
Permutation representations

1 Permutation representations

Let G be a finite group and let X be a finite G-set. For simplicity we will
assume that #(X) ≥ 2. Recall that G acts transitively on X if, for all
x, y ∈ X, there exists a g ∈ G such that g · x = y. Equivalently, there is
exactly one G-orbit, i.e. for one (or equivalently all) x ∈ X, G · x = X.

Definition 1.1. G acts doubly transitively on X if, for all x, y, z, w ∈ X
with x 6= y and z 6= w, there exists a g ∈ G such that g ·x = z and g ·y = w.
In particular, the G-action is transitive.

Equivalently, let G act on the Cartesian product X ×X in the obvious
way: g · (x, y) = (g · x, g · y), and let ∆ ⊆ X ×X be the diagonal:

∆ = {(x, x) : x ∈ X} = {(x, y) ∈ X ×X : x = y}.

Thus ∆ is a G-invariant subset and so X × X − ∆ is also a G-set. Then
G acts doubly transitively on X ⇐⇒ G acts transitively on X × X − ∆
⇐⇒ there are exactly two G-orbits for the action of G on X ×X, namely
X ×X −∆ and ∆.

Example 1.2. 1) The symmetric group Sn acts doubly transitively on
{1, . . . , n} for n ≥ 2. In fact, given i, j, k, ` ∈ {1, . . . , n} with i 6= j and
k 6= `, the sets {1, . . . , n} − {i, j} and {1, . . . , n} − {k, `} both have n − 2
elements, so there is some bijection

σ0 : {1, . . . , n} − {i, j} → {1, . . . , n} − {k, `}.

Then define a permutation σ : {1, . . . , n} → {1, . . . , n} by

σ(i) = k; σ(j) = `; σ(x) = σ0(x), x 6= i, j.

Then by construction σ(i) = k and σ(j) = `, so the action is doubly transi-
tive.
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2) The alternating group An acts doubly transitively on {1, . . . , n} for
n ≥ 4: Given i, j, k, ` ∈ {1, . . . , n} with i 6= j and k 6= `, use the above
to find a σ ∈ Sn such that σ(i) = k and σ(j) = `. If σ ∈ An, we are
done. Otherwise, σ is odd. Since n ≥ 4, there exists two distinct elements
r, s ∈ {1, . . . , n} − {k, `}. Then (r, s)σ ∈ An since it is a product of an
even number of transpositions and (r, s)σ(i) = (r, s)(k) = k and similarly
(r, s)σ(j) = (r, s)(`) = `. Thus the action is doubly transitive. Note however
that for n = 2, 3 the action of An on {1, . . . , n} is not doubly transitive. For
example, there is no σ ∈ A3 such that σ(1) = 2 and σ(2) = 1.

3) For n ≥ 4, the action of Dn on the vertices of a regular n-gon (or
equivalently on the n points (cos 2πk

n , sin 2πk
n ) in the model for Dn we have

constructed) is transitive but not doubly transitive. This is because the
action must send a pair of adjacent vertices to a pair of adjacent vertices,
and, for n ≥ 4, there are always vertices which are not adjacent.

Let X be a G-set and consider C[X], viewed as a G-representation.
Our goal is to better understand the decomposition of C[X] into irreducible
representations. There is always a one-dimensional G-invariant subspace
W1 = t ·

∑
x∈X x on which G acts trivially and a subspace

W2 =

{∑
x∈X

tx · x :
∑
x∈X

tx = 0

}
,

with C[X] = W1⊕W2. Note that W1 ⊆ C[X]G, but equality does not always
hold.

Proposition 1.3. dimC[X]G is equal to the number of G-orbits of X.

Proof. Write the distinct orbits of G in X as O1, . . . , Ot. For each i, 1 ≤
i ≤ t, set

vi =
∑
x∈Oi

x ∈ C[X].

Viewing C[X] as L2(X), the vector space of functions from X to C, the
element vi corresponds to the characteristic function of Oi, i.e. the function
fOi defined by

fOi(x) =

{
1, if x ∈ Oi;
0, if x /∈ Oi.

Clearly v1, . . . , vt are linearly independent elements of C[X]. Moreover,

ρC[X](g)(vi) =
∑
x∈Oi

ρC[X](g)(x) =
∑
x∈Oi

g · x =
∑
x∈Oi

x = vi,
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since g ∈ G permutes the orbit Oi. Hence v1, . . . , vt are linearly independent
elements of C[X]G. We must show that they span C[X]G. Given an element
α =

∑
x∈X tx · x, we can break the sum up into a sum over the orbits:

α =
∑
x∈X

tx · x =
t∑
i=1

∑
x∈Oi

tx · x.

Claim 1.4. If α =
∑

x∈X tx · x ∈ C[X]G, then, for all x, y ∈ Oi, tx = ty,
i.e. the value tx is the same for all x ∈ Oi.

In fact, assuming the claim, let si be the common value of tx for x ∈ Oi.
Then α =

∑t
i=1 sivi. Thus the vi span C[X]G and hence are a basis, so

dimC[X]G = t.

Proof of the claim. It follows from the definitions that α =
∑

x∈X tx · x ∈
C[X]G ⇐⇒ ρC[X](g)(α) = α for all g ∈ G ⇐⇒ for all g ∈ G∑

x∈X
tx · (g · x) =

∑
x∈X

tx · x.

Equivalently, for all x ∈ X and all g ∈ G, tx = tg−1·x. In particular, if y is
in the same orbit Oi as x, say x = g · y, then ty = tg−1·x = tx, which is the
statement of the claim.

Corollary 1.5. The subspace W1 of C[X] is equal to C[X]G, or equivalently
(W2)

G = {0} ⇐⇒ G acts transitively on X.

Corollary 1.6 (Burnside’s lemma). If the finite group G acts on a finite
set X, and t is the number of G-orbits of X, then

t#(G) =
∑
g∈G

#(Xg).

Proof. By general theory,

dimC[X]G = 〈χC[X], 1〉 =
1

#(G)

∑
g∈G

χC[X](g) =
1

#(G)

∑
g∈G

#(Xg),

where Xg = {x ∈ X : g · x = x}. Thus the corollary follows from Proposi-
tion 1.3.

Theorem 1.7. With notation as above, write C[X] = W1 ⊕ W2. Then
W1 = C[X]G ⇐⇒ G acts transitively on X. Moreover, in this case W2 is
irreducible ⇐⇒ G acts doubly transitively on X.
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Proof. The first statement is Corollary 1.5. Assume that this is the case.
Now W2 is irreducible ⇐⇒ 〈χW2 , χW2〉 = 1. On the other hand, we can
write

χC[X] = χW1 + χW2 = 1 + χW2 .

Thus

〈χC[X], χC[X]〉 = 〈1 + χW2 , 1 + χW2〉
= 〈1, 1〉+ 〈1, χW2〉+ 〈χW2 , 1〉+ 〈χW2 , χW2〉.

Clearly 〈1, 1〉 = 1. Since G acts transitively on X, WG
2 = {0}, and hence

〈χW2 , 1〉 = 0, likewise 〈1, χW2〉 = 〈χW2 , 1〉 = 0. It follows that

〈χC[X], χC[X]〉 = 1 + 〈χW2 , χW2〉.

Thus W2 is irreducible ⇐⇒ 〈χW2 , χW2〉 = 1 ⇐⇒ 〈χC[X], χC[X]〉 = 2.
Clearly, all of the values of χC[X] are integers, since χC[X](g) = #(Xg).

In particular, they are real numbers. Thus

〈χC[X], χC[X]〉 =
1

#(G)

∑
g∈G
|χC[X](g)|2 =

1

#(G)

∑
g∈G

χC[X](g)2 = 〈χ2
C[X], 1〉.

Next, we claim that
χ2
C[X] = χC[X×X].

In fact, for every g ∈ G, χ2
C[X](g) = (#(Xg))2. On the other hand, we have

seen that
χC[X×X](g) = #((X ×X)g),

where (X ×X)g = {(x, y) ∈ X ×X : g · (x, y) = (x, y)}. Since g · (x, y) =
(g · x, g · y), (x, y) ∈ (X × X)g ⇐⇒ g · x = x and g · y = y ⇐⇒
x ∈ Xg and y ∈ Xg. In other words, (X × X)g = (Xg) × (Xg). Thus
#((X ×X)g) = (#(Xg))2 and hence χ2

C[X] = χC[X×X] as claimed.
Putting this together, we see that

〈χC[X], χC[X]〉 = 〈χ2
C[X], 1〉 = 〈χC[X×X], 1〉.

By Proposition 1.3, 〈χC[X×X], 1〉 is the number of orbits of G acting on
X × X. Hence, by the remarks in Definition 1.1, 〈χC[X], χC[X]〉 = 2 ⇐⇒
the G-action on X ×X has exactly two orbits ⇐⇒ the G-action on X is
doubly transitive.

Corollary 1.8. For n ≥ 2, the representation of Sn on W = {(t1, . . . , tn) :∑
i ti = 0} is an irreducible representation of dimension n − 1. For n ≥ 4,

the representation of An on W is an irreducible representation of dimension
n− 1.
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