More on induced representations

1 The case of a normal subgroup

Let G be a finite group and let H be a normal subgroup of G. For an H-representation, we want to give a formula for $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} W$. First, some notation: if $x \in G$ and $h \in H$, then $h x=x h^{\prime}$ for some $h^{\prime} \in H$, where $h^{\prime}=x^{-1} h x$. In particular, writing as usual $x_{1}=1, \ldots, x_{k}$ for a set of representatives for the left cosets of H,

$$
h x_{i}=x_{i} h_{i}(h)=x_{i}\left(x_{i}^{-1} h x_{i}\right) .
$$

This says that

$$
\rho_{\operatorname{Ind}_{h}^{G} W}(h)\left(F_{i, w}\right)=F_{i, \rho_{W}\left(x_{i}^{-1} h x_{i}\right)} .
$$

In particular, the vector subspaces $W^{(i)}=\left\{F_{i w}: w \in W\right.$ are invariant under the restriction of $\rho_{\operatorname{Ind}_{h}^{G} W}$ to elements of H, i.e. they are $\rho_{\operatorname{Res}_{H}^{G} W^{\text {-invariant }}}$ subspaces.

Given $x \in G$, since H is normal, we have $i_{x}(H) \subseteq H$, and in fact $i_{x}: H \rightarrow H$ is an isomorphism from H to H, where by definition

$$
i_{x}(g)=x g x^{-1} .
$$

Define W_{x} to be the H-representation given by the homomorphism $\rho_{W} \circ$ $i_{x}^{-1}: H \rightarrow$ Aut W. Explicitly:

$$
\rho_{W_{x}}(g)=\rho_{W}\left(x^{-1} g x\right) .
$$

In particular, for $1 \leq i \leq k$, we have the H-representation $W_{x_{i}}$. Then the calculations above show:

Proposition 1.1. As H-representations,

$$
\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} W \cong \bigoplus_{i=1}^{k} W_{x_{i}}
$$

This formula allows us to describe when $\operatorname{Ind}_{H}^{G} W$ is irreducible. Note that, if W is reducible, say $W \cong W_{1} \oplus W_{2}$ as H-representations, then it is easy to see that $\operatorname{Ind}_{H}^{G} W \cong \operatorname{Ind}_{H}^{G} W_{1} \oplus \operatorname{Ind}_{H}^{G} W_{2}$, and hence is also reducible. Thus we may as well assume that W is irreducible.

Theorem 1.2. Suppose that H is a normal subgroup of G and that W is an irreducible H-representation. Then $\operatorname{Ind}_{H}^{G} W$ is an irreducible G representation \Longleftrightarrow for all $x \in G$ with $x \notin H, W_{x}$ is not H-isomorphic to W.

Proof. Since W is irreducible, $\left\langle\chi_{W}, \chi_{W}\right\rangle_{H}=1$. We wish to see when $\left\langle\chi_{\operatorname{Ind}_{H}^{G} W}, \chi_{\operatorname{Ind}_{H}^{G} W}\right\rangle_{G}=1$. In any case, by Frobenius reciprocity,

$$
\left\langle\chi_{\operatorname{Ind}_{H}^{G} W}, \chi_{\operatorname{Ind}_{H}^{G} W}\right\rangle_{G}=\left\langle\chi_{W}, \chi_{\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} W}\right\rangle_{H}=\sum_{i=1}^{k}\left\langle\chi_{W}, \chi_{W_{x_{i}}}\right\rangle_{H},
$$

by Proposition 1.1. For $i=1, W_{x_{1}}=W_{1}=W$ and hence $\left\langle\chi_{W}, \chi_{W_{1}}\right\rangle_{H}=1$. For $i>1, W_{x_{i}}$ is an irreducible representation and so $\left\langle\chi_{W}, \chi_{W_{x_{i}}}\right\rangle_{H}=1$ if $W_{x_{i}} \cong W$ and $\left\langle\chi_{W}, \chi_{W_{x_{i}}}\right\rangle_{H}=0$ if $W_{x_{i}}$ is not H-isomorphic to W. Thus $\operatorname{Ind}_{H}^{G} W$ is irreducible $\Longleftrightarrow\left\langle\chi_{\operatorname{Ind}_{H}^{G} W}, \chi_{\operatorname{Ind}_{H}^{G} W}\right\rangle_{G}=1 \Longleftrightarrow$ for all $i>1$, $W_{x_{i}}$ is not H-isomorphic to W.

It remains to show that the statement that, for all $i>1, W_{x_{i}}$ is not H-isomorphic to W, is equivalent to the statement that, for all $x \notin H, W_{x}$ is not H-isomorphic to W. Clearly, since for $i>1 x_{i} \notin H$, the second statement implies the first. Conversely, suppose the first statement. Let $x \in G, x \notin H$. Then x is in some left coset $x_{i} H$, and the assumption $x \notin H$ is equivalent to saying that $i>1$. Thus we can write $x=x_{i} h$ for some $i>1$. It follows that

$$
\begin{aligned}
\rho_{W} \circ i_{x}^{-1} & =\rho_{W} \circ i_{\left(x_{i} h\right)^{-1}}=\rho_{W} \circ i_{h}^{-1} \circ i_{x_{i}}^{-1} \\
& =\rho_{W}(h)^{-1} \circ\left(\rho_{W} \circ i_{x_{i}}^{-1}\right) \circ \rho_{W}(h) .
\end{aligned}
$$

It follows that the representations W_{x} and $W_{x_{i}}$ are conjugate by some element in Aut W, namely $\rho_{W}(h)^{-1}$. Hence W_{x} and $W_{x_{i}}$ are H-isomorphic. Thus, if $W_{x_{i}}$ is not H-isomorphic to W for all $i>1$, then W_{x} is not H isomorphic to W for all $x \notin H$.

Example 1.3. (1) If $W=\mathbb{C}$ is the trivial representation and $H \neq G$, then W_{x} is isomorphic to W for every $x \in G$, hence $\operatorname{Ind}_{H}^{G} \mathbb{C}$ is not irreducible. In fact, we know that $\operatorname{Ind}_{H}^{G} \mathbb{C} \cong \mathbb{C}[G / H]$ always contains a subspace isomorphic to the trivial representation of G, and hence is not irreducible if $\operatorname{dim} \mathbb{C}[G / H]=(G: H)>1$, i.e. if $H \neq G$. (If $H=G$, then the condition
that W_{x} is not H-isomorphic to W for all $x \notin H$ is vacuously satisfied, and in fact $\operatorname{Ind}_{G}^{G} \mathbb{C} \cong \mathbb{C}$ is trivial but irreducible.)
(2) Suppose that $G=D_{n}$ and $H=\langle\alpha\rangle$. Then we can take $x_{2}=\tau$ and $i_{\tau}^{-1}\left(\alpha^{k}\right)=i_{\tau}\left(\alpha^{k}\right)=\alpha^{-k}$. Thus, for $W=W_{a}=\mathbb{C}\left(\lambda_{a}\right)$, the 1-dimensional representation corresponding to the homomorphism $\lambda_{a}: H \rightarrow \mathbb{C}^{*}$ defined by $\lambda_{a}\left(\alpha^{k}\right)=e^{2 \pi i a k / n}$, we have

$$
\left(W_{a}\right)_{x_{2}}=W_{-a} .
$$

Note that a is naturally an element of $\mathbb{Z} / n \mathbb{Z}$, since $W_{a} \cong W_{b} \Longleftrightarrow a \equiv b$ $(\bmod n)$. The condition that, for all $x \in H,\left(W_{a}\right)_{x}$ is not isomorphic to W_{a} is then the condition that $-a$ and a are not congruent $\bmod n$, i.e. that $2 a \not \equiv 0(\bmod n)$. Note that $2 a \equiv 0(\bmod n) \Longleftrightarrow a=0$ or n is even, say $n=2 m$, and $a \equiv m(\bmod n)$. In conclusion, we see that $\operatorname{Ind}_{H}^{D_{n}} W_{a}$ is irreducible unless $a=0$ or $n=2 m$, and $a \equiv m(\bmod n)$. Of course, we could also verify this by a direct computation.

For the remainder of this section, we specialize still further, to the case where H is a subgroup of G of index 2 . Of course, H is known to be normal in this case. An interesting example to keep in mind is $G=S_{n}, H=A_{n}$. In general, G / H is a group of order 2 , and there is a homomorphism $\varepsilon: G \rightarrow \mathbb{C}^{*}$ defined by $\varepsilon(g)=1$ if $h \in H$ and $\varepsilon(g)=-1$ if $g \notin H$.In case $G=S_{n}$, $H=A_{n}$, then ε is the sign homomorphism. We also fix an element $x \in G-H$ and have the resulting isomorphism $i_{x}^{-1}: H \rightarrow H$. Recall that, if W is an H-representation corresponding to $\rho_{W}: H \rightarrow$ Aut W, then we have defined the H-representation W_{x} which corresponds to the homomorphism $\rho_{W} \circ i_{x}^{-1}$. It is in fact independent of the choice of x up to H-isomorphism.

Our main interest is the following question: given an irreducible G representation, when is $\operatorname{Res}_{H}^{G} V$ still irreducible? The answer is given by the following:

Theorem 1.4. Let G be a finite group and let H be a subgroup of G of index 2. Let V be an irreducible G-representation and let $W=\operatorname{Res}_{H}^{G} V$. Finally, let $V \otimes \varepsilon$ be the representation corresponding to the homomorphism $\rho_{V \otimes \varepsilon}=\varepsilon \rho_{V}$. Then exactly one of the following holds:
(i) V is G-isomorphic to $V \otimes \varepsilon, W$ is H-isomorphic to W_{x}, and W is H-isomorphic to $W^{\prime} \oplus W_{x}^{\prime}$, where W^{\prime} and hence W_{x}^{\prime} are irreducible representations with W^{\prime} not H-isomorphic to W_{x}^{\prime}. Finally, $\operatorname{dim} V$ is even and

$$
V \cong \operatorname{Ind}_{H}^{G} W^{\prime} \cong \operatorname{Ind}_{H}^{G} W_{x}^{\prime} .
$$

(ii) V is not G-isomorphic to $V \otimes \varepsilon, W$ is irreducible, W is H-isomorphic to W_{x}, and

$$
\operatorname{Ind}_{H}^{G} W \cong V \oplus(V \otimes \varepsilon) .
$$

Finally, every irreducible H-representation arises this way, either as an irreducible summand of $\operatorname{Res}_{H}^{G} V$ where V is an irreducible G-representation G isomorphic to $V \otimes \varepsilon$, or as $\operatorname{Res}_{H}^{G} V$ where V is an irreducible G-representation which is not G-isomorphic to $V \otimes \varepsilon$.
Proof. As a general remark, if H is normal, then, for all $x \in G,\left(\operatorname{Res}_{H}^{G} V\right)_{x} \cong$ $\operatorname{Res}_{H}^{G} V$: For $x \in G$, let V_{x} be the G-representation defined by $\rho_{V} \circ i_{x}^{-1}$. Then V_{x} is is G-isomorphic to V since ρ_{V} and $\rho_{V} \circ i_{x}^{-1}$ differ by conjugation by $\rho_{V}(x)^{-1}$. Then $\operatorname{Res}_{H}^{G}\left(V_{x}\right) \cong \operatorname{Res}_{H}^{G} V$, but clearly $\operatorname{Res}_{H}^{G}\left(V_{x}\right)=\left(\operatorname{Res}_{H}^{G} V\right)_{x}$. Thus, in both (i) and (ii) above, W is H-isomorphic to W_{x}.

Note also that $\chi_{V \otimes \varepsilon}=\varepsilon \chi_{V}$, and thus

$$
\chi_{V \otimes \varepsilon}(g)= \begin{cases}\chi_{V}(g), & \text { if } g \in H \\ -\chi_{V}(g), & \text { if } g \notin H\end{cases}
$$

Thus V is G-isomorphic to $V \otimes \varepsilon \Longleftrightarrow \chi_{V}=\chi_{V \otimes \varepsilon} \Longleftrightarrow \chi(g)=-\chi_{V}(g)$ for all $g \notin H \Longleftrightarrow \chi(g)=0$ for all $g \notin H$.

Since V is irreducible,

$$
\left\langle\chi_{V}, \chi_{V}\right\rangle_{G}=\frac{1}{\#(G)} \sum_{g \in G}\left|\chi_{V}(g)\right|^{2}=1
$$

Hence $\sum_{g \in G}\left|\chi_{V}(g)\right|^{2}=\#(G)=2 \#(H)$. We rewrite this as

$$
\begin{aligned}
2 \#(H) & =\sum_{g \in G}\left|\chi_{V}(g)\right|^{2}=\sum_{h \in H}\left|\chi_{V}(h)\right|^{2}+\sum_{g \notin H}\left|\chi_{V}(g)\right|^{2} \\
& =\#(H)\left\langle\chi_{W}, \chi_{W}\right\rangle_{H}+\sum_{g \notin H}\left|\chi_{V}(g)\right|^{2} .
\end{aligned}
$$

Now $\left\langle\chi_{W}, \chi_{W}\right\rangle_{H}$ is a positive integer n and $\#(H)\left\langle\chi_{W}, \chi_{W}\right\rangle_{H}=n \#(H)$. Also, since $\left|\chi_{V}(g)\right|^{2} \geq 0$, we see that

$$
n \#(H) \leq 2 \#(H)
$$

hence $n \leq 2$ with equality $\Longleftrightarrow \chi_{V}(g)=0$ for all $g \notin H \Longleftrightarrow V$ is G-isomorphic to $V \otimes \varepsilon$.
Case I: $n=2$. As noted above, this case happens $\Longleftrightarrow V$ is G-isomorphic to $V \otimes \varepsilon$. If $W=\operatorname{Res}_{H}^{G}$ is a direct sum of representations $U_{i}^{m_{i}}, 1 \leq i \leq r$,
where the U_{i} are pairwise non-isomorphic, then $\sum_{i=1}^{r} m_{i}^{2}=2$. The only way this can happen is that $r=2$ and $m_{1}=m_{2}=1$, i.e. $W \cong W^{\prime} \oplus W^{\prime \prime}$, where W^{\prime} and $W^{\prime \prime}$ are irreducible and W^{\prime} is not isomorphic to $W^{\prime \prime}$. Let $d=\operatorname{dim} V$, so that $d=\operatorname{dim} W^{\prime}+\operatorname{dim} W^{\prime \prime}$. Consider $\operatorname{Ind}_{H}^{G} W^{\prime}$. By Frobenius reciprocity,

$$
\left\langle\chi_{V}, \chi_{\operatorname{Ind}_{H}^{G} W^{\prime}}\right\rangle_{G}=\left\langle\chi_{W}, \chi_{W^{\prime}}\right\rangle_{H}=\left\langle\chi_{W^{\prime}}+\chi_{W^{\prime \prime}}, \chi_{W^{\prime}}\right\rangle_{H}=1
$$

since W^{\prime} and $W^{\prime \prime}$ are irreducible but not isomorphic. In particular, V is a direct summand of $\operatorname{Ind}_{H}^{G} W^{\prime}$, and hence $\operatorname{dim} V=d \leq \operatorname{dim} \operatorname{Ind}_{H}^{G} W^{\prime}$. By symmetry, V is a direct summand of $\operatorname{Ind}_{H}^{G} W^{\prime \prime}$, and hence $\operatorname{dim} V=d \leq$ $\operatorname{dim} \operatorname{Ind}_{H}^{G} W^{\prime \prime}$. Adding, we see that

$$
2 d \leq \operatorname{dim} \operatorname{Ind}_{H}^{G} W^{\prime}+\operatorname{dim} \operatorname{Ind}_{H}^{G} W^{\prime \prime}=2 \operatorname{dim} W^{\prime}+2 \operatorname{dim} W^{\prime \prime}=2 d
$$

The only way that this can hold is for $\operatorname{dim} V=\operatorname{dim} \operatorname{Ind}_{H}^{G} W^{\prime}=\operatorname{dim} \operatorname{Ind}_{H}^{G} W^{\prime \prime}$, but then $V \cong \operatorname{Ind}_{H}^{G} W^{\prime}$ and $V \cong \operatorname{Ind}_{H}^{G} W^{\prime \prime}$ since V is isomorphic to a summand of $\operatorname{Ind}_{H}^{G} W^{\prime}$ with the same dimension as $\operatorname{Ind}_{H}^{G} W^{\prime}$, and similarly for $\operatorname{Ind}_{H}^{G} W^{\prime \prime}$. Since $V \cong \operatorname{dim} \operatorname{Ind}_{H}^{G} W^{\prime}$,

$$
W=\operatorname{Res}_{H}^{G} V \cong \operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{V} W^{\prime} \cong W^{\prime} \oplus W_{x}^{\prime}
$$

but also $W \cong W^{\prime} \oplus W^{\prime \prime}$, where W^{\prime} and W^{\prime} are non-isomorphic. It follows that $W^{\prime \prime} \cong W_{x}^{\prime}$. Finally, $\operatorname{dim} V=2 \operatorname{dim} W^{\prime}$ and hence $\operatorname{dim} V$ is even.

Case II: $n<2$, hence $n=1$. In this case, V and $V \otimes \varepsilon$ are not isomorphic. Moreover

$$
\operatorname{Ind}_{H}^{G} W=\operatorname{Ind}_{H}^{G} \operatorname{Res}_{H}^{G} V=V \otimes \mathbb{C}[G / H]
$$

By definition $\mathbb{C}[G / H]$ is a vector space of dimension 2 with basis $e_{1}=H$ and $e_{2}=x H$ for any $x \notin H$. Moreover, $\rho_{\mathbb{C}[G / H]}(g)\left(e_{1}\right)=e_{1}$ and $\rho_{\mathbb{C}[G / H]}(g)\left(e_{2}\right)=$ e_{2} if $g \in H$ and $\rho_{\mathbb{C}[G / H]}(g)\left(e_{1}\right)=e_{2}$ and $\rho_{\mathbb{C}[G / H]}(g)\left(e_{2}\right)=e_{1} 2$ if $g \notin H$. It follows that $e_{1}+e_{2}$ is a G-invariant vector, and hence spans a subspace G-isomorphic to the trivial representation $\mathbb{C}=\mathbb{C}(1)$. Also $e_{1}-e_{2}=v$ satisfies $\rho_{\mathbb{C}[G / H]}(g)=\varepsilon(g) v$, hence v spans a subspace G-isomorphic to the representation $\mathbb{C}(\varepsilon)$. Thus

$$
\operatorname{Ind}_{H}^{G} W \cong V \oplus(V \otimes \varepsilon)
$$

In particular, by Theorem $1.2, W \cong W_{x}$.
Finally, we must show that every irreducible representation of H arises in this way. We leave this as an exercise.

Example 1.5. (1) For $G=D_{n}$ and $H=\langle\alpha\rangle$, we have seen that every irreducible representation of D_{n} has dimension 1 or 2 . If V is an irreducible 2-dimensional representation of D_{n}, then $\operatorname{Res}_{H}^{D_{n}} V$ is never irreducible since H is abelian. Thus $\operatorname{Res}_{H}^{G} V=W^{\prime} \oplus W_{\tau}^{\prime}$. Every irreducible representation of H is of the form W_{a} for some $a \in \mathbb{Z} / n \mathbb{Z}$, where W_{a} corresponds to the homomorphism λ_{a} as in Example 1.3(2). Then $\left(W_{a}\right)_{\tau}=W_{-a}$, where $2 a \not \equiv 0$ $(\bmod n)$. Moreover, in this case $V \cong \operatorname{Ind}_{H}^{D_{n}} W_{a} \cong \operatorname{Ind}_{H}^{D_{n}} W_{-a}$.
(2) Let $G=S_{4}$ and $H=A_{4}$. We have seen that the standard permutation representation of S_{4} on \mathbb{C}^{4} has a direct sum decomposition as $\mathbb{C}^{4} \cong V_{3} \oplus \mathbb{C}$, where V_{3} is irreducible. The representation $V_{3} \otimes \varepsilon$ is not isomorphic to V_{3}. There are the two 1 -dimensional representations \mathbb{C} and $\mathbb{C}(\varepsilon)$. Finally, there is a 2-dimensional representation V_{2}, unique up to isomorphism. It comes from the homomorphism $S_{4} \rightarrow S_{4} / H \cong S_{3}$ by taking the 2-dimensional irreducible representation of S_{3}. Note that

$$
1^{2}+1^{2}+2^{2}+3^{2}+3^{2}=24=\#\left(S_{4}\right)
$$

so these are all the irreducible representations of S_{4} up to isomorphism.
As for A_{4}, the quotient homomorphism $A_{4} \rightarrow A_{4} / H \cong \mathbb{Z} / 3 \mathbb{Z}$ gives three 1 dimensional representations, the trivial representation \mathbb{C} and two others $\mathbb{C}\left(\lambda_{1}\right)$ and $\mathbb{C}\left(\lambda_{2}\right)$. Finally, the representation V_{3} of S_{4} remains irreducible when restricted to A_{4}, which we saw directly or by (2) of Theorem 1.4 above. (Note also that, as $\operatorname{dim} V_{3}$ is odd, we must be in Case (2).) Let $W_{3}=\operatorname{Res}_{A_{4}}^{S_{4}} V_{3}$. As

$$
1^{2}+1^{2}+1^{2}+3^{2}=12=\#\left(A_{4}\right)
$$

we have found all the irreducible representations of A_{4} up to isomorphism.
We have already noted that V_{3} satisfies case (2) of Theorem 1.4, and hence so does $V_{3} \otimes \varepsilon$; in fact, with G and H as in the theorem, we always have $\operatorname{Res}_{H}^{G} V=\operatorname{Res}_{H}^{G}(V \otimes \varepsilon)$. As for V_{2}, it must satisfy $V_{2} \otimes \varepsilon \cong V_{2}$ since there is a unique 2 -dimensional representation up to isomorphism. Of course, there are many ways of checking this directly. Hence we are in case (1) and $\operatorname{Res}_{A_{4}}^{S_{4}} V_{2} \cong W^{\prime} \oplus W_{x}^{\prime}$, where W^{\prime} and W_{x}^{\prime} are 1-dimensional and W^{\prime} and W_{x}^{\prime} are not isomorphic. Thus neither W^{\prime} nor W_{x}^{\prime} are trivial, and hence (possibly after relabeling) $W^{\prime} \cong \mathbb{C}\left(\lambda_{1}\right)$ and $W_{x}^{\prime} \cong \mathbb{C}\left(\lambda_{2}\right)$. Thus $\operatorname{Res}_{A_{4}}^{S_{4}} V_{2} \cong$ $\mathbb{C}\left(\lambda_{1}\right) \oplus \mathbb{C}\left(\lambda_{2}\right)$ and $V_{2} \cong \operatorname{Ind}_{A_{4}}^{S_{4}} \mathbb{C}\left(\lambda_{1}\right) \cong \operatorname{Ind}_{A_{4}}^{S_{4}} \mathbb{C}\left(\lambda_{2}\right)$.

2 Mackey's theorems

Mackey proved two theorems about induced representations. The first describes $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} W$ for an arbitrary, not necessarily normal subgroup H of G and an H-representation W. With essentially the same amount of effort, the theorem describes $\operatorname{Res}_{K}^{G} \operatorname{Ind}_{H}^{G} W$ where K is another subgroup of G, possibly equal to H. Using this, the second theorem gives a necessary and sufficient condition for $\operatorname{Ind}_{H}^{G} V$ to be irreducible. Both theorems use the concept of a double coset, which we now define:

Definition 2.1. Let G be a group, let $x \in G$, and let H and K be two subgroups of G. A double coset $K x H$ of G is a subset of the form

$$
K x H=\{k x h: k \in K, h \in H\} .
$$

Thus a left coset for H is a double coset $\{1\} x H$ and a right coset is a double coset $H x\{1\}$. Just as a left coset for H is an equivalence class for the equivalence relation $x_{1} \sim x_{2} \Longleftrightarrow x_{1}=x_{2} h$ for some $h \in H$, a double coset $K x H$ is an equivalence class for the equivalence relation $x_{1} \sim x_{2} \Longleftrightarrow$ there exist $h \in H$ and $k \in K$ such that $x_{1}=k x_{2} h$. (This is easily checked to be an equivalence relation.) In particular, given H and K, G is a disjoint union of double cosets and (if G is finite) there exists a set of representatives $y_{1}, \ldots, y_{n} \in G$ such that every element of G is in exactly one double coset $K y_{i} H$. In other words, for every $g \in G$, there exists a unique $i, 1 \leq i \leq n$, and unique elements $h \in H$ and $k \in K$ such that $g=k y_{i} h$. However, unlike the case of left or right cosets, the number of elements of a double coset does not have to divide the order of G, and in particular different double cosets can have different numbers of elements. We denote the set of double cosets (for K and H) by $K \backslash G / H$.

Finally, note that every double coset $K x H$ is a union of left cosets of H (and also a union of right cosets of K).

We now state Mackey's first theorem. For a finite group H and two subgroups H and K of H, we fix a set of representatives y_{1}, \ldots, y_{n} for the double cosets as above. Define a subgroup H_{i} of K via

$$
H_{i}=y_{i} H y_{i}^{-1} \cap K \leq K .
$$

If W is an H-representation corresponding to $\rho_{W}: H \rightarrow$ Aut W, define a representation W_{i} of H_{i} by

$$
\rho_{W_{i}}=\operatorname{Res}_{H_{i}}^{y_{i} H y_{i}^{-1}} \rho_{W} \circ i_{y_{i}}^{-1} .
$$

Here $i_{y_{i}}^{-1}$ is an isomorphism from $y_{i} H y_{i}^{-1}$ to H, thus $\rho_{W} \circ i_{y_{i}}^{-1}$ defines a representation of $y_{i} H y_{i}^{-1}$. Explicitly, every element of $y_{i} H y_{i}^{-1}$ is equal to $y_{i} h y_{i}^{-1}$ for a unique $h \in H$, and then by definition

$$
\rho_{W} \circ i_{y_{i}}^{-1}\left(y_{i} h y_{i}^{-1}\right)=\rho_{W}(h) .
$$

We can then restrict $\rho_{W} \circ i_{y_{i}}^{-1}$ to the subgroup H_{i} of $y_{i} H y_{i}^{-1}$, and in this way we obtain W_{i}. Note that, if H is normal and $K=H$, then $y_{i} H y_{i}^{-1}=H$, $H_{i}=y_{i} H y_{i}^{-1} \cap H=H$, and $W_{i}=W_{y_{i}}$ as previously defined.

Theorem 2.2 (Mackey). In the above notation,

$$
\operatorname{Res}_{K}^{G} \operatorname{Ind}_{H}^{G} W=\bigoplus_{i=1}^{n} \operatorname{Ind}_{H_{i}}^{K} W_{i} .
$$

Proof. We start with a general group theory lemma:
Lemma 2.3. Let H_{1} and H_{2} be two subgroups of G and define

$$
H_{1} H_{2}=\left\{h_{1} h_{2}: h_{1} \in H_{1}, h_{2} \in H_{2}\right\},
$$

so that $H_{1} H_{2}$ is a union of left cosets (but it is not in general a subgroup of G unless one of H, K is normal). We define $H_{1} H_{2} / H_{2}$ to be the set of left cosets of H_{2} of the form $x H_{2}$ for $x \in H_{1} H_{2}$. Then the function $\tilde{f}: H_{1} \rightarrow H_{1} H_{2} / H_{2}$ defined by $\tilde{f}(h)=h H_{2}$ induces a bijection

$$
f: H_{1} / H_{1} \cap H_{2} \rightarrow H_{1} H_{2} / H_{2} .
$$

Proof. It is straightforward to check that f is surjective and that $f(h)=$ $f\left(h^{\prime}\right) \Longleftrightarrow h=h^{\prime} h^{\prime \prime}$ for some $h^{\prime \prime} \in H_{1} \cap H_{2}$.

Returning to the proof of Mackey's theorem, since $K y_{i} H$ is a disjoint union of left cosets of H, we can write

$$
K y_{i} H=\bigcup_{j=1}^{k_{i}} x_{i j} H,
$$

where the $x_{i j} \in G, 1 \leq i \leq n, 1 \leq j \leq k_{i}$ are a set of representatives for the left cosets of H. Then we can write

$$
K y_{i} H y_{i}^{-1}=\bigcup_{j=1}^{k_{i}} x_{i j} y_{i}^{-1} y_{i} H y_{i}^{-1}
$$

a disjoint union of cosets $\left(x_{i j} y_{i}^{-1}\right) y_{i} H y_{i}^{-1}$ for the subgroup $y_{i} H y_{i}^{-1}$. Also, if $z_{1}, \ldots, z_{k_{i}}$ are any set of representatives for $K y_{i} H y_{i}^{-1} / y_{i} H y_{i}^{-1}$, then $K y_{i} H y_{i}^{-1}$ is a disjoint union $\bigcup_{j=1}^{k_{i}} z_{i} y_{i} H y_{i}^{-1}$ and then it follows that $K y_{i} H=\bigcup_{j=1}^{k_{i}} z_{j} y_{i} H$. In other words, we can choose the $x_{i j}$ to be of the form $z_{j} y_{i}$ for any set of representatives $z_{1}, \ldots z_{k_{i}}$ of $K y_{i} H y_{i}^{-1} / y_{i} H y_{i}^{-1}$.

Applying Lemma 2.3 to the case where $H_{1}=K$ and $H_{2}=y_{i} H y_{i}^{-1}$: we can choose a set of representatives $z_{1}, \ldots z_{k_{i}}$ for $K y_{i} H y_{i}^{-1} / y_{i} H y_{i}^{-1}$ of the form z_{j}, where the $z_{j} \in K$ are a set of representatives for $K / y_{i} H y_{i}^{-1} \cap K=$ K / H_{i}. Thus, taking $x_{i j}=z_{j} y_{i}$ and hence $z_{j}=x_{i j} y_{i}^{-1}$, we can assume that $x_{i j} y_{i}^{-1} \in K$ and that the $x_{i j} y_{i}^{-1}, 1 \leq j \leq k_{i}$, are a set of representatives for the left cosets K / H_{i}.

Now let $V=\operatorname{Ind}_{H}^{G} W$. Then we have seen that $V \cong \bigoplus_{r=1}^{k} W^{(r)}$, where $k=(G: H)$ and the subspaces $W^{(r)}$ are indexed by a set of representatives for G / H. In our case, we have the set of representatives $x_{i j}$ indexed by i and j, and so can write the direct sum as follows:

$$
V \cong \bigoplus_{i, j} W^{(i, j)}=\bigoplus_{i=1}^{n}\left(\bigoplus_{j=1}^{k_{i}} W^{(i, j)}\right)
$$

where

$$
W^{(i, j)}=\left\{F \in \operatorname{Ind}_{H}^{G} W: F(g)=0 \text { if } g \notin x_{i j} H\right\} .
$$

Moreover, $W^{(i, j)}$ is spanned by functions $F_{i, j, w}$, where $\rho_{\operatorname{Ind}_{H}^{G}}(g)$ acts on $F_{i, j, w}$ as follows: if $g x_{i j}=x_{k \ell} h_{i j}(g)$, then

$$
\rho_{\operatorname{Ind}_{H}^{G} W}(g)\left(F_{i, j, w}\right)=F_{k, \ell, \rho_{W}\left(h_{i j}(g)\right)(w)} .
$$

So it suffices to show that the subspaces $\bigoplus_{j=1}^{k_{i}} W^{(i, j)}$ are K-invariant and that each such subspace is K-isomorphic to $\operatorname{Ind}_{H_{i}}^{K} W_{i}$. To see this, note that, if $k \in K$, then $k x_{i j} \in K y_{i} H$, and so $k x_{i j}=x_{i \ell} h_{i j}(k)$ for some $h_{i j}(k) \in H$ (since $K y_{i} H$ is a union of the $\left.x_{i \ell} H\right)$. This says that the subspaces $\bigoplus_{j=1}^{k_{i}} W^{(i, j)}$ are K-invariant and that

$$
\rho_{\operatorname{Ind}_{H}^{G}}(k)\left(F_{i, j, w}\right)=F_{i, \ell, \rho_{W}}\left(h_{i j}(k)\right)(w) .
$$

To compare this K-representation with $\operatorname{Ind}_{H_{i}}^{K} W_{i}$, first note that, fixing i, as $k x_{i j}=x_{i \ell} h_{i j}(k)$ and $z_{j}=x_{i j} y_{i}^{-1}$,

$$
k z_{j}=k x_{i j} y_{i}^{-1}=x_{i \ell} h_{i j}(k) y_{i}^{-1}=z_{\ell}\left(y_{i} h_{i j}(k) y_{i}^{-1}\right)
$$

Moreover, since $k, z_{j}, z_{\ell} \in K$, it follows that $y_{i} h_{i j}(k) y_{i}^{-1} \in y_{i} H y_{i}^{-1} \cap K=H_{i}$. The above says that

$$
\operatorname{Ind}_{H_{i}}^{K} W_{i} \cong \bigoplus_{j=1}^{k_{i}} W_{i}^{(j)}
$$

where $W_{i}^{(j)}$ is spanned by functions which we denote by $G_{i, j, w}$ and

$$
\rho_{\operatorname{Ind}_{H_{i}}^{K}}(k)\left(G_{i, j, w}\right)=G_{i, \ell, \rho_{W}\left(h_{i j}(k)\right)(w)} .
$$

Comparing, we see that, after identifying $F_{i, j, w}$ with $G_{i, j, w}$, the action of $k \in K$ on $\bigoplus_{j=1}^{k_{i}} W^{(i, j)}$ is the same as the action of $k \in K$ on $\operatorname{Ind}_{H_{i}}^{K} W_{i}$. Thus

$$
\bigoplus_{j=1}^{k_{i}} W^{(i, j)} \cong \operatorname{Ind}_{H_{i}}^{K} W_{i}
$$

and hence $\operatorname{Res}_{K}^{G} \operatorname{Ind}_{H}^{G} W=\bigoplus_{i=1}^{n} \operatorname{Ind}_{H_{i}}^{K} W_{i}$ as claimed.
We turn now to Mackey's second theorem. Before stating it, we give a preliminary definition:

Definition 2.4. Let G be a finite group and let V_{1} and V_{2} be two G representations. We say that V_{1} and V_{2} are disjoint if no irreducible summand of V_{1} is isomorphic to an irreducible summand of V_{2}, or equivalently if $\left\langle\chi_{V_{1}}, \chi_{V_{2}}\right\rangle_{G}=0$.

We can then state the following:
Theorem 2.5 (Mackey's irreducibility criterion). Let G be a finite group, H a subgroup of G, and W an H-representation. Then $\operatorname{Ind}_{H}^{G} W$ is irreducible \Longleftrightarrow the following two conditions hold:
(i) W is an irreducible H-representation.
(ii) For every $x \in G-H$, if we set W_{x} to be the representation of $x H x^{-1}$ corresponding to $\rho_{W} \circ i_{x}^{-1}$ and $H_{x}=x H x^{-1} \cap H$, the representations $\operatorname{Res}_{H_{x}}^{H} W$ and $\operatorname{Res}_{H_{x}}^{x H x^{-1}} W_{x}$ are disjoint H_{x}-representations.

Remark 2.6. (1) If H is normal, then $H_{x}=H$ and the statement is just that of Theorem 1.2.
(2) The subgroup H_{x} only depends on the double coset $H x H$ up to conjugation by an element of H.

Proof. Choose a set y_{1}, \ldots, y_{n} for the double cosets $H x H$. We might as well assume that $y_{1}=1$ and thus that $H y_{1} H=H 1 H=H$ and that $i_{y_{1}}^{-1}=\mathrm{Id}$. Since G is a disjoint union of the $H y_{i} H$,

$$
G-H=\bigcup_{i>1} H y_{i} H
$$

Let $H_{i}=y_{i} H y_{i}^{-1} \cap H$, so that $H_{1}=1$, and define $W_{i}=\operatorname{Res}_{H_{i}}^{y_{i} H y_{i}^{-1}} W_{y_{i}}$. In particular, $W_{1} \cong W$.

The representation $\operatorname{Ind}_{H}^{G} W$ is irreducible $\Longleftrightarrow\left\langle\chi_{\operatorname{Ind}_{H}^{G}}, \chi_{\operatorname{Ind}_{H}^{G} W}\right\rangle_{G}=1$. By Frobenius reciprocity and Mackey's Theorem,

$$
\begin{aligned}
\left\langle\chi_{\operatorname{Ind}_{H}^{G} W}, \chi_{\operatorname{Ind}_{H}^{G} W}\right\rangle_{G} & =\left\langle\chi_{W}, \chi_{\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} W}\right\rangle_{H} \\
& =\sum_{i}\left\langle\chi_{W}, \chi_{\operatorname{Ind}_{H_{i}}^{H} W_{i}}\right\rangle_{H} \\
& =\sum_{i}\left\langle\chi_{\operatorname{Res}_{H_{i}}^{H} W}, \chi_{W_{i}}\right\rangle_{H_{i}},
\end{aligned}
$$

where we have used Frobenius reciprocity twice and Mackey's theorem to write $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} W \cong \bigoplus_{i} \operatorname{Ind}_{H_{y_{i}}}^{H} W_{i}$. In the last sum above, for $i=1$,

$$
\left\langle\chi_{\operatorname{Res}_{H_{1}}^{H}}, \chi_{W_{1}}\right\rangle_{H_{1}}=\left\langle\chi_{W}, \chi_{W}\right\rangle_{H}
$$

is a positive integer, and it is $1 \Longleftrightarrow W$ is irreducible. As for the remaining terms $\left\langle\chi_{\operatorname{Res}_{H_{i}}^{H} W}, \chi_{W_{i}}\right\rangle_{H_{i}}$ for $i>1$, they are all nonnegative integers, and they are $0 \Longleftrightarrow$ the representations $\operatorname{Res}_{H_{i}}^{H} W$ and $W_{i}=\operatorname{Res}_{H_{i}}^{y_{j} H y_{i}^{-1}} W_{y_{i}}$ are disjoint as previously defined. This is condition (ii) of the theorem for the elements $x=y_{i}, i>1$, which are exactly the $y_{i} \notin H=H y_{1} H$. Thus $\operatorname{Ind}_{H}^{G} W$ is irreducible $\Longleftrightarrow W$ is irreducible and $\operatorname{Res}_{H_{i}}^{H} W$ and $W_{i}=\operatorname{Res}_{H_{i}}^{y_{i} H y_{i}^{-1}} W_{y_{i}}$ are disjoint for all $i>1$. So it suffices to show that condition (ii) for all $x \notin H$ is equivalent to condition (ii) for the $y_{i} \notin H$. One direction is obvious: if (ii) holds for all $x \notin H$, then it holds for all $y_{i} \notin H$. Conversely, suppose that (ii) holds for all $y_{i} \notin H$. Given an arbitrary $x \notin H$, we can write $x=h y_{i} h^{\prime}$ for some $h, h^{\prime} \in H$, and $i>1$, since G is a disjoint union of the double cosets $H y_{i} H$. Then a straightforward argument shows that i_{h}^{-1} is an isomorphism from H_{x} to $H_{y_{i}}$ which identifies $\operatorname{Res}_{H_{x}}^{H} W$ with $\operatorname{Res}_{H_{i}}^{H} W$ and $\operatorname{Res}_{H_{x}}^{x H x^{-1}} W_{x}$ with $\operatorname{Res}_{H_{i}}^{y_{i} H y_{i}^{-1}} W_{y_{i}}$. Thus $\operatorname{Res}_{H_{x}}^{H} W$ and $\operatorname{Res}_{H_{x}}^{x H x^{-1}} W_{x}$ are disjoint H_{x}-representations for all $x \notin H \Longleftrightarrow \operatorname{Res}_{H_{i}}^{H} W$ and $W_{i}=$ $\operatorname{Res}_{H_{i}}^{y_{j} H y_{i}^{-1}} W_{y_{i}}$ are disjoint H_{i}-representations for all $i>1$.

