
More on characters

1 One dimensional representations

In this section, we give a systematic description of all one dimensional repre-
sentations of a finite group G. Recall that a one dimensional representation
of G is the same thing as a homomorphism λ : G → C∗, and is always
irreducible.

Definition 1.1. Let G be a group, not necessarily finite. A commutator in
G is an expression of the form

[x, y] = xyx−1y−1.

Example 1.2. (i) The group G is abelian ⇐⇒ [x, y] = 1 for all x, y ∈ G.
More generally, [x, y] = 1 ⇐⇒ x and y commute, i.e. xy = yx. For example,
[x, x] = 1 for all x ∈ G, and [1, x] = 1 as well. In particular, 1 is always a
commutator.

(ii) The group Dn is generated by two elements ρ and τ with ρn = 1, τ2 = 1
(thus τ = τ−1), and τρτ−1 = τρτ = ρ−1. Thus

[τ, ρ] = τρτ−1ρ−1 = ρ−2.

We have the following properties of commutators:

Lemma 1.3. For all x, y, g ∈ G,

(i) [x, y]−1 = [y, x].

(ii) g[x, y]g−1 = [gxg−1, gyg−1].

Proof. These follow from:

[x, y]−1 = (xyx−1y−1)−1 = (y−1)−1(x−1)−1y−1x−1 = yxy−1x−1 = [y, x].

g[x, y]g−1 = gxyx−1y−1g−1 = gxg−1gyg−1gx−1g−1gy−1g−1

= [gxg−1, gyg−1],

since (gxg−1)−1 = gx−1g−1 and similarly for y.
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Thus, the set of commutators is closed under taking inverses and conjuga-
tion (but not in general under products). The following is a straightforward
generalization of (ii) in Lemma 1.3, whose proof is left as an exercise:

Lemma 1.4. If f : G→ H is a homomorphism, then for all x, y ∈ G,

f([x, y]) = [f(x), f(y)].

Here, the the lemma implies (ii) in Lemma 1.3 since gxg−1 = ig(x) is a
homomorphism (in fact an isomorphism) from G to G.

Definition 1.5. The commutator subgroup or derived subgroup G′ of G is
the subgroup generated by all commutators.

Since 1 ∈ G′ and the inverse of a commutator is a commutator, it is easy
to see that G′ is equal to the set of all products of commutators:

G′ = {[x1, y1] · · · [xk.yk] : xi, yi ∈ G}.

It is the smallest subgroup of G containing all commutators. Also, since the
conjugate of a commutator is again a commutator, it is easy to see that G′

is a normal subgroup of G, i.e. G′ CG.

Definition 1.6. We set Gab = G/G′. (Sometimes Gab is called the abelian-
ization of G.)

Proposition 1.7. With G′ and Gab defined as above,

(i) Gab is abelian.

(ii) If f : G → H is a homomorphism from G to a group H, then Im f is
abelian ⇐⇒ Ker f contains G′.

(iii) Let H be an abelian group. There is a bijection between homomor-
phisms f : G → H and homomorphisms f̃ : Gab → H. In fact, if
π : G → Gab is the quotient homomorphism and f̃ : Gab is a homo-
morphism, then f̃ ◦ π : G→ H is a homomorphism from G to H and
every homomorphism from G to H arises in this way for a unique f̃ .

Proof. (i) With π : G → Gab the natural quotient homomorphism as above
(i.e. π(x) = xG′), [π(x), π(y)] = π[x, y] = 1 (where here 1 = G′ is the
identity coset in Gab = G/G′), since [x, y] ∈ G′. Since every element of Gab

is of the form π(x) for some x ∈ G, this shows that every pair of elements
in Gab commutes, hence Gab is abelian.
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(ii) Let f : G → H be a homomorphism from G to a group H. Then Im f
is abelian ⇐⇒ for all x, y ∈ G, 1 = [f(x), f(y)] = f([x, y]) ⇐⇒ for all
x, y ∈ G, [x, y] ∈ Ker f ⇐⇒ G′ ⊆ Ker f .

(iii) Let H be an abelian group. Clearly, if f̃ : Gab is a homomorphism, then
f = f̃ ◦π : G→ H is a homomorphism from G to H and it is easy to see that
f determines and is determined by f̃ . Conversely, suppose that f : G → H
is a homomorphism. Since H is abelian, Im f is abelian and hence, by (ii),
G′ ⊆ Ker f . In particular, there is a well-defined homomorphism ν : G/G′ =
Gab → G/Ker f , defined by

ν(xG′) = xKer f.

By the Fundamental Homomorphism Theorem, there is a homomorphism
f̂ : G/Ker f → Im f ⊆ H, such that f(x) = f̂(xKer f). Define f̃ : Gab → H
via: f̃ = f̂ ◦ ν. In other words,

f̃ ◦ π(x) = f̃(xG′) = f̂(xKer f) = f(x).

This produces a f̃ : Gab → H with the property that f = f̃ ◦ π. This gives
the required bijection in (iii).

Corollary 1.8. Let G be a finite group. Then there is a bijection from the
set of one dimensional representations of G up to isomorphism to the group

Ĝab, the dual group to the abelian group Gab. In particular, the number
of one dimensional representations of G up to isomorphism is #(Gab) =
#(G)/#(G′), and hence divides #(G).

Proof. By (iii) of Proposition 1.7, there is a bijection from the set of ho-
momorphisms from G to C∗ to the set of homomorphisms from Gab to C∗.
By definition, this last set is the dual group Ĝab of Gab. As we have seen,
the order of the dual group to a finite abelian group is the same as the
order of the original group, and this proves the remaining statements of the
corollary.

The definition of G′ as the subgroup generated by all commutators is
a little hard to apply directly in practice. The following lemma gives a
somewhat easier way to find G′ and Gab:

Lemma 1.9. Let N be a normal subgroup of G such that N is generated by
commutators and G/N is abelian. Then N = G′.
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Proof. Since N is generated by commutators, N ⊆ G′. Since G/N is abelian,
the kernel of the surjective homomorphism G → G/N contains G′, by (ii)
of Proposition 1.7. But the kernel of the projection G → G/N is N . Thus
G′ ⊆ N . As N ⊆ G′, N = G′.

Example 1.10. For G = Dn, let N = 〈ρ2〉, in the notation of Example 1.2.

Case I: n = 2k + 1 is odd. Then, as gcd(2, n) = 1, ρ2 is a generator of 〈ρ〉.
Hence N = 〈ρ2〉 has order n, and thus index two in Dn, so is automatically
normal. Moreover, Dn/N is a group of order 2, thus automatically abelian.
So N = G′ and Gab ∼= Z/2Z. Hence Dn has exactly 2 one dimensional
representations in case n is odd.

Case II: n = 2k is even. Then N = 〈ρ2〉 has order n/2 = k. Conjugating
ρ2 by the two generators of Dn, we see that

ρ · ρ2 · ρ−1 = ρ2 ∈ 〈ρ2〉;
τ · ρ2 · τ−1 = ρ−2 ∈ 〈ρ2〉.

Thus N CDn. The index of N in Dn is 2n/k = 4, hence Dn/N is a group of
order 4 and thus automatically abelian. In fact, Dn/N contains two different
elements of order 2, since (τN)2 = τ2N = N , and (ρN)2 = ρ2N = N .
Thus Gab = Dn/N ∼= Z/2Z× Z/2Z, and Dn has exactly 4 one dimensional
representations in case n is even.

It is a nice exercise to describe the homomorphisms λ : Dn → C∗ explic-
itly.

We have seen in a HW problem that every irreducible representation of
Dn has dimension at most 2. If a is the number of 2-dimensional irreducible
representations of Dn, then (by the usual formula that

∑h
i=1 d

2
i = #(G)),

2n = #(Dn) =

{
2 + 4a, if n = 2k + 1 is odd;

4 + 4a, if n = 2k is even.

Solving for a, we see that the number a of 2-dimensional irreducible repre-
sentations of Dn is given by

a =

{
k, if n = 2k + 1 is odd;

k − 1, if n = 2k is even.

Of course, we know of one such 2-dimensional representation ρV , and consid-
ering representation ρV ⊗ λ, where λ : Dn → C∗ is a homomorphism, allows
us to potentially construct 2 or 4 2-dimensional representations (potentially,

4



because it is in fact possible that ρV ⊗ λ1 and ρV ⊗ λ2 are isomorphic, for
λ1 6= λ2). But we need a new method to find all of them, which we shall
describe when we discuss induced representations.

2 Cartesian products

Our goal in this section is to describe all of the irreducible representations for
a product G1×G2 of two finite groups. If V1 is a representation of G1, then
it becomes a representation of G1 × G2 via the surjective homomorphism
π1 : G1 × G2 → G1. In other words, is we are given a homomorphism
ρV1 : G1 → AutV1, then we have the composed homomorphism

ρV1 ◦ π1 : G1 ×G2 → AutV1.

We sometimes denote ρV1 ◦ π1 by π∗1ρV1 and V1, considered as a G1 × G2-
representation, by π∗1V1. Explicitly,

π∗1ρV1(g1, g2) = ρV1(g1).

Clearly, the character χπ∗1V1 is equal to χV1 ◦ π1, i.e.

χπ∗1V1(g1, g2) = χV1(g1).

Note that, as π1 is surjective, if ρV1 is irreducible, then π∗1ρV1 is also irre-
ducible. Similarly, if V2 is a representation of V2, we can form π∗2ρV2 or π∗2V2.
Finally, we can take the tensor product π∗1V1⊗π∗2V2. This is sometimes called
the external tensor product and is written as V1 � V2 or V1⊗̂V2. (Note that
the tensor product V1 ⊗ V2 does not make sense as a representation, since
V1 and V2 are representations of different groups.)

Theorem 2.1. Let G1 and G2 be two finite groups.

(i) If V1 is an irreducible representation of G1 and V2 is an irreducible
representation of G2, then π∗1V1 ⊗ π∗2V2 is an irreducible representa-
tion of G1 × G2. Moreover, the G1 × G2-representation π∗1V1 ⊗ π∗2V2
determines the representations V1 and V2.

(ii) Every irreducible representation of G1×G2 is of the form π∗1V1⊗π∗2V2,
where V1 is an irreducible representation of G1 and V2 is an irreducible
representation of G2.
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Proof. (i) To show that π∗1V1 ⊗ π∗2V2 is irreducible, it suffices to show that
〈χπ∗1V1⊗π∗2V2 , χπ∗1V1⊗π∗2V2〉 = 1. By our results about tensor products and the
remarks above, we know that

χπ∗1V1⊗π∗2V2(g1, g2) = χπ∗1V1(g1, g2)χπ∗2V2(g1, g2) = χV1(g1)χV2(g2).

We compute 〈χπ∗1V1⊗π∗2V2 , χπ∗1V1⊗π∗2V2〉, using #(G1 ×G2) = #(G1)#(G2):

〈χπ∗1V1⊗π∗2V2 , χπ∗1V1⊗π∗2V2〉 =
1

#(G1 ×G2)

∑
(g1,g2)∈G1×G2

|χπ∗1V1⊗π∗2V2(g1, g2)|2

=
1

#(G1)#(G2)

∑
g1∈G1,g2∈G2

|χV1(g1)χV2(g2)|2

=
1

#(G1)

1

#(G2)

∑
g1∈G1,g2∈G2

|χV1(g1)|2|χV2(g2)|2

=

 1

#(G1)

∑
g1∈G1

|χV1(g1)|2
 1

#(G2)

∑
g2∈G2

|χV2(g2)|2


= 〈χV1 , χV1〉〈χV2 , χV2〉,

where in the last line the first inner product is of functions on G1 and the
second is of functions on G2. Under the assumption that V1 and V2 are
irreducible, 〈χV1 , χV1〉 = 〈χV2 , χV2〉 = 1, and so 〈χπ∗1V1⊗π∗2V2 , χπ∗1V1⊗π∗2V2〉 = 1
as well. Thus π∗1V1 ⊗ π∗2V2 is irreducible.

Next, let us show that π∗1V1 ⊗ π∗2V2 determines the representations V1
and V2, more precisely that π∗1V1 ⊗ π∗2V2 ∼= π∗1V

′
1 ⊗ π∗2V ′2 ⇐⇒ V1 ∼= V ′1 and

V2 ∼= V ′2 (assuming that Vi and V ′i are irreducible for simplicity). To do so,
consider the restriction ResG1×G2

G1×{1}(π
∗
1V1⊗π∗2V2) to the subgroup G1×{1} ∼=

G1. Viewed as a representation of G1, the value of its character at an element
g1 is

χπ∗1V1⊗π∗2V2(g1, 1) = χV1(g1)χV2(1) = d2χV1(g1),

where d2 = dimV2, in other words its character is d2χV1 . This says that

ResG1×G2

G1×{1}(π
∗
1V1 ⊗ π∗2V2) ∼= V d2

1 ,

so every irreducible summand is isomorphic to V1. By the same argument,
every irreducible summand is isomorphic to (V ′1)d

′
2 , where d′2 = dimV ′2 .

By the uniqueness of the irreducible summands of a G-representation up
to isomorphism, V1 ∼= V ′1 . Applying the same argument to the restriction
ResG1×G2

{1}×G2
(π∗1V1 ⊗ π∗2V2), we see that V2 ∼= V ′2 as well.
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(ii) Enumerate the irreducible representations of G1 up to isomorphism

as V
(1)
1 , . . . , V

(1)
h1

, where dimV
(1)
i = d

(1)
i , and similarly let the irreducible

representations of G2 up to isomorphism be denoted V
(2)
1 , . . . , V

(2)
h2

, with

dimV
(2)
j = d

(2)
j . Then we have seen that

∑h1
i=1(d

(1)
i )2 = #(G1) and that∑h2

j=1(d
(2)
j )2 = #(G2).

By Part (i), for each i, 1 ≤ i ≤ h1, and for each j, 1 ≤ j ≤ h2, the

representation π∗1V
(1)
i ⊗π∗2V

(2)
j is an irreducible representation of dimension

d
(1)
i d

(2)
j , and the representations π∗1V

(1)
i ⊗ π∗2V

(2)
j and π∗1V

(1)
k ⊗ π∗2V

(2)
` are

isomorphic ⇐⇒ i = k and j = `. Computing, we see that∑
1≤i≤h1
1≤j≤h2

dim(π∗1V
(1)
i ⊗ π∗2V

(2)
j )2 =

∑
1≤i≤h1
1≤j≤h2

(d
(1)
i d

(2)
j )2

=
∑

1≤i≤h1
1≤j≤h2

(d
(1)
i )2(d

(2)
j )2

=

 ∑
1≤i≤h1

(d
(1)
i )2

 ∑
1≤j≤h2

(d
(2)
j )2


= #(G1)#(G1) = #(G1 ×G2).

On the other hand, the sums of the squares of all of the irreducible represen-
tations of G1 ×G2 add up to #(G1 ×G2). So if we have found a collection
of irreducible representations of G1 × G2, such that no two distinct ones
are isomorphic, and such that the sum of the squares of their dimensions
is #(G1 × G2), then this collection must be exactly the set of irreducible
representations of #(G1 ×G2) up to isomorphism. This is the statement of
(ii).

3 Theorems of Frobenius and Burnside

In this section, we state the theorems of Frobenius and Burnside. The
following three sections will be devoted to the proofs.

Theorem 3.1 (Frobenius). Let G be a finite group, let V be an irreducible
representation of G, and let d = dimV . Then d divides G.

We give some easy applications of the theorem. Most of these can be
easily proved by Modern Algebra I methods as well.

7



Proposition 3.2. Let G be a finite group of order p2, where p is a prime
number. Then G is abelian.

Proof. If G is not abelian, then there exists an irreducible representation
of G of dimension d greater than 1 and dividing p2. Hence, as p is prime,
either d = p or d = p2, and in any case d2 ≥ p2. But then the sum

∑h
i=1 d

2
i

of the squares of the dimensions of all irreducible representations contains
a summand d2 ≥ p2 and a summand equal to 1 (coming from the trivial
representation). Thus

∑h
i=1 d

2
i ≥ p2 + 1 > p2 = #(G). This contradicts∑h

i=1 d
2
i = p2.

Remark 3.3. To give a proof of the proposition that does not use repre-
sentation theory, one first shows that, for a group G with #(G) = pa, a ≥ 1,
the center Z(G) 6= {1}. We want to show that, in case a = 2, Z(G) = G.
Otherwise, necessarily #(Z(G)) = p, and the quotient group G/Z(G) has
order p, hence is cyclic. But an easy argument shows that, if G is any group
such that G/Z(G) is cyclic, then G is abelian (and thus Z(G) = G).

Proposition 3.4. Let G be a finite group of order pq, where p and q are
prime numbers and p < q. Then G is abelian unless q ≡ 1 mod p. Moreover,
in this last case, there exists a normal subgroup of G of order q.

Proof. If V is an irreducible representation of G of dimension d, then d di-
vides pq and hence d ∈ {1, p, q, pq}. If d = q or d = pq, then d2 > pq = #(G),
contradicting

∑h
i=1 d

2
i = #(G). Hence every irreducible representation of G

has dimension 1 or p. Suppose that there are a irreducible representations
of G (up to isomorphism) of dimension 1 and b irreducible representations
of G (up to isomorphism) of dimension p. If G is not abelian, then b > 0.
Then, from

∑h
i=1 d

2
i = pq, we see that a + bp2 = pq. Thus p|a, say a = cp.

But also a|#(G) = pq, by Corollary 1.8. Thus a = p or a = pq. Since b > 0,
a < pq and hence a = p. Then

pq = p+ bp2 = p(1 + bp).

Hence q = 1 + bp, i.e. q ≡ 1 mod p. Moreover, in this case #(G/G′) = p, so
that G′ is a normal subgroup of G and #(G′) = q.

Remark 3.5. This proposition can be proved via the Sylow theorem: the
number of q-Sylow subgroups is ≡ 1 mod q and divides pq. Since pq has no
proper divisor greater than q, there must be exactly one q-Sylow subgroup
H, which is then automatically normal. Likewise, the number of p-Sylow
subgroups is ≡ 1 mod p and divides pq. If there is a p-Sylow subgroup
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which is not normal, then the number of p-Sylow subgroups is ≡ 1 mod p,
is greater than 1, and divides pq. Hence this number is a proper divisor of
pq, 6= 1, p, pq, hence equal to q. This says that q ≡ 1 mod p. Conversely, if
q 6≡ 1 mod p, there is exactly one p-Sylow subgroup H ′ and it is normal. An
straightforward group theory argument then shows that G ∼= H ×H ′, and
in particular G is abelian and G ∼= Z/pZ× Z/qZ ∼= Z/pqZ.

We turn next to the statement of Burnside’s theorem. Although it con-
tains no mention of representation theory, the proof will draw heavily on it,
and in particular on the methods used to prove Frobenius’ theorem.

Theorem 3.6 (Burnside). Let G be a finite group, with #(G) = paqb, where
p and q are distinct primes and a and b are positive integers. Then G is not
simple, i.e. there exists a normal subgroup N CG with N 6= {1}, N 6= G.

Remark 3.7. (1) If #(G) = pa with a ≥ 2, then it is much easier to show
that G is not simple. One argument uses the fact that the center Z(G) 6= {1}
(noted above in Remark 3.3). Another argument uses Frobenius’ theorem.

(2) The case a = b = 1, i.e. #(G) = pq, has been discussed in Proposition 3.4
and the following remark.

(3) It follows easily from Burnside’s theorem and induction that every group
of order paqb is solvable: There exists a sequence of subgroups

G0 = {1} ⊆ G1 ⊆ · · · ⊆ Gn = G

such that, for every i, 1 ≤ i ≤ n, Gi−1CGi and Gi/Gi−1 is abelian (one can
even assume that Gi/Gi−1 is cyclic of prime order).

(4) Burnside’s theorem, proved in 1904, was the first major application of
representation theory to the study of finite groups. The first purely group-
theoretic proofs were given around 1970.

(5) By Burnside’s theorem, if G is a finite simple group which is not cyclic
of prime order, then #(G) is divisible by at least 3 primes. It is elementary
to see that a group whose order is twice an odd number is not simple. Thus
the smallest possible order of a noncyclic finite simple group is 22 ·3 ·5 = 60,
and in fact every simple group of order 60 is isomorphic to A5.

(6) Feit and Thompson proved in 1963 that every noncyclic finite simple
group has even order; this was conjectured by Burnside.
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4 Algebraic integers

Before we can prove the theorems of Frobenius and Burnside, we need to
make a digression to discuss algebraic integers. We start with some standard
terminology:

Definition 4.1. Let k be a field. Then k[x] is the set of all polynomials
with coefficients in k. More generally, if R is a (commutative) ring, then
R[x] is the set of all polynomials with coefficients in R. We shall just be
interested in Z[x] ⊆ Q[x] ⊆ R[x] ⊆ C[x], the set of all polynomials with
coefficients in (respectively) Z, Q, R, or C. As usual, if f(x) ∈ C[x], then
f(x) can be viewed as a function from C to C.

If α ∈ C, then α is algebraic or an algebraic number if there exists
a polynomial f(x) ∈ Q[x], with f(x) not the zero polynomial, such that
f(α) = 0, i.e. α is a root of some polynomial with rational coefficients. For
example,

√
2 and i are algebraic but e and π are not (although it is not easy

to prove this). We can always assume that, if α is algebraic, then there exists
a nonzero polynomial f(x) ∈ Z[x] such that f(α) = 0, by starting with a
nonzero polynomial f0(x) ∈ Q[x] and then replacing f0(x) by Nf0(x), where
N ∈ Z is a multiple of all of the denominators of the nonzero coefficients of
f0(x).

Finally, although we shall not need this, if α and β are algebraic, then
so are α ± β, α · β, and α/β (if β 6= 0). This is a standard fact proved in
Modern Algebra II.

We want an algebraic analogue of the integers, viewed as a subring of Q.
That is the point of the next definition:

Definition 4.2. Let α ∈ C. Then α is an algebraic integer if there exists
a polynomial f(x) ∈ Z[x] with leading coefficient 1 (also called a monic
polynomial) such that f(α) = 0.

Since a polynomial with leading coefficient 1 is necessarily nonzero, an
algebraic integer is in particular an algebraic number. But the converse does
not hold. For example,

√
2 is an algebraic integer because it is a root of the

monic polynomial x2 − 2. Likewise i is a root of x2 + 1 and hence is an
algebraic integer. But, if d ∈ Z and d > 1, then it is not hard to show that√

2/d and i/d are not algebraic integers. For example,
√

2/d is algebraic
because it is a root of the polynomial d2x2 − 2 ∈ Z[x]. But d2x2 − 2 is not
monic, and a homework exercise shows that

√
2/d is not a root of a monic

polynomial with integer coefficients.
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Clearly, if n ∈ Z, then n is an algebraic integer because it is a root of
the monic polynomial x− n ∈ Z[x]. The following (a version of the rational
roots test) shows that this is the only way that a rational number can be an
algebraic integer:

Proposition 4.3. Let r ∈ Q. Then r is an algebraic integer ⇐⇒ r ∈ Z.

Proof. We have just seen that r ∈ Z =⇒ r is an algebraic integer. Con-
versely, suppose that r is an algebraic integer. Write r = s/t, where s, t ∈ Z
and gcd(s, t) = 1. Let f(x) ∈ Z[x] be a monic polynomial such that f(r) = 0,
say f(x) = xn + an−1x

n−1 + · · ·+ a0, where the ai ∈ Z. Then

0 = f(r) = f(s/t) = sn/tn + an−1s
n−1/tn−1 + · · ·+ a0.

Clearing denominators by multiplying by tn, we have

sn + an−1s
n−1t+ · · ·+ a0t

n = 0,

and thus

−sn = an−1s
n−1t+ · · ·+ a0t

n = t(an−1s
n−1 + · · ·+ a0t

n−1).

This says that t divides sn. As gcd(s, t) = 1, it follows that gcd(sn, t) = 1,
so that t = ±1. Hence r = s/t ∈ Z.

We collect some other standard examples of algebraic integers:

Example 4.4. (1) If ζ is an nth root of unity, then ζ is an algebraic integer,
since it is a root of the monic polynomial xn − 1.

(2) If A is an n× n matrix with integer coefficients, then the characteristic
polynomial pA(t) = det(t Id−A) is a polynomial with integer coefficients and
leading term tn, hence it is monic. Thus, the eigenvalues of A are algebraic
integers.

(3) Let K be a a subfield of C, which is a finite extension of Q, i.e. K is a
finite-dimensional vector space over Q. Then, as we shall see, the set

OK = {α ∈ K : α is an algebraic integer}

is a subring of K, i.e. it is closed under addition and multiplication.

(4) If α ∈ C is an algebraic integer, then so is its complex conjugate ᾱ. In
fact, if f(x) ∈ Z[x] is a monic polynomial such that f(α) = 0, then

f(ᾱ) = f(α) = 0.
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Thus ᾱ is an algebraic integer.

(5) More generally, let α ∈ C is an algebraic integer, and suppose that α ∈ K,
where K is a subfield of C. Let σ : K → C be a field homomorphism, i.e.
σ preserves addition and multiplication, and by convention σ(1) = 1. Then
σ(n) = n for all n ∈ Z. We claim that σ(α) is again an algebraic integer. In
fact, it is easy to check that, if f(x) ∈ Z[x] is a monic polynomial such that
f(α) = 0, then

f(σ(α)) = σ(f(α)) = 0.

Thus σ(α) is an algebraic integer.

The following is the main technical criterion we shall need:

Proposition 4.5. Let α ∈ C. Then α is an algebraic integer ⇐⇒ there
exist z1, . . . , zn ∈ C, not all 0, and bij ∈ Z, 1 ≤ i ≤ n, such that, for all i,

αzi =
n∑
j=1

bijzj .

Proof. =⇒ : Since α is an algebraic integer, there exist an−1, . . . , a0 ∈ Z
such that αn + an−1α

n−1 + · · ·+ a0 = 0. Define zi = αi−1, 1 ≤ i ≤ n. Then
αzi = αi = zi+1 if 1 ≤ i ≤ n− 1, and

αzn = αn = −a0 − a1α− · · · − an−1αn−1

= (−a0)z1 + · · ·+ (−an−1)zn.

Thus we have found zi ∈ C with the desired properties.
⇐= : Write the condition that, for all i, αzi =

∑n
j=1 bijzj as

n∑
j=1

(αδij − bij)zj = 0,

where as usual δij = 1 if i = j and δij = 0 otherwise. This says that, if
B = (bij), then

(z1, . . . , zn) ∈ Ker(α Id−B).

Thus, the matrix α Id−B has a nonzero kernel, so that det(α Id−B) = 0.
But then α is a root of the characteristic polynomial pB(t). As B has integer
coefficients, α is an algebraic integer by (2) of Example 4.4.

Corollary 4.6. If α and β are algebraic integers, then so are α ± β and
α · β.
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Proof. Using the previous proposition choose z1, . . . , zn ∈ C, not all 0, and
w1, . . . , wm ∈ C, not all 0, such that there exist integers bij and ck` with

αzi =
n∑
j=1

bijzj , βwk =
m∑
`=1

ck`w`.

Then
(α± β)(ziwk) =

∑
j

bijzjwk ±
∑
`

ck`ziw`,

and

(αβ)(ziwk) =

∑
j

bijzj

(∑
`

ck`w`

)
=
∑
j,`

(bijck`)zjw`.

Since not all of the products ziwk are 0, the conditions of Proposition 4.5
are met, hence α± β and α · β are algebraic integers.

5 Proof of Frobenius’ theorem

We begin with the following easy application of the previous section:

Lemma 5.1. If G is a finite group and ρV is a G-representation, then, for
all x ∈ G, χV (x) is an algebraic integer.

Proof. We know that, for all x ∈ G, ρV (x) of diagonalizable, i.e. there
exists a basis for V consisting of eigenvalues of ρV (x). If the eigenvalues are
λ1, . . . , λd, then λi is a root of unity for every i, hence an algebraic integer
by (1) of Example 4.4. Hence

χV (x) = Tr ρV (x) = λ1 + · · ·+ λd

is also an algebraic integer, by Corollary 4.6.

There is a much deeper improvement of this result as follows:

Theorem 5.2. Let V be an irreducible representation of G, of dimension
dV . For x ∈ G, let c(x) = #(C(x)), where as usual C(x) is the conjugacy

class containing x. Then
c(x)

dV
χV (x) is an algebraic integer.

Proof. We begin by defining a subring R of the ring L2(G) of functions on
G (with the operations of addition and convolution):

R = {f ∈ L2(G) : f is a class function and f(x) ∈ Z for all x ∈ G}.

13



Clearly the sum of two class functions is a class function, as is the convolution
(as follows from our identification of the set of class functions with the center
of L2(G)). Similarly, if f1(g), f2(g) ∈ Z for all g ∈ Z, then (f1 + f2)(g) =
f1(g) + f2(g) ∈ Z and

(f1 ∗ f2)(g) =
∑
xy=g

f1(x)f2(y) ∈ Z.

Thus R is closed under addition and convolution. Enumerate the distinct
conjugacy classes of G as C(x1), . . . , C(xh), and define (as usual) fC(xi) to
the characteristic function of C(xi) (i.e. fC(xi)(x) = 1 if x ∈ C(xi) and
fC(xi)(x) = 0 otherwise). Then, given f ∈ R, since f is constant on each
C(xi) and its value for every x ∈ C(xi) is an integer ni, we can write f
(uniquely) as

f =

h∑
i=1

nifC(xi).

Note also that 1 = fC(x1) + · · ·+ fC(xh).

Claim 5.3. Let ϕ : R→ C be a ring homomorphism, i.e. for all f1, f2 ∈ R,
ϕ(f1 + f2) = ϕ(f1) + ϕ(f2), ϕ(f1 ∗ f2) = ϕ(f1)ϕ(f2), and ϕ(1) = 1. Then,
for all f ∈ R, ϕ(f) is an algebraic integer.

Proof. We must show that that, with α = ϕ(f), there exist complex numbers
zi as in Proposition 4.5. Define zi = ϕ(fC(xi). The zi are not all 0, because

1 = ϕ(1) = ϕ(fC(x1)+· · ·+fC(xh)) = ϕ(fC(x1))+· · ·+ϕ(fC(xh)) = z1+· · ·+zh.

Since R is closed under convolution, f ∗ fC(xi) ∈ R, and hence there exist
integers bij such that

f ∗ fC(xi) =
h∑
j=1

bijfC(xj).

Applying ϕ to this equality, we see that

α · zi = ϕ(f ∗ fC(xi)) = ϕ(

h∑
j=1

bijfC(xj))

=

h∑
j=1

bijϕ(fC(xj)) =

h∑
j=1

bijϕ(fC(xj)) =

h∑
j=1

bijzj .

Thus α and the zi satisfy the hypotheses of Proposition 4.5. Hence α is
algebraic.
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Now recall that, given a representation ρV , we have defined a homomor-
phism, also denoted ρV , from L2(G) to EndV via:

ρV (f) =
∑
g∈G

f(g)ρV (g).

Moreover, if V is irreducible and f is a class function, then ρV (f) = λ(f) Id,
where

λ(f) =
#(G)

dV
〈f, χV 〉.

It is easy to check that, since ρV is a homomorphism, λ : R → C is also
a homomorphism. Thus, by Claim 5.3, for all f ∈ R, λ(f) is an algebraic
integer. Taking in particular f = fC(x) for some x ∈ G, we see that λ(fC(x))
is an algebraic integer. But

λ(fC(x)) =
#(G)

dV
〈fC(x), χV 〉 =

#(G)

dV
· 1

#(G)

∑
g∈G

fC(x)(g)χV (g)

=
c(x)

dV
χV (x),

since fC(x)(g) = 0 if g /∈ C(x), fC(x)(g) = 1 if g ∈ C(x), and χV (g) = χV (x)

if g ∈ C(x). Thus
c(x)

dV
χV (x) is an algebraic integer. Taking conjugates and

using (4) of Example 4.4, it follows that
c(x)

dV
χV (x) is an algebraic integer

as well.

We can now prove the theorem of Frobenius, which we restate here:

Theorem 5.4. Let G be a finite group, let V be an irreducible representation
of G, and let d = dV = dimV . Then d divides G.

Proof. Since V is irreducible 〈χV , χV 〉 = 1, and hence∑
x∈G

χV (x)χV (x) = #(G)〈χV , χV 〉 = #(G).

Enumerate the conjugacy classes of G as usual by C(x1), . . . , C(xh), with
#(C(xi)) = c(xi). Then G is the disjoint union of the C(xi). For all
x ∈ C(xi), χV (x) = χV (xi). Thus

#(G) =
∑
x∈G

χV (x)χV (x) =

h∑
i=1

c(xi)χV (xi)χV (xi).
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Hence, after dividing by dV , we can write

#(G)

dV
=

h∑
i=1

(
c(xi)χV (xi)

dV

)
χV (xi).

By the previous theorem,
c(xi)χV (xi)

dV
is an algebraic integer, and χV (xi) is

an algebraic integer by Lemma 5.1. Thus, as sums of products of algebraic
integers are algebraic integers by Corollary 4.6, #(G)/dV is an algebraic
integer. But #(G)/dV is also a rational number, so it is an integer by
Proposition 4.3. Hence dV divides #(G).

Remark 5.5. There are various strengthenings of this theorem. For exam-
ple, Schur has proved that, if as above V is an irreducible representation
of G of dimension dV , then dV divides #(G)/#(Z(G)), where Z(G) is the
center of G. If G is abelian, then Z(G) = G and this says that dV divides
1, hence is equal to 1 for every irreducible V . Of course, we have seen this
directly. On the other hand, if G is a nonabelian simple group, or more
generally if Z(G) = {1}, this result does not tell us anything more than
Frobenius’ theorem. Finally, once can replace the subgroup Z(G) is the
above statement by any abelian normal subgroup.

6 Proof of Burnside’s theorem

We begin with a lemma about roots of unity:

Lemma 6.1. Let λ1, . . . , λd be roots of unity.

(i) |λ1 + · · ·+ λd| ≤ d, with equality ⇐⇒ λ1 = · · · = λd.

(ii) If
λ1
d

+ · · ·+ λd
d

is an algebraic integer, then either λ1 + · · ·+ λd = 0

or λ1 = · · · = λd.

Proof. (i) By the triangle inequality,

|λ1 + · · ·+ λd| ≤ |λ1|+ · · ·+ |λd| ≤ d.

Moreover, equality holds in the triangle inequality ⇐⇒ there exist positive
real numbers ti such that λi = tiλ1 for all i (note that λ1 6= 0). But
|λ1| = |λi| = 1, so in this case

1 = |λi| = |tiλ1| = |ti||λ1| = ti.
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Thus there exist positive real numbers ti such that λi = tiλ1 for all i ⇐⇒
λi = λ1 for all i.

(ii) This part requires a little Galois theory. By Part (i), |λ1 + · · ·+λd| ≤ d.

Thus, if we set α =

d∑
i=1

λi
d

, then |α| ≤ 1. Since the λi are all roots of unity,

there is some extension Q(µN ) such that λi ∈ Q(µN ) for all i. Here

µN = {z ∈ C : zN = 1}

is the set of N th roots of unity. As Q(µN ) is the splitting field of the
polynomial xN − 1, it is a normal, hence Galois extension of Q. If σ ∈
Gal(Q(µN )/Q), then since λi ∈ Q(µN ) is a root of unity, σ(λi) is also a root
of unity. It then follows from (i) that

|σ(λ1) + · · ·+ σ(λd)| ≤ d,

hence that |σ(α)| =

∣∣∣∣∣
d∑
i=1

σ(λi)

d

∣∣∣∣∣ ≤ 1. Define

β =
∏

σ∈Gal(Q(µN )/Q)

σ(α).

Then β is in the fixed field of Gal(Q(µN )/Q), i.e. τ(β) = β for all τ ∈
Gal(Q(µN )/Q). By standard Galois theory, β ∈ Q. Moreover, by hypothesis
α is an algebraic integer, thus so is σ(α) by (5) of Example 4.4, and finally

so is β =
∏

σ∈Gal(Q(µN )/Q)

σ(α) by Corollary 4.6. Thus β ∈ Z.

Now consider |β|:

|β| =

∣∣∣∣∣∣
∏

σ∈Gal(Q(µN )/Q)

σ(α)

∣∣∣∣∣∣ =
∏

σ∈Gal(Q(µN )/Q)

|σ(α)| ≤ 1,

since |σ(α)| ≤ 1 for every σ ∈ Gal(Q(µN )/Q). Thus β is an integer with
|β| ≤ 1, hence β = 0 or |β| = 1. If β = 0, then σ(α) = 0 for some
σ ∈ Gal(Q(µN )/Q). Hence α = 0 and λ1 + · · · + λd = 0. Otherwise,
|β| = 1. This is only possible if |σ(α)| = 1 for every σ ∈ Gal(Q(µN )/Q).
In particular, |α| = 1 so that |λ1 + · · · + λd| = d. By (i), this implies that
λ1 = · · · = λd.

We now apply this to representations:
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Corollary 6.2. Let G be a finite group and V a G-representation, not
necessarily irreducible, with dimV = dV .

(i) For all g ∈ G, |χV (g)| ≤ dV , with equality ⇐⇒ ρV (g) =
χV (g)

dV
Id.

(ii) χV (g) = dV ⇐⇒ ρV (g) = Id ⇐⇒ g ∈ Ker ρV .

Proof. (i) Let d = dV . We know that ρV (g) is diagonalizable with eigen-
values λ1, . . . , λd which are roots of unity, and that χV (g) = λ1 + · · · + λd.
Thus, by (i) of Lemma 6.1,

|χV (g)| = |λ1 + · · ·+ λd| ≤ d = dV ,

with equality ⇐⇒ λ1 = · · · = λd. This last case holds ⇐⇒ ρV (g) = λ Id,
where necessarily dλ = Tr ρV (g) = χV (g), hence λ = χV (g)/dV .

(ii) By definition, ρV (g) = Id ⇐⇒ g ∈ Ker ρV . If χV (g) = dV , then

|χV (g)| = dV , so by (i) ρV (g) =
χV (g)

dV
Id = Id. Conversely, if ρV (g) = Id,

then clearly χV (g) = dimV = dV .

Corollary 6.3. Let G be a finite group. Then G is not simple ⇐⇒ there
exists an irreducible representation V , not the trivial representation, with
character χV , and a g ∈ G, g 6= 1, such that χV (g) = χV (1) = dimV .

Proof. If G is not simple, let N be a proper normal subgroup of G such that
N 6= {1}. In particular G/N is not the trivial group. Then there exists a
nontrivial irreducible representation ψV : G/N → AutV . If π : G→ G/N is
the natural homomorphism, then ρV = ψV ◦ π = π∗ψV is a representation
of G. It is clearly nontrivial and it is irreducible by a HW problem. Since
N 6= {1}, there exists a g ∈ N with g 6= 1. For such a g, χV (g) = χV (1) =
dimV .

Conversely, suppose that there exists an irreducible representation V ,
not the trivial representation, with character χV , and a g ∈ G, G 6= 1,
such that χV (g) = χV (1) = dimV . By (ii) of Corollary 6.2, such a g is in
Ker ρV , and hence Ker ρV 6= {1}. Since V is not the trivial representation,
Ker ρV 6= G. Then Ker ρV is a proper, nontrivial subgroup of G and it is
normal as it is the kernel of a homomorphism. Hence G is not simple.

The following is the main technical result we need:

Proposition 6.4. Let G be a finite group and let V be an irreducible G-
representation with character χV and dimension dimV = dV = d. Let g ∈ G
and as usual set c(g) = #(C(g)). Suppose that gcd(c(g), d) = 1. Then either
χV (g) = 0 or there exists a λ ∈ C∗ such that ρV (g) = λ Id.
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Corollary 6.5. Let G be a finite, simple and nonabelian group, let V be
a nontrivial irreducible G-representation with character χV and dimension
dimV = dV = d, and let g ∈ G with g 6= 1. If gcd(c(g), d) = 1, then
χV (g) = 0.

Proof of Corollary 6.5. Let G, V and g be as in the statement of the corol-
lary. Since Ker ρV is normal and G is simple, either Ker ρV = G or Ker ρV =
{1}. The first case is impossible since V is not the trivial representation.
Hence Ker ρV = {1}, so that ρV is injective. Now assume that χV (g) 6= 0.
By Proposition 6.4, there exists a λ ∈ C∗ such that ρV (g) = λ Id. In partic-
ular, ρV (g) commutes with every element of AutV , and hence with every
element of the form ρV (x), x ∈ G. In other words, for all x ∈ G, the com-
mutator [ρV (g), ρV (x)] is equal to Id. But as [ρV (g), ρV (x)] = ρV ([g, x]), it
follows that ρV ([g, x]) = Id for every x ∈ G. As ρV is injective, [g, x] = 1
for every x ∈ G, so that g ∈ Z(G). But Z(G) is a normal subgroup of G,
and since G is not abelian, Z(G) 6= G. Since G is simple, we must have
Z(G) = {1}, hence g = 1. This contradicts the hypothesis that g 6= 1.

Proof of Proposition 6.4. Since gcd(c(g), d) = 1, there exist integers A and
B such that Ac(g) +Bd = 1. Hence

χV (g)

d
= (Ac(g) +Bd)

χV (g)

d
= A

c(g)χV (g)

d
+BχV (g).

By Theorem 5.2,
c(g)

d
χV (g) is an algebraic integer. By Lemma 5.1, χV (g)

is an algebraic integer. Hence so is
χV (g)

d
.

Now χV (g) is of the form λ1 + · · ·+ λd, where the λi are roots of unity.
By Lemma 6.1(i), χV (g)/d is an algebraic integer ⇐⇒ λ1 + · · · + λd = 0,
i.e. χV (g) = 0, or λ1 = · · · = λd, i.e. ρV (g) = λ Id with say λ = λ1.

We can now prove the following result, which is a purely group-theoretic
statement:

Theorem 6.6. Let G be a finite, simple and nonabelian group, and let g ∈ G
with g 6= 1. Then c(g) = #(C(g)) is not a prime power.

Proof. Since G is simple and nonabelian, Z(G) = {1}. Hence, if g ∈ G and
g 6= 1, c(g) = #(C(g)) ≥ 2. Thus, if c(g) = pa is a prime power, then a ≥ 1.
Assuming that this is the case, we will derive a contradiction.

If V is any nontrivial G-representation, with character χV and dimension
dV , then gcd(c(g), dV ) = gcd(pa, dV ). Hence either gcd(c(g), dV ) = 1 or p
divides dV . By Corollary 6.5, either χV (g) = 0 or p divides dV .
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If χreg is the character of the regular representation, we know that χreg =∑h
i=1 dViχVi , where V1, . . . , Vh are the irreducible representations of G up

to isomorphism, and, say, V1 is the trivial representation. Since g 6= 1,
χreg(g) = 0. Thus

0 =
h∑
i=1

dViχVi(g) = 1 +
h∑
i=2

dViχVi(g).

Hence

−1

p
=

h∑
i=2

dVi
p
χVi(g).

We claim that the right hand side is an algebraic integer. In fact, since either
χVi(g) = 0 or p divides dVi , every nonzero term in the right hand side is of the
form integer times algebraic integer (because χVi(g) is an algebraic integer).
Thus −1/p is a sum of algebraic integers, hence an algebraic integer, hence
an integer since it is a rational number. This is the desired contradiction.

We can now prove Burnside’s theorem, which we restate:

Theorem 6.7. Let G be a finite group, with #(G) = paqb, where p and q
are distinct primes and a and b are positive integers. Then G is not simple.

Proof. Suppose to the contrary that G is a simple group of order paqb, where
p and q are distinct primes and a, b ≥ 1. Since the only simple abelian groups
are cyclic of prime order, G is not abelian. Enumerate the distinct conjugacy
classes of G as C(x1), . . . , C(xh), where say x1 = 1. Since Z(G) = {1}, for
all x 6= 1, c(x) = #(C(x)) > 1 and c(x) divides #(G) = paqb since C(x)
is an orbit under the conjugation action of G on itself. Since c(x) = pr is
impossible by Theorem 6.6, for all x 6= 1, we must have c(x) = prqs with
r, s ≥ 1. In particular, both p and q divide c(xi) for all i > 1. But G is the
disjoint union of the C(xi), 1 ≤ i ≤ h, and hence

paqb =
h∑
i=1

c(xi) = 1 +
∑
i>1

c(xi).

The left hand side is divisible by p, say, and all of the terms c(xi) for i > 1
are also divisible by p. This says that 1 is divisible by p, a contradiction.
Thus G is not simple.
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