More on induced representations

1 The case of a normal subgroup

Let G be a finite group and let H be a **normal** subgroup of G. For an H-representation, we want to give a formula for $\operatorname{Res}_{H}^{G}\operatorname{Ind}_{H}^{G}W$. First, some notation: if $x \in G$ and $h \in H$, then hx = xh' for some $h' \in H$, where $h' = x^{-1}hx$. In particular, writing as usual $x_1 = 1, \ldots, x_k$ for a set of representatives for the left cosets of H,

$$hx_i = x_i h_i(h) = x_i(x_i^{-1}hx_i).$$

This says that

$$\rho_{\operatorname{Ind}_{h}^{G}W}(h)(F_{i,w}) = F_{i,\rho_{W}(x_{i}^{-1}hx_{i})}.$$

In particular, the vector subspaces $W^{(i)} = \{F_{iw} : w \in W \text{ are invariant under the restriction of } \rho_{\operatorname{Ind}_h^G W} \text{ to elements of } H, \text{ i.e. they are } \rho_{\operatorname{Res}_H^G W}\text{-invariant subspaces.}$

Given $x \in G$, since H is normal, we have $i_x(H) \subseteq H$, and in fact $i_x \colon H \to H$ is an isomorphism from H to H, where by definition

$$i_x(g) = xgx^{-1}.$$

Define W_x to be the *H*-representation given by the homomorphism $\rho_W \circ i_x^{-1}$: $H \to \operatorname{Aut} W$. Explicitly:

$$\rho_{W_x}(g) = \rho_W(x^{-1}gx).$$

In particular, for $1 \leq i \leq k$, we have the *H*-representation W_{x_i} . Then the calculations above show:

Proposition 1.1. As *H*-representations,

$$\operatorname{Res}_{H}^{G}\operatorname{Ind}_{H}^{G}W \cong \bigoplus_{i=1}^{k} W_{x_{i}}. \quad \Box$$

This formula allows us to describe when $\operatorname{Ind}_{H}^{G} W$ is irreducible. Note that, if W is reducible, say $W \cong W_1 \oplus W_2$ as H-representations, then it is easy to see that $\operatorname{Ind}_{H}^{G} W \cong \operatorname{Ind}_{H}^{G} W_1 \oplus \operatorname{Ind}_{H}^{G} W_2$, and hence is also reducible. Thus we may as well assume that W is irreducible.

Theorem 1.2. Suppose that H is a normal subgroup of G and that W is an irreducible H-representation. Then $\operatorname{Ind}_{H}^{G} W$ is an irreducible G representation \iff for all $x \in G$ with $x \notin H$, W_x is not H-isomorphic to W.

Proof. Since W is irreducible, $\langle \chi_W, \chi_W \rangle_H = 1$. We wish to see when $\langle \chi_{\mathrm{Ind}_H^G W}, \chi_{\mathrm{Ind}_H^G W} \rangle_G = 1$. In any case, by Frobenius reciprocity,

$$\langle \chi_{\operatorname{Ind}_{H}^{G}W}, \chi_{\operatorname{Ind}_{H}^{G}W} \rangle_{G} = \langle \chi_{W}, \chi_{\operatorname{Res}_{H}^{G}\operatorname{Ind}_{H}^{G}W} \rangle_{H} = \sum_{i=1}^{k} \langle \chi_{W}, \chi_{W_{x_{i}}} \rangle_{H},$$

by Proposition 1.1. For i = 1, $W_{x_1} = W_1 = W$ and hence $\langle \chi_W, \chi_{W_1} \rangle_H = 1$. For i > 1, W_{x_i} is an irreducible representation and so $\langle \chi_W, \chi_{W_{x_i}} \rangle_H = 1$ if $W_{x_i} \cong W$ and $\langle \chi_W, \chi_{W_{x_i}} \rangle_H = 0$ if W_{x_i} is not *H*-isomorphic to *W*. Thus $\operatorname{Ind}_H^G W$ is irreducible $\iff \langle \chi_{\operatorname{Ind}_H^G W}, \chi_{\operatorname{Ind}_H^G W} \rangle_G = 1 \iff$ for all i > 1, W_{x_i} is not *H*-isomorphic to *W*.

It remains to show that the statement that, for all i > 1, W_{x_i} is not H-isomorphic to W, is equivalent to the statement that, for all $x \notin H$, W_x is not H-isomorphic to W. Clearly, since for i > 1 $x_i \notin H$, the second statement implies the first. Conversely, suppose the first statement. Let $x \in G$, $x \notin H$. Then x is in some left coset x_iH , and the assumption $x \notin H$ is equivalent to saying that i > 1. Thus we can write $x = x_ih$ for some i > 1. It follows that

$$\rho_W \circ i_x^{-1} = \rho_W \circ i_{(x_i h)^{-1}} = \rho_W \circ i_h^{-1} \circ i_{x_i}^{-1}$$
$$= \rho_W(h)^{-1} \circ (\rho_W \circ i_{x_i}^{-1}) \circ \rho_W(h).$$

It follows that the representations W_x and W_{x_i} are conjugate by some element in Aut W, namely $\rho_W(h)^{-1}$. Hence W_x and W_{x_i} are H-isomorphic. Thus, if W_{x_i} is not H-isomorphic to W for all i > 1, then W_x is not Hisomorphic to W for all $x \notin H$.

Example 1.3. (1) If $W = \mathbb{C}$ is the trivial representation and $H \neq G$, then W_x is isomorphic to W for every $x \in G$, hence $\operatorname{Ind}_H^G \mathbb{C}$ is not irreducible. In fact, we know that $\operatorname{Ind}_H^G \mathbb{C} \cong \mathbb{C}[G/H]$ always contains a subspace isomorphic to the trivial representation of G, and hence is not irreducible if $\dim \mathbb{C}[G/H] = (G:H) > 1$, i.e. if $H \neq G$. (If H = G, then the condition

that W_x is not *H*-isomorphic to *W* for all $x \notin H$ is vacuously satisfied, and in fact $\operatorname{Ind}_G^G \mathbb{C} \cong \mathbb{C}$ is trivial but irreducible.)

(2) Suppose that $G = D_n$ and $H = \langle \alpha \rangle$. Then we can take $x_2 = \tau$ and $i_{\tau}^{-1}(\alpha^k) = i_{\tau}(\alpha^k) = \alpha^{-k}$. Thus, for $W = W_a = \mathbb{C}(\lambda_a)$, the 1-dimensional representation corresponding to the homomorphism $\lambda_a \colon H \to \mathbb{C}^*$ defined by $\lambda_a(\alpha^k) = e^{2\pi i ak/n}$, we have

$$(W_a)_{x_2} = W_{-a}$$

Note that a is naturally an element of $\mathbb{Z}/n\mathbb{Z}$, since $W_a \cong W_b \iff a \equiv b \pmod{n}$. The condition that, for all $x \in H$, $(W_a)_x$ is not isomorphic to W_a is then the condition that -a and a are not congruent mod n, i.e. that $2a \not\equiv 0 \pmod{n}$. Note that $2a \equiv 0 \pmod{n} \iff a = 0$ or n is even, say n = 2m, and $a \equiv m \pmod{n}$. In conclusion, we see that $\operatorname{Ind}_H^{D_n} W_a$ is irreducible unless a = 0 or n = 2m, and $a \equiv m \pmod{n}$. Of course, we could also verify this by a direct computation.

For the remainder of this section, we specialize still further, to the case where H is a subgroup of G of index 2. Of course, H is known to be normal in this case. An interesting example to keep in mind is $G = S_n$, $H = A_n$. In general, G/H is a group of order 2, and there is a homomorphism $\varepsilon \colon G \to \mathbb{C}^*$ defined by $\varepsilon(g) = 1$ if $h \in H$ and $\varepsilon(g) = -1$ if $g \notin H$. In case $G = S_n$, $H = A_n$, then ε is the sign homomorphism. We also fix an element $x \in G - H$ and have the resulting isomorphism $i_x^{-1} \colon H \to H$. Recall that, if W is an H-representation corresponding to $\rho_W \colon H \to \operatorname{Aut} W$, then we have defined the H-representation W_x which corresponds to the homomorphism $\rho_W \circ i_x^{-1}$. It is in fact independent of the choice of x up to H-isomorphism.

Our main interest is the following question: given an irreducible G-representation, when is $\operatorname{Res}_{H}^{G} V$ still irreducible? The answer is given by the following:

Theorem 1.4. Let G be a finite group and let H be a subgroup of G of index 2. Let V be an irreducible G-representation and let $W = \operatorname{Res}_{H}^{G} V$. Finally, let $V \otimes \varepsilon$ be the representation corresponding to the homomorphism $\rho_{V\otimes\varepsilon} = \varepsilon \rho_{V}$. Then exactly one of the following holds:

 (i) V is G-isomorphic to V ⊗ ε, W is H-isomorphic to W_x, and W is H-isomorphic to W' ⊕ W'_x, where W' and hence W'_x are irreducible representations with W' not H-isomorphic to W'_x. Finally, dim V is even and

$$V \cong \operatorname{Ind}_H^G W' \cong \operatorname{Ind}_H^G W'_x$$

(ii) V is not G-isomorphic to V ⊗ ε, W is irreducible, W is H-isomorphic to W_x, and

$$\operatorname{Ind}_{H}^{G} W \cong V \oplus (V \otimes \varepsilon).$$

Finally, every irreducible H-representation arises this way, either as an irreducible summand of $\operatorname{Res}_{H}^{G} V$ where V is an irreducible G-representation G-isomorphic to $V \otimes \varepsilon$, or as $\operatorname{Res}_{H}^{G} V$ where V is an irreducible G-representation which is not G-isomorphic to $V \otimes \varepsilon$.

Proof. As a general remark, if H is normal, then, for all $x \in G$, $(\operatorname{Res}_{H}^{G} V)_{x} \cong \operatorname{Res}_{H}^{G} V$: For $x \in G$, let V_{x} be the G-representation defined by $\rho_{V} \circ i_{x}^{-1}$. Then V_{x} is is G-isomorphic to V since ρ_{V} and $\rho_{V} \circ i_{x}^{-1}$ differ by conjugation by $\rho_{V}(x)^{-1}$. Then $\operatorname{Res}_{H}^{G}(V_{x}) \cong \operatorname{Res}_{H}^{G} V$, but clearly $\operatorname{Res}_{H}^{G}(V_{x}) = (\operatorname{Res}_{H}^{G} V)_{x}$. Thus, in both (i) and (ii) above, W is H-isomorphic to W_{x} .

Note also that $\chi_{V\otimes\varepsilon} = \varepsilon \chi_V$, and thus

$$\chi_{V\otimes\varepsilon}(g) = \begin{cases} \chi_V(g), & \text{if } g \in H; \\ -\chi_V(g), & \text{if } g \notin H. \end{cases}$$

Thus V is G-isomorphic to $V \otimes \varepsilon \iff \chi_V = \chi_{V \otimes \varepsilon} \iff \chi(g) = -\chi_V(g)$ for all $g \notin H \iff \chi(g) = 0$ for all $g \notin H$.

Since V is irreducible,

$$\langle \chi_V, \chi_V \rangle_G = \frac{1}{\#(G)} \sum_{g \in G} |\chi_V(g)|^2 = 1.$$

Hence $\sum_{g \in G} |\chi_V(g)|^2 = \#(G) = 2\#(H)$. We rewrite this as

$$2\#(H) = \sum_{g \in G} |\chi_V(g)|^2 = \sum_{h \in H} |\chi_V(h)|^2 + \sum_{g \notin H} |\chi_V(g)|^2$$
$$= \#(H) \langle \chi_W, \chi_W \rangle_H + \sum_{g \notin H} |\chi_V(g)|^2.$$

Now $\langle \chi_W, \chi_W \rangle_H$ is a positive integer n and $\#(H)\langle \chi_W, \chi_W \rangle_H = n \#(H)$. Also, since $|\chi_V(g)|^2 \ge 0$, we see that

$$n\#(H) \le 2\#(H),$$

hence $n \leq 2$ with equality $\iff \chi_V(g) = 0$ for all $g \notin H \iff V$ is *G*-isomorphic to $V \otimes \varepsilon$.

Case I: n = 2. As noted above, this case happens $\iff V$ is *G*-isomorphic to $V \otimes \varepsilon$. If $W = \operatorname{Res}_{H}^{G}$ is a direct sum of representations $U_{i}^{m_{i}}$, $1 \leq i \leq r$,

where the U_i are pairwise non-isomorphic, then $\sum_{i=1}^r m_i^2 = 2$. The only way this can happen is that r = 2 and $m_1 = m_2 = 1$, i.e. $W \cong W' \oplus W''$, where W' and W'' are irreducible and W' is not isomorphic to W''. Let $d = \dim V$, so that $d = \dim W' + \dim W''$. Consider $\operatorname{Ind}_H^G W'$. By Frobenius reciprocity,

$$\langle \chi_V, \chi_{\operatorname{Ind}_H^G W'} \rangle_G = \langle \chi_W, \chi_{W'} \rangle_H = \langle \chi_{W'} + \chi_{W''}, \chi_{W'} \rangle_H = 1,$$

since W' and W'' are irreducible but not isomorphic. In particular, V is a direct summand of $\operatorname{Ind}_{H}^{G}W'$, and hence $\dim V = d \leq \dim \operatorname{Ind}_{H}^{G}W'$. By symmetry, V is a direct summand of $\operatorname{Ind}_{H}^{G}W''$, and hence $\dim V = d \leq \dim \operatorname{Ind}_{H}^{G}W''$. Adding, we see that

$$2d \leq \dim \operatorname{Ind}_{H}^{G} W' + \dim \operatorname{Ind}_{H}^{G} W'' = 2\dim W' + 2\dim W'' = 2d.$$

The only way that this can hold is for dim $V = \dim \operatorname{Ind}_{H}^{G} W' = \dim \operatorname{Ind}_{H}^{G} W''$, but then $V \cong \operatorname{Ind}_{H}^{G} W'$ and $V \cong \operatorname{Ind}_{H}^{G} W''$ since V is isomorphic to a summand of $\operatorname{Ind}_{H}^{G} W'$ with the same dimension as $\operatorname{Ind}_{H}^{G} W'$, and similarly for $\operatorname{Ind}_{H}^{G} W''$. Since $V \cong \dim \operatorname{Ind}_{H}^{G} W'$,

$$W = \operatorname{Res}_{H}^{G} V \cong \operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{V} W' \cong W' \oplus W'_{x},$$

but also $W \cong W' \oplus W''$, where W' and W' are non-isomorphic. It follows that $W'' \cong W'_x$. Finally, dim $V = 2 \dim W'$ and hence dim V is even.

Case II: n < 2, hence n = 1. In this case, V and $V \otimes \varepsilon$ are not isomorphic. Moreover

$$\operatorname{Ind}_{H}^{G} W = \operatorname{Ind}_{H}^{G} \operatorname{Res}_{H}^{G} V = V \otimes \mathbb{C}[G/H].$$

By definition $\mathbb{C}[G/H]$ is a vector space of dimension 2 with basis $e_1 = H$ and $e_2 = xH$ for any $x \notin H$. Moreover, $\rho_{\mathbb{C}[G/H]}(g)(e_1) = e_1$ and $\rho_{\mathbb{C}[G/H]}(g)(e_2) = e_2$ if $g \in H$ and $\rho_{\mathbb{C}[G/H]}(g)(e_1) = e_2$ and $\rho_{\mathbb{C}[G/H]}(g)(e_2) = e_12$ if $g \notin H$. It follows that $e_1 + e_2$ is a *G*-invariant vector, and hence spans a subspace *G*-isomorphic to the trivial representation $\mathbb{C} = \mathbb{C}(1)$. Also $e_1 - e_2 = v$ satisfies $\rho_{\mathbb{C}[G/H]}(g) = \varepsilon(g)v$, hence v spans a subspace *G*-isomorphic to the representation $\mathbb{C}(\varepsilon)$. Thus

$$\operatorname{Ind}_{H}^{G} W \cong V \oplus (V \otimes \varepsilon).$$

In particular, by Theorem 1.2, $W \cong W_x$.

Finally, we must show that every irreducible representation of H arises in this way. We leave this as an exercise.

Example 1.5. (1) For $G = D_n$ and $H = \langle \alpha \rangle$, we have seen that every irreducible representation of D_n has dimension 1 or 2. If V is an irreducible 2-dimensional representation of D_n , then $\operatorname{Res}_H^{D_n} V$ is never irreducible since H is abelian. Thus $\operatorname{Res}_H^G V = W' \oplus W'_{\tau}$. Every irreducible representation of H is of the form W_a for some $a \in \mathbb{Z}/n\mathbb{Z}$, where W_a corresponds to the homomorphism λ_a as in Example 1.3(2). Then $(W_a)_{\tau} = W_{-a}$, where $2a \neq 0 \pmod{n}$. Moreover, in this case $V \cong \operatorname{Ind}_H^{D_n} W_a \cong \operatorname{Ind}_H^{D_n} W_{-a}$.

(2) Let $G = S_4$ and $H = A_4$. We have seen that the standard permutation representation of S_4 on \mathbb{C}^4 has a direct sum decomposition as $\mathbb{C}^4 \cong V_3 \oplus \mathbb{C}$, where V_3 is irreducible. The representation $V_3 \otimes \varepsilon$ is not isomorphic to V_3 . There are the two 1-dimensional representations \mathbb{C} and $\mathbb{C}(\varepsilon)$. Finally, there is a 2-dimensional representation V_2 , unique up to isomorphism. It comes from the homomorphism $S_4 \to S_4/H \cong S_3$ by taking the 2-dimensional irreducible representation of S_3 . Note that

$$1^{2} + 1^{2} + 2^{2} + 3^{2} + 3^{2} = 24 = \#(S_{4}),$$

so these are all the irreducible representations of S_4 up to isomorphism.

As for A_4 , the quotient homomorphism $A_4 \to A_4/H \cong \mathbb{Z}/3\mathbb{Z}$ gives three 1 dimensional representations, the trivial representation \mathbb{C} and two others $\mathbb{C}(\lambda_1)$ and $\mathbb{C}(\lambda_2)$. Finally, the representation V_3 of S_4 remains irreducible when restricted to A_4 , which we saw directly or by (2) of Theorem 1.4 above. (Note also that, as dim V_3 is odd, we must be in Case (2).) Let $W_3 = \operatorname{Res}_{A_4}^{S_4} V_3$. As

$$1^{2} + 1^{2} + 1^{2} + 3^{2} = 12 = \#(A_{4}),$$

we have found all the irreducible representations of A_4 up to isomorphism.

We have already noted that V_3 satisfies case (2) of Theorem 1.4, and hence so does $V_3 \otimes \varepsilon$; in fact, with G and H as in the theorem, we always have $\operatorname{Res}_H^G V = \operatorname{Res}_H^G (V \otimes \varepsilon)$. As for V_2 , it must satisfy $V_2 \otimes \varepsilon \cong V_2$ since there is a unique 2-dimensional representation up to isomorphism. Of course, there are many ways of checking this directly. Hence we are in case (1) and $\operatorname{Res}_{A_4}^{S_4} V_2 \cong W' \oplus W'_x$, where W' and W'_x are 1-dimensional and W' and W'_x are not isomorphic. Thus neither W' nor W'_x are trivial, and hence (possibly after relabeling) $W' \cong \mathbb{C}(\lambda_1)$ and $W'_x \cong \mathbb{C}(\lambda_2)$. Thus $\operatorname{Res}_{A_4}^{S_4} V_2 \cong$ $\mathbb{C}(\lambda_1) \oplus \mathbb{C}(\lambda_2)$ and $V_2 \cong \operatorname{Ind}_{A_4}^{S_4} \mathbb{C}(\lambda_1) \cong \operatorname{Ind}_{A_4}^{S_4} \mathbb{C}(\lambda_2)$.

2 Mackey's theorems

Mackey proved two theorems about induced representations. The first describes $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} W$ for an arbitrary, not necessarily normal subgroup Hof G and an H-representation W. With essentially the same amount of effort, the theorem describes $\operatorname{Res}_{K}^{G} \operatorname{Ind}_{H}^{G} W$ where K is another subgroup of G, possibly equal to H. Using this, the second theorem gives a necessary and sufficient condition for $\operatorname{Ind}_{H}^{G} V$ to be irreducible. Both theorems use the concept of a double coset, which we now define:

Definition 2.1. Let G be a group, let $x \in G$, and let H and K be two subgroups of G. A double coset KxH of G is a subset of the form

$$KxH = \{kxh : k \in K, h \in H\}.$$

Thus a left coset for H is a double coset $\{1\}xH$ and a right coset is a double coset $Hx\{1\}$. Just as a left coset for H is an equivalence class for the equivalence relation $x_1 \sim x_2 \iff x_1 = x_2h$ for some $h \in H$, a double coset KxH is an equivalence class for the equivalence relation $x_1 \sim x_2 \iff$ there exist $h \in H$ and $k \in K$ such that $x_1 = kx_2h$. (This is easily checked to be an equivalence relation.) In particular, given H and K, G is a disjoint union of double cosets and (if G is finite) there exists a set of representatives $y_1, \ldots, y_n \in G$ such that every element of G is in exactly one double coset Ky_iH . In other words, for every $g \in G$, there exists a unique $i, 1 \leq i \leq n$, and unique elements $h \in H$ and $k \in K$ such that $g = ky_ih$. However, unlike the case of left or right cosets, the number of elements of a double coset does not have to divide the order of G, and in particular different double cosets (for K and H) by $K \setminus G/H$.

Finally, note that every double coset KxH is a union of left cosets of H (and also a union of right cosets of K).

We now state Mackey's first theorem. For a finite group H and two subgroups H and K of H, we fix a set of representatives y_1, \ldots, y_n for the double cosets as above. Define a subgroup H_i of K via

$$H_i = y_i H y_i^{-1} \cap K \le K.$$

If W is an H-representation corresponding to $\rho_W \colon H \to \operatorname{Aut} W$, define a representation W_i of H_i by

$$\rho_{W_i} = \operatorname{Res}_{H_i}^{y_i H y_i^{-1}} \rho_W \circ i_{y_i}^{-1}$$

Here $i_{y_i}^{-1}$ is an isomorphism from $y_i H y_i^{-1}$ to H, thus $\rho_W \circ i_{y_i}^{-1}$ defines a representation of $y_i H y_i^{-1}$. Explicitly, every element of $y_i H y_i^{-1}$ is equal to $y_i h y_i^{-1}$ for a unique $h \in H$, and then by definition

$$\rho_W \circ i_{y_i}^{-1}(y_i h y_i^{-1}) = \rho_W(h).$$

We can then restrict $\rho_W \circ i_{y_i}^{-1}$ to the subgroup H_i of $y_i H y_i^{-1}$, and in this way we obtain W_i . Note that, if H is normal and K = H, then $y_i H y_i^{-1} = H$, $H_i = y_i H y_i^{-1} \cap H = H$, and $W_i = W_{y_i}$ as previously defined.

Theorem 2.2 (Mackey). In the above notation,

$$\operatorname{Res}_{K}^{G}\operatorname{Ind}_{H}^{G}W = \bigoplus_{i=1}^{n}\operatorname{Ind}_{H_{i}}^{K}W_{i}.$$

Proof. We start with a general group theory lemma:

Lemma 2.3. Let H_1 and H_2 be two subgroups of G and define

$$H_1H_2 = \{h_1h_2 : h_1 \in H_1, h_2 \in H_2\},\$$

so that H_1H_2 is a union of left cosets (but it is not in general a subgroup of G unless one of H, K is normal). We define H_1H_2/H_2 to be the set of left cosets of H_2 of the form xH_2 for $x \in H_1H_2$. Then the function $\tilde{f}: H_1 \to H_1H_2/H_2$ defined by $\tilde{f}(h) = hH_2$ induces a bijection

$$f\colon H_1/H_1\cap H_2\to H_1H_2/H_2.$$

Proof. It is straightforward to check that f is surjective and that $f(h) = f(h') \iff h = h'h''$ for some $h'' \in H_1 \cap H_2$.

Returning to the proof of Mackey's theorem, since Ky_iH is a disjoint union of left cosets of H, we can write

$$Ky_iH = \bigcup_{j=1}^{k_i} x_{ij}H,$$

where the $x_{ij} \in G$, $1 \le i \le n, 1 \le j \le k_i$ are a set of representatives for the left cosets of H. Then we can write

$$Ky_i Hy_i^{-1} = \bigcup_{j=1}^{k_i} x_{ij} y_i^{-1} y_i Hy_i^{-1},$$

a disjoint union of cosets $(x_{ij}y_i^{-1})y_iHy_i^{-1}$ for the subgroup $y_iHy_i^{-1}$. Also, if z_1, \ldots, z_{k_i} are any set of representatives for $Ky_iHy_i^{-1}/y_iHy_i^{-1}$, then $Ky_iHy_i^{-1}$ is a disjoint union $\bigcup_{j=1}^{k_i} z_iy_iHy_i^{-1}$ and then it follows that $Ky_iH = \bigcup_{j=1}^{k_i} z_jy_iH$. In other words, we can choose the x_{ij} to be of the form z_jy_i for any set of representatives z_1, \ldots, z_{k_i} of $Ky_iHy_i^{-1}/y_iHy_i^{-1}$.

Applying Lemma 2.3 to the case where $H_1 = K$ and $H_2 = y_i H y_i^{-1}$: we can choose a set of representatives $z_1, \ldots z_{k_i}$ for $K y_i H y_i^{-1} / y_i H y_i^{-1}$ of the form z_j , where the $z_j \in K$ are a set of representatives for $K/y_i H y_i^{-1} \cap K = K/H_i$. Thus, taking $x_{ij} = z_j y_i$ and hence $z_j = x_{ij} y_i^{-1}$, we can assume that $x_{ij} y_i^{-1} \in K$ and that the $x_{ij} y_i^{-1}$, $1 \leq j \leq k_i$, are a set of representatives for the left cosets K/H_i .

Now let $V = \operatorname{Ind}_{H}^{G} W$. Then we have seen that $V \cong \bigoplus_{r=1}^{k} W^{(r)}$, where k = (G : H) and the subspaces $W^{(r)}$ are indexed by a set of representatives for G/H. In our case, we have the set of representatives x_{ij} indexed by i and j, and so can write the direct sum as follows:

$$V \cong \bigoplus_{i,j} W^{(i,j)} = \bigoplus_{i=1}^{n} \left(\bigoplus_{j=1}^{k_i} W^{(i,j)} \right),$$

where

$$W^{(i,j)} = \{ F \in \operatorname{Ind}_{H}^{G} W : F(g) = 0 \text{ if } g \notin x_{ij}H \}.$$

Moreover, $W^{(i,j)}$ is spanned by functions $F_{i,j,w}$, where $\rho_{\operatorname{Ind}_H^G W}(g)$ acts on $F_{i,j,w}$ as follows: if $gx_{ij} = x_{k\ell}h_{ij}(g)$, then

$$\rho_{\operatorname{Ind}_{H}^{G}W}(g)(F_{i,j,w}) = F_{k,\ell,\rho_{W}(h_{ij}(g))(w)}$$

So it suffices to show that the subspaces $\bigoplus_{j=1}^{k_i} W^{(i,j)}$ are K-invariant and that each such subspace is K-isomorphic to $\operatorname{Ind}_{H_i}^K W_i$. To see this, note that, if $k \in K$, then $kx_{ij} \in Ky_iH$, and so $kx_{ij} = x_{i\ell}h_{ij}(k)$ for some $h_{ij}(k) \in H$ (since Ky_iH is a union of the $x_{i\ell}H$). This says that the subspaces $\bigoplus_{i=1}^{k_i} W^{(i,j)}$ are K-invariant and that

$$\rho_{\operatorname{Ind}_{H}^{G}}(k)(F_{i,j,w}) = F_{i,\ell,\rho_{W}(h_{ij}(k))(w)}.$$

To compare this K-representation with $\operatorname{Ind}_{H_i}^K W_i$, first note that, fixing *i*, as $kx_{ij} = x_{i\ell}h_{ij}(k)$ and $z_j = x_{ij}y_i^{-1}$,

$$kz_j = kx_{ij}y_i^{-1} = x_{i\ell}h_{ij}(k)y_i^{-1} = z_\ell(y_ih_{ij}(k)y_i^{-1}).$$

Moreover, since $k, z_j, z_\ell \in K$, it follows that $y_i h_{ij}(k) y_i^{-1} \in y_i H y_i^{-1} \cap K = H_i$. The above says that

$$\operatorname{Ind}_{H_i}^K W_i \cong \bigoplus_{j=1}^{k_i} W_i^{(j)},$$

where $W_i^{(j)}$ is spanned by functions which we denote by $G_{i,j,w}$ and

$$\rho_{\operatorname{Ind}_{H_{\cdot}}^{K}}(k)(G_{i,j,w}) = G_{i,\ell,\rho_{W}(h_{ij}(k))(w)}.$$

Comparing, we see that, after identifying $F_{i,j,w}$ with $G_{i,j,w}$, the action of $k \in K$ on $\bigoplus_{j=1}^{k_i} W^{(i,j)}$ is the same as the action of $k \in K$ on $\operatorname{Ind}_{H_i}^K W_i$. Thus

$$\bigoplus_{j=1}^{k_i} W^{(i,j)} \cong \operatorname{Ind}_{H_i}^K W_i$$

and hence $\operatorname{Res}_{K}^{G} \operatorname{Ind}_{H}^{G} W = \bigoplus_{i=1}^{n} \operatorname{Ind}_{H_{i}}^{K} W_{i}$ as claimed.

We turn now to Mackey's second theorem. Before stating it, we give a preliminary definition:

Definition 2.4. Let G be a finite group and let V_1 and V_2 be two G-representations. We say that V_1 and V_2 are *disjoint* if no irreducible summand of V_1 is isomorphic to an irreducible summand of V_2 , or equivalently if $\langle \chi_{V_1}, \chi_{V_2} \rangle_G = 0$.

We can then state the following:

Theorem 2.5 (Mackey's irreducibility criterion). Let G be a finite group, H a subgroup of G, and W an H-representation. Then $\operatorname{Ind}_{H}^{G} W$ is irreducible \iff the following two conditions hold:

- (i) W is an irreducible H-representation.
- (ii) For every $x \in G H$, if we set W_x to be the representation of xHx^{-1} corresponding to $\rho_W \circ i_x^{-1}$ and $H_x = xHx^{-1} \cap H$, the representations $\operatorname{Res}_{H_x}^H W$ and $\operatorname{Res}_{H_x}^{xHx^{-1}} W_x$ are disjoint H_x -representations.

Remark 2.6. (1) If H is normal, then $H_x = H$ and the statement is just that of Theorem 1.2.

(2) The subgroup H_x only depends on the double coset HxH up to conjugation by an element of H.

Proof. Choose a set y_1, \ldots, y_n for the double cosets HxH. We might as well assume that $y_1 = 1$ and thus that $Hy_1H = H1H = H$ and that $i_{y_1}^{-1} = \text{Id}$. Since G is a disjoint union of the Hy_iH ,

$$G - H = \bigcup_{i>1} Hy_i H.$$

Let $H_i = y_i H y_i^{-1} \cap H$, so that $H_1 = 1$, and define $W_i = \operatorname{Res}_{H_i}^{y_i H y_i^{-1}} W_{y_i}$. In particular, $W_1 \cong W$.

The representation $\operatorname{Ind}_{H}^{G} W$ is irreducible $\iff \langle \chi_{\operatorname{Ind}_{H}^{G} W}, \chi_{\operatorname{Ind}_{H}^{G} W} \rangle_{G} = 1.$ By Frobenius reciprocity and Mackey's Theorem,

$$\begin{split} \langle \chi_{\mathrm{Ind}_{H}^{G}W}, \chi_{\mathrm{Ind}_{H}^{G}W} \rangle_{G} &= \langle \chi_{W}, \chi_{\mathrm{Res}_{H}^{G}\mathrm{Ind}_{H}^{G}W} \rangle_{H} \\ &= \sum_{i} \langle \chi_{W}, \chi_{\mathrm{Ind}_{H_{i}}^{H}W_{i}} \rangle_{H} \\ &= \sum_{i} \langle \chi_{\mathrm{Res}_{H_{i}}^{H}W}, \chi_{W_{i}} \rangle_{H_{i}}, \end{split}$$

where we have used Frobenius reciprocity twice and Mackey's theorem to write $\operatorname{Res}_{H}^{G}\operatorname{Ind}_{H}^{G}W \cong \bigoplus_{i} \operatorname{Ind}_{H_{u_{i}}}^{H}W_{i}$. In the last sum above, for i = 1,

$$\langle \chi_{\operatorname{Res}_{H_1}^H W}, \chi_{W_1} \rangle_{H_1} = \langle \chi_W, \chi_W \rangle_H$$

is a positive integer, and it is $1 \iff W$ is irreducible. As for the remaining terms $\langle \chi_{\operatorname{Res}_{H}^{H},W}, \chi_{W_{i}} \rangle_{H_{i}}$ for i > 1, they are all nonnegative integers, and they are $0 \iff$ the representations $\operatorname{Res}_{H_i}^H W$ and $W_i = \operatorname{Res}_{H_i}^{y_i H y_i^{-1}} W_{y_i}$ are disjoint as previously defined. This is condition (ii) of the theorem for the elements $x = y_i, i > 1$, which are exactly the $y_i \notin H = Hy_1 H$. Thus $\operatorname{Ind}_H^G W$ is irreducible $\iff W$ is irreducible and $\operatorname{Res}_{H_i}^H W$ and $W_i = \operatorname{Res}_{H_i}^{y_i H y_i^{-1}} W_{y_i}$ are disjoint for all i > 1. So it suffices to show that condition (ii) for all $x \notin H$ is equivalent to condition (ii) for the $y_i \notin H$. One direction is obvious: if (ii) holds for all $x \notin H$, then it holds for all $y_i \notin H$. Conversely, suppose that (ii) holds for all $y_i \notin H$. Given an arbitrary $x \notin H$, we can write $x = hy_i h'$ for some $h, h' \in H$, and i > 1, since G is a disjoint union of the double cosets Hy_iH . Then a straightforward argument shows that i_h^{-1} is an isomorphism from H_x to H_{y_i} which identifies $\operatorname{Res}_{H_x}^H W$ with $\operatorname{Res}_{H_i}^H W$ and $\operatorname{Res}_{H_x}^{xH_x^{-1}} W_x$ with $\operatorname{Res}_{H_i}^{y_iHy_i^{-1}} W_{y_i}$. Thus $\operatorname{Res}_{H_x}^{H} W$ and $\operatorname{Res}_{H_x}^{xH_x^{-1}} W_x$ are disjoint H_x -representations for all $x \notin H \iff \operatorname{Res}_{H_i}^{H} W$ and $W_i =$ $\operatorname{Res}_{H_i}^{y_i H y_i^{-1}} W_{y_i}$ are disjoint H_i -representations for all i > 1.