)$, for all $v, w \in V$ and $g \in G$. If V is unitary, then there exists a basis of V for which $\rho_{V}(g)$ is unitary for all $g \in G$, i.e. there exists a choice of basis for which ρ_{V} is a homomorphism to $U(n)$. Every unitary representation satisfies Maschke's theorem, because if $W \subseteq V$ is G-invariant, then W^{\perp} is also G-invariant and $V \cong W \oplus W^{\perp}$. If G is finite, then there always exists a G-invariant positive definite Hermitian inner product H : start with an arbitrary positive definite Hermitian inner product H_{0}, and set

$$
H(v, w)=\sum_{g \in G} H_{0}\left(\rho_{V}(g) v, \rho_{V}(g) w\right) .
$$

Then H is G-invariant.
Example 4.16. We have seen that every $A \in G L(n, \mathbb{C})$ defines a representation of \mathbb{Z} on \mathbb{C}^{n}, via $\rho(n)=A^{n}$. In particular, defines a \mathbb{Z}-representation on \mathbb{C}^{2} by taking $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and hence $A^{n}=\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$. Note that $A^{n} e_{1}=e_{1}$ and $A^{n} e_{2}=e_{2}+n e_{1}$. Thus $\mathbb{C} \cdot e_{1}$ is a \mathbb{Z}-invariant subspace. In fact, it is the unique \mathbb{Z}-invariant subspace: if $W \neq\{0\}, \mathbb{C}^{2}$ is an invariant subspace, then $\operatorname{dim} W=1$ and $W=\mathbb{C} \cdot w$ where w is a nonzero eigenvector for A and hence A^{n}. But A has a unique nonzero eigenvector up to a scalar, namely e_{1}. It follows that the \mathbb{Z}-representation \mathbb{C}^{2} is not completely reducible. Hence there is no \mathbb{Z}-invariant positive definite Hermitian inner product on \mathbb{C}^{2}.

From now on, G will always denote a finite group.

