
Induced representations

1 Definition of induced representations

Induced representations are a new method for constructing representations
of a finite group G, starting with a subgroup H ≤ G and a representation
ρW of H, i.e. a homomorphism ρW : H → AutW . The result is a new
representation IndGHW = V of G, of dimension (G : H) dimW . However,
even if W is irreducible, IndGHW need not be irreducible.

The simplest definition involves tensor products over non-commutative
rings. An H-representation W is the same thing as a left C[H]-module.
Moreover, C[G] is either a left or a right C[H]-module, depending on which
side we choose to multiply. Viewing C[G] as a right C[H]-module, we can
form the tensor product C[G]⊗C[H]W . It loses the action of C[H] but gains
an action of C[G] because C[G] acts on itself by left multiplication, and
this commutes with right multiplication by C[H]. Thus C[G] ⊗C[H] W is a
left C[G]-module, and thus defines a G-representation which we denote by
IndGHW .

We will give a concrete description of this construction as follows:

Definition 1.1. Let G be a finite group, let H be a subgroup of G, and
let ρW : H → AutW be an H-representation. Then we define IndGHW to
be the vector space of all functions F : G→W such that, for all g ∈ G and
h ∈ H,

F (gh) = ρW (h)−1(F (g)).

Lemma 1.2. With notation as above, IndGHW is a vector subspace of the
vector space of all functions from G to W under pointwise addition and
scalar multiplication. It is a G-representation under the action of g given
by

ρIndGH W (g)(F )(x) = F (g−1x).

Proof. The content of the first statement is that, if F1 and F2 satisfy the
condition of Definition 1.1, then so do F1 + F2 and tF1, t ∈ C. The content
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of the second statement is that, for all g1, g2 ∈ G,

ρIndGH W (g1)ρIndGH W (g2)(F ) = ρIndGH W (g1g2)(F ).

These are straightforward calculations.

Example 1.3. (1) If H = {1} is the trivial subgroup of G and W ∼= C
is the trivial representation, then the condition F (gh) = ρW (h)−1(F (g))
is trivially satisfied for all g ∈ G, since the only element of H is 1 and
ρW (1)−1 = Id. Thus, as a vector space, IndGHW = L2(G), the vector space
of all functions from G to C. Moreover, the action of G on L2(G) is the
usual action, precomposition with g−1. Thus

IndG{1}C = L2(G) = C[G],

the regular representation.

(2) More generally, suppose that H is an arbitrary subgroup of G but that
again W = C is the trivial representation of H. Then IndGH C is the set
of all functions F : G → C such that, for all g ∈ G and h ∈ H, F (gh) =
ρW (h)−1(F (g)) = IdF (g) = F (g). In other words, IndGH C is the set of all
functions F : G→ C which are constant on the cosets gH, for every g ∈ G.
Such a function is the same thing as a function f : G/H → C. Moreover, it
is easy to check that the G-action is given by

ρIndGH C(g)(f)(xH) = f(g−1xH).

This is the usual action of G on the permutation representation C[G/H]. In
particular, we see that dim IndGH C = (G : H) in this case.

(3) Suppose that H = G and that V is a G-representation. Then IndGG V is
the set of functions F : G→ V such that, for all g1, g2 ∈ G,

F (g1g2) = ρV (g2)
−1F (g1).

In particular, taking g1 = 1 and g2 = g gives

F (g) = F (1 · g) = ρV (g)−1F (1).

In particular, the vector v = F (1) determines F . Conversely, suppose that
v ∈ V and define the function Fv : G→ V by:

Fv(g) = ρV (g)−1(v).
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Then we see that Fv ∈ IndGG V because

Fv(g1g2) = ρV (g1g2)
−1(v) = ρV (g2)

−1ρV (g1)
−1(v) = ρV (g2)

−1Fv(g1).

Thus, if we define functions A : IndGG V → V and B : V → IndGG V via

A(F ) = F (1);

B(v) = Fv,

then it is easy to see that A and B are inverse linear maps, and they are
G-isomorphisms because

A(ρV (g)(F )) = ρV (g)(F )(1) = F (g−1 · 1) = F (g−1)

= ρV (g)F (1) = ρV (g)(A(F )).

Thus, as G-representations, IndGG V
∼= V .

For a better understanding of IndGHW in general, we will need an explicit
way to compute it and especially to compute its character χIndGH

. We fix the
following notation: x1, . . . , xk are representatives for the set of left cosets
G/H. In other words, every element of G is in exactly one left coset xiH. In
particular k = (G : H). By convention, we will always take x1 = 1. Given
w ∈W and i, 1 ≤ i ≤ k, we define a function Fi,w : G→W by the formula

Fi,w(g) =

{
ρW (h)−1(w), if g = xih ∈ xiH;

0, otherwise.

Note that, in particular, Fi,w(xi) = w.

Lemma 1.4. With Fi,w defined as above,

(i) Fi,w ∈ IndGHW .

(ii) Given w1, w2 ∈ W and t ∈ C, Fi,w1 + Fi,w2 = Fi,w1+w2 and Fi,tw1 =
tFi,w1.

(iii) If we define W (i) = {Fi,w : w ∈W}, then W (i) is a vector subspace of
IndGHW , isomorphic as a vector space to W , and moreover

W (i) = {F ∈ IndGHW : F (g) = 0 if g 6= xiH}.

(iv) For all F ∈ IndGHW , define wi = F (xi). Then

F =

k∑
i=1

Fi,wi .
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(v) As vector spaces, IndGHW
∼=
⊕k

i=1W
(i). In particular,

dim IndGHW = k dimW = (G : H) dimW.

Proof. (i) Let k ∈ H. If g = xih ∈ xiH, then gk = xihk ∈ xiH and

Fi,w(gk) = Fi,w(xihk) = ρW (hk)−1(w) = ρW (k)−1ρW (h)−1(w)

= ρW (k)−1Fi,w(g).

If xih /∈ xiH, then xihk /∈ xiH as well, and hence

Fi,w(gk) = 0 = ρW (k)−1(0) = ρW (k)−1Fi,w(g).

Thus, in all cases, Fi,w(gk) = ρW (k)−1Fi,w(g) and so Fi,w ∈ IndGHW .

(ii) This is clear because ρW (h)−1 is linear.

(iii) It follows from (ii) that W (i) is a vector subspace of IndGHW . Clearly,
the map w 7→ Fi,w is linear, with inverse F 7→ F (xi). Thus W (i) ∼= W as
vector spaces. By definition

W (i) ⊆ {F ∈ IndGHW : F (g) = 0 if g 6= xiH}.

Conversely, suppose that F ∈ IndGHW and that F (g) = 0 if g 6= xiH. Define
w = F (xi). By the definition of IndGHW , if g = xih, then

F (g) = F (xih) = ρW (h)−1F (xi) = ρW (h)−1(w).

Thus F = Fi,w, and hence

{F ∈ IndGHW : F (g) = 0 if g 6= xiH} ⊆W (i).

It follows that

W (i) = {F ∈ IndGHW : F (g) = 0 if g 6= xiH}.

(iv) Given F ∈ IndGHW and wi = F (xi), we must show that F (g) =∑k
i=1 Fi,wi(g) for all g ∈ G. There is a unique i, 1 ≤ i ≤ k, such that g ∈ xiH

and hence such that g = xih for some h ∈ H. Thus F (g) = F (xih) =
ρW (h)−1F (xi) = ρW (h)−1(wi). On the other hand, for j 6= i, Fj,wj (g) = 0

and Fi,wi(g) = Fi,wi(xih) = ρW (h)−1(wi). Thus F (g) =
∑k

i=1 Fi,wi(g).

(v) The above argument shows that every element F of IndGHW can be
written as a sum of elements in the W (i), 1 ≤ i ≤ k. In fact, it can be
uniquely so written, since if also F =

∑k
i=1 F

′
i with F ′i ∈ W (i), then it is

easy to see that necessarily F ′i (xih) = ρW (h)−1F (xi) and that F ′i (g) = 0 if
g /∈ xiH. Thus F ′i = Fi,wi . The statement about dim IndGHW then follows
since dimW (i) = dimW for all i.
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Using the above lemma, we can give an explicit description for the action
of g ∈ G on IndGHW . Given F ∈ IndGHW , let F =

∑k
i=1 Fi,wi . It suffices to

describe ρIndGH W (Fi,wi). Given g ∈ G, gxi is in a unique left coset xjH of
H, and hence we can write

gxi = xjhi(g)

for a unique j and hi(g), depending on i and g. Note that j does not
have to equal i, even if g ∈ H. However, if H is normal and g ∈ H, then
gxi = xihi(g) for some hi(g) ∈ H.

Claim 1.5. With notation as above,

ρIndGH W (g)(Fi,w) = Fj,ρW (hi(g))(w)

Proof. It suffices to compute ρIndGH W (g)(Fi,w)(x`) for every `. By definition,

ρIndGH W (g)(Fi,w)(x`) = Fi,w(g−1x`). Now Fi,w(g−1x`) = 0 if g−1x` /∈ xiH,

i.e. if x` /∈ gxiH = xjH, or equivalently if ` 6= j. If ` = j, then

g−1xj = xihi(g)−1,

since gxi = xjhi(g), and hence

Fi,w(g−1xj) = Fi,w(xihi(g)−1) = ρW (hi(g))Fi,w(xi)

= ρW (hi(g))(w) = Fj,ρW (hi(g))(w)(xj).

Thus ρIndGH W (g)(Fi,w)(x`) = Fj,ρW (hi(g))(w)(x`) for every `, and hence

ρIndGH W (g)(Fi,w) = Fj,ρW (hi(g))(w).

Let us make some additional remarks about IndGHW in general. Recall
that, with our conventions, x1 = 1. Thus, for all h ∈ H, hx1 = h = x1h, so
that h1(h) = h. Hence

ρIndGH W (h)(F1,w) = F1,ρW (h)(w).

This says that the subspace W (1) is an H-invariant subspace of IndGHW and
it is H-isomorphic to W . Also, since xj ·x1 = xj , we have h1(xj) = 1. Thus

ρIndGH W (xj)(F1,w) = Fj,w.
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This is often written symbolically as

IndGHW
∼=

k⊕
i=1

xi ·W.

Finally, given a general element xjh ∈ xjH, since (xjh)x1 = xjh, h1(xjh) =
h and

ρIndGH W (xjh)(F1,w) = Fj,ρW (h)(w).

For example, suppose that W is a 1-dimensional representation of H,
with basis vector e and corresponding to the homomorphism λ : H → C∗.
Set fi = Fi,e. Then f1, . . . , fk is a basis of IndGHW , and

ρIndGH W (g)(fi) = λ(hi(g))fj .

This says that G acts on the basis f1, . . . fk by a combination of the permu-
tation representation and multiplication by scalars.

Example 1.6. Let Dn be the dihedral group of order 2n, which we can
view as generated by two elements α and τ , with αn = 1, τ2 = 1, and
τατ−1 = τατ = α−1. (We previously called the generator of the rotation
subgroup ρ but want to avoid confusion with the letter used to denote a
representation.) Thus every element of Dn is uniquely written either as
αk or as ταk, with 0 ≤ k ≤ n − 1, and the cyclic subgroup H = 〈α〉 has
index two in Dn. Let Wa = C · e be the 1-dimensional representation of
H corresponding to the homomorphism λa(α

k) = e2πiak/n, i.e. e is a basis
vector for Wa and ρWa(αk)(e) = e2πiak/ne.

Then Dn/H has two elements, and we can take as a set of representatives
x1 = 1 and x2 = τ . For g = αk, αk · x1 = αk = x1α

k and so h1(α
k) = αk.

Also,
αk · x2 = αk · τ = τ · α−k = x2 · α−k,

and so h2(α
k) = α−k. It follows that (with fi = Fi,e as before and i = 1, 2)

ρ
IndDn

H Wa
(αk)(f1) = λa(α

k)f1 = e2πiak/nf1;

ρ
IndDn

H Wa
(αk)(f2) = λa(α

−k)f2 = e−2πiak/nf2.

Since τx1 = τ = x2, h1(τ) = 1, and τx2 = τ2 = 1 = x1, so h2(τ) = 1 as
well. Thus

ρ
IndDn

H Wa
(τ)(f1) = f2;

ρ
IndDn

H Wa
(τ)(f2) = f1.
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If we write these out as 2× 2 matrices using the basis {f1, f2}, then

ρ
IndDn

H Wa
(αk) =

(
e2πiak/n 0

0 e−2πiak/n

)
; ρ

IndDn
H Wa

(τ) =

(
0 1
1 0

)
;

ρ
IndDn

H Wa
(ταk) =

(
0 1
1 0

)(
e2πiak/n 0

0 e−2πiak/n

)
=

(
0 e−2πiak/n

e2πiak/n 0

)
.

This gives the formula for the character:

χ
IndDn

H Wa
(αk) = 2 cos

2πiak

n
;

χ
IndDn

H Wa
(ταk) = 0.

We leave it as a homework problem to show that every 2-dimensional rep-
resentation of Dn is of the form IndDn

H Wa for some a, and to decide when
two such are isomorphic.

2 The character of an induced representation

Our goal in this section is to generalize the computation in Example 1.6
to give a formula for the character of an induced representation in general.
We keep the previous notation. In particular, IndGHW

∼=
⊕k

i=1W
(i), where

W (i) ∼= W is the span of the functions Fi,w, w ∈ W . Given g ∈ G, with
gxi = xjhi(g), we want to compute Tr ρIndGH W (g) = χIndGH W (g). We have
seen that

ρIndGH W (g)(Fi,w) = Fj,ρW (hi(g))(w).

To compute the trace, the only nonzero contributions will come from
those i such that j = i, i.e. such that gxi = xihi(g), or equivalently such
that x−1i gxi = hi(g) ∈ H. For such i, ρIndGH W (g) induces a linear map

W (i) → W (i), and under the identification of W (i) with W , by identifying
Fi,w with w ∈ W , we see that the action of ρIndGH W (g) restricted to W (i) is
identified with

ρW (hi(g)) = ρW (x−1i gxi).

Thus, summing over all possible i, we have:

χIndGH W (g) = Tr ρIndGH W (g) =
∑

i such that
x−1
i gxi∈H

Tr ρW (x−1i gxi) =
∑

i such that
x−1
i gxi∈H

χW (x−1i gxi).
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Note that we don’t expect that χW (x−1i gxi) = χW (g), since χW (g) is not
even defined for g /∈ H, and in any case xi /∈ H for general i, so the
conjugation is not by elements of H.

We can eliminate the choice of the xi from the above formula. Here xi
is one particular representative for the coset xiH. Any other representative
x = xih will still have the property that g(xih) ∈ xiH and moreover

x−1gx = h−1x−1i gxih = h−1hi(g)h.

Thus, as χW is a class function on H,

χW (x−1gx) = χW (h−1hi(g)h) = χW (hi(g)) = χW (x−1i gxi).

Thus, if we sum χW (x−1gx) over the x ∈ xiH, we get #(H)χW (x−1i gxi).
Summing over all x ∈ G such that x−1Hx = H, we get the following formula
for χIndGH W (g):

χIndGH W (g) =
1

#(H)

∑
x∈G

x−1gx∈H

χW (x−1gx)

We can interpret this formula as follows.

Definition 2.1. Let f be a class function on H, and define a function f̃ on
G by the formula

f̃(g) =

{
f(g), if g ∈ H;

0, if g /∈ H.

Note that f̃ is not necessarily a class function. Then define IndGH f : G→ C
by the formula:

IndGH f(g) =
1

#(H)

∑
x∈G

f̃(x−1gx).

This is always a class function since we sum the values of f̃ over the conju-
gates of g.

With this notation, our formula for χIndGH W reads:

χIndGH W = IndGH χW

Of course, there is a similar formula for ResGH χV , where V is a G-
representation, namely

χResGH V = ResGH χV .

But in this case the proof is obvious from the definitions.
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3 Restriction and Frobenius reciprocity

First, we describe the transitivity properties of Res and Ind. If we have
a sequence of subgroups K ≤ H ≤ G, then, as restriction of functions to
subsets is transitive, we clearly have, for every G-representation V ,

ResGK V = ResHK ResGH V

The situation for Ind is similar but the argument is more complicated:

Proposition 3.1. With K ≤ H ≤ G as above, for every K-representation
W ,

IndGKW
∼= IndGH IndHKW

where the isomorphism is of G-representations.

Proof. By definition,

IndGKW = {F : G→W : F (gk) = ρW (k)−1F (g)(∀g ∈ G)(∀k ∈ K)};
IndGH IndHKW = {F1 : G→ IndHKW : F (gh) = ρIndHK

(h)−1F1(g)(∀g ∈ G)(∀h ∈ H)}.

Thus in particular, if F1 ∈ IndGH IndHKW , then F1(g) is itself a function from
H to W , i.e. F1(g)(h) ∈W and the function F1(g) must satisfy

F1(g)(hk) = ρW (k)−1F1(g)(h) (∀h ∈ H)(∀k ∈ K)

F1(gx)(h) = ρIndGH
(x)−1(F1(g))(h) = F1(g)(xh) (∀g ∈ G)(∀x, h ∈ H).

Define functions A : IndGKW → IndGH IndHKW and B : IndGH IndHKW →
IndGKW by the formulas

A(F ) = F1, where F1(g)(h) = F (gh)

B(F1) = F, where F (g) = F1(g)(1).

First, we claim that in fact A(F ) ∈ IndGH IndHKW . In fact, for all g ∈ G,
h ∈ H, k ∈ K, we have

A(F )(g)(hk) = F (ghk) = ρW (k)−1F (gh) = ρW (k)−1(F1(g)(h)),

so that A(F )(g) ∈ IndHKW . Moreover, for all x, h ∈ H,

A(F )(gx)(h) = F (gxh) = A(F )(g)(xh),
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in other words A(F )(gx) = ρIndGH
(x)−1(A(F )(g)). This says that A(F ) ∈

IndGH IndHKW .
Similarly, if F1 ∈ IndGH IndHKW , then for all g ∈ G, h ∈ H, k ∈ K,

B(F1)(gh) = F1(gh)(1) = ρIndGH
(h)−1(F1(g))(1) = F1(g)(h);

B(F1)(gk) = F1(g)(k) = ρW (k)−1F1(g)(1) = ρW (k)−1B(F1)(g).

The second line says B(F1) ∈ IndGKW . Finally, using the first line above,

A(B(F1))(g)(h) = B(F1)(gh) = F1(g)(h),

so that A ◦B = Id. And

B(A(F ))(g) = A(F )(g)(1) = F (g · 1) = F (g),

so that B◦A = Id. Finally, we must check that one of A, B is a G-morphism,
say A. But

A(ρIndGK W (x)F )(g)(h) = F (x−1gh) = ρIndHK W (x)A(F )(g)(h).

Thus A is a G-morphism and a linear isomorphism, hence a G-isomorphism.

We turn to various versions of Frobenius reciprocity:

Proposition 3.2 (Frobenius reciprocity I). Let H be a subgroup of G, let
W be an H-representation, and let U be a G-representation. Then there is
a linear isomorphism

HomH(W,ResGH U) ∼= HomG(IndGHW,U)

In the language of category theory, this says that Res and Ind are adjoint
functors.

A more quantitative version is the following:

Corollary 3.3 (Frobenius reciprocity II). Let H, G, W and U be as above.
Denote by 〈·, ·〉H and 〈·, ·〉G the Hermitian inner products on L2(H) and
L2(G) respectively. Then

〈χW , χResGH U 〉H = 〈χIndGH W , χU 〉G
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Proof. This follows from the previous version, since

〈χW , χResGH U 〉H = dim HomH(W,ResGH U)

and similarly for 〈χIndGH W , χU 〉G.

Corollary 3.4. With notation as above, if f1 is a class function on H and
f2 is a class function on G, then

〈f1,ResGH f2〉H = 〈IndGH f1, f2〉G.

Proof. By the previous corollary, this holds for functions f1 of the form χW
and f2 of the form χU . But the vector space of all class functions is spanned
by the characters, so the formula holds for all class functions.

Example 3.5. (1) LetH = {1} and letW = C, the trivial representation. If
U is an irreducible representation of G, with dimU = d, say, then ResG{1} U

is just Cd, viewed as a representation of {1}, and 〈χC, χResG{1} U
〉{1} = 1 ·

d = d. On the other hand, we have seen that IndG{1}C = C[G] is the
regular representation, with character χreg. Moreover, since U is irreducible,
〈χreg, χU 〉G is the multiplicity of U in the regular representation. Thus we
see again that this multiplicity is dimU .

(2) Let U be an irreducible G-representation and let H be an arbitrary
subgroup of G. Suppose that W is an irreducible summand of ResGH U .
Thus 〈χW , χResGH U 〉H is the multiplicity of W in ResGH U and is a strictly
positive integer. By Frobenius reciprocity, this multiplicity is equal to
〈χIndGH W , χU 〉G, which is the multiplicity of U in IndGHW . Thus U is in

particular an irreducible summand of IndGHW .
As a special case, suppose that G is a nonabelian group of order pq, where

p and q are primes and p < q. We have seen that necessarily q ≡ 1 mod p.
Moreover, there is a normal subgroup H of G of order q. Finally, every
irreducible representation ofG has dimension 1 or p, and, up to isomorphism,

there are p irreducible representations of dimension 1, identified with Ĝ/H,
and k = (q − 1)/p irreducible representations of G of dimension p. Let
U be an irreducible representation of G of dimension p. Then ResGH U is
a representation of the abelian group H, and hence is a direct sum of 1-
dimensional representations:

ResGH U =

p⊕
i=1

Wi,
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where Wi = C(λi) is a 1-dimensional representation corresponding to the
homomorphism λi : H → C∗. As 〈χWi , χResGH U 〉H > 0, it follows that U

is isomorphic to a direct summand of IndGHWi. But since dimU = p =
dim IndGHWi, we must have U ∼= IndGHWi. Hence every irreducible p-
dimensional representation of G is of the form IndGHW for a 1-dimensional
representation W of H. The argument tells us a little more: since the mul-
tiplicity of U in IndGHWi is one, in the above notation, if i 6= j, then Wi is
not isomorphic to Wj , i.e. λi 6= λj for i 6= j. We leave it as a homework
problem to give a more detailed analysis of the representations of G.

Proof of Frobenius reciprocity. As usual, we will define linear maps

A : HomH(W,ResGH U)→ HomG(IndGHW,U);

B : HomG(IndGHW,U)→ HomH(W,ResGH U)

and verify that they are inverses. Given an element f ∈ HomH(W,ResGH U),
we have to define A(f) ∈ HomG(IndGHW,U). It suffices to define A(f) on
Fi,w for every i, 1 ≤ i ≤ k, and every w ∈ W , since every F ∈ IndGH is

uniquely written as
∑k

i=1 Fi,w. Define

A(f)(Fi,w) = ρU (xi)f(w) ∈ U.

We claim that A(f) is a G-morphism, hence that A(f) ∈ HomG(IndGHW,U).
It suffices to check this on elements of the form Fi,w. Then, if gxi = xjhi(g),

A(f)(ρIndGH W (g)Fi,w) = A(f)(Fj,ρW (hi(g))(w)) = ρU (xj)f(ρW (hi(g))(w))

= ρU (xj)ρU (hi(g))f(w) = ρU (xjhi(g))f(w)

= ρU (gxi)f(w) = ρU (g)ρU (xi)f(w) = ρU (g)A(f)(Fi,w).

This says that A(f) is a G-morphism.
To define B : HomG(IndGHW,U) → HomH(W,ResGH U), recall that we

have W (1) ⊆ IndGHW , and W (1) is an H-invariant subspace of IndGHW
which is H-isomorphic to W . Then, given Ψ ∈ HomG(IndGHW,U), define
B(Ψ) = Ψ|W (1) : W (1) ∼= W → U . In other words, B(Ψ)(w) = Ψ(F1,w). It
satisfies: for all h ∈ H,

B(Ψ)(ρW (h)(w)) = Ψ(F1,ρW (h)) = Ψ(ρIndGH W (h)(F1,w)

= ρU (h)Ψ(F1,w) = ρResGH U (h)B(Ψ)(w).

Thus B(Ψ) is an H-morphism.
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To show that A ◦B = Id, by definition

(A ◦B)(Ψ)(Fi,w) = ρU (xi)B(Ψ)(w) = ρU (xi)Ψ(F1,w)

= Ψ(ρIndGH W (xi)F1,w) = Ψ(Fi,w),

since as previously noted ρIndGH W (xi)(F1,w) = Fi,w (remark at the bottom

of p. 5). Thus A ◦B = Id. Finally, to see that B ◦A = Id, note that

(B ◦A)(f)(w) = A(f)(F1,w) = ρU (1)f(w) = f(w).

Thus B ◦A = Id and A,B are linear isomorphisms as claimed.

We remark that it is easy to give a direct proof of Frobenius reciprocity
in the form of Corollary 3.4. We leave this as an exercise.

We conclude this section with a much easier formula:

Proposition 3.6 (Projection formula). If W is an H-representation and U
is a G-representation, then, as G-representations,

IndGH(W ⊗ ResGH U) ∼= IndGHW ⊗ U

Proof. The proposition implies (and is equivalent to) the corresponding for-
mula for characters

χIndGH(W⊗ResGH U) = χIndGH W · χU .

More generally, this formula is implied by (and is equivalent to) the follow-
ing: If f1 is a class function on H and f2 is a class function on G, then (in
the notation of Definition 2.1)

IndGH(f1 ResGH f2) = IndGH(f1)f2.

To prove this, first observe that (we write ResGH f2 = f2|H for brevity)

˜f1(f2|H) = f̃1f2.

Thus, for all x, g ∈ G,

˜f1(f2|H)(x−1gx) = f̃1(x
−1gx)f2(x

−1gx) = f̃1(x
−1gx)f(g),

since f2 is a class function on G. Then, for all g ∈ G,

IndGH(f1 ResGH f2)(g) =
1

#(H)

∑
x∈G

˜f1(f2|H)(x−1gx) =
1

#(H)

∑
x∈G

f̃1(x
−1gx)f(g)

=

(
1

#(H)

∑
x∈G

f̃1(x
−1gx)

)
f(g) = IndGH(f1)(g)f2(g).

This proves the formula.
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Example 3.7. SupposeW = C = C(1) is the trivial representation ofH and
V is aG-representation. Then C⊗ResGH V

∼= ResGH V and IndGH C ∼= C[G/H],
the permutation representation associated to the action of G on G/H by left
multiplication. Hence we get the following formula:

IndGH ResGH V
∼= C[G/H]⊗ V

One can also ask for a corresponding formula when we compose Res
and Ind in the opposite order. However, as we shall see, the formula for
ResGH IndGHW is much more complicated.

4 Interpretation in terms of tensor products

Many of the arguments in the last section have much simpler proofs via
general properties of tensor products of left and right modules over noncom-
mutative rings. For example, Proposition 3.1 is just the isomorphism, for a
C[K] module W ,

C[G]⊗C[H] (C[H]⊗C[K] W ) ∼= (C[G]⊗C[H] C[H])⊗C[K] W ∼= C[G]⊗C[K] W.

Frobenius reciprocity is just the natural isomorphism

HomC[H](W,ResGH U) ∼= HomC[G](C[G]⊗C[H] W,U).

Finally, the projection formula is the natural isomorphism

C[G]⊗C[H] (W ⊗ ResGH U) ∼= (C[G]⊗C[H] W )⊗ U.
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