Permutation representations

1 Permutation representations

Let G be a finite group and let X be a finite G-set. For simplicity we will assume that $\#(X) \geq 2$. Recall that G acts transitively on X if, for all $x, y \in X$, there exists a $g \in G$ such that $g \cdot x=y$. Equivalently, there is exactly one G-orbit, i.e. for one (or equivalently all) $x \in X, G \cdot x=X$.

Definition 1.1. G acts doubly transitively on X if, for all $x, y, z, w \in X$ with $x \neq y$ and $z \neq w$, there exists a $g \in G$ such that $g \cdot x=z$ and $g \cdot y=w$. In particular, the G-action is transitive.

Equivalently, let G act on the Cartesian product $X \times X$ in the obvious way: $g \cdot(x, y)=(g \cdot x, g \cdot y)$, and let $\Delta \subseteq X \times X$ be the diagonal:

$$
\Delta=\{(x, x): x \in X\}=\{(x, y) \in X \times X: x=y\} .
$$

Thus Δ is a G-invariant subset and so $X \times X-\Delta$ is also a G-set. Then G acts doubly transitively on $X \Longleftrightarrow G$ acts transitively on $X \times X-\Delta$ \Longleftrightarrow there are exactly two G-orbits for the action of G on $X \times X$, namely $X \times X-\Delta$ and Δ.

Example 1.2. 1) The symmetric group S_{n} acts doubly transitively on $\{1, \ldots, n\}$ for $n \geq 2$. In fact, given $i, j, k, \ell \in\{1, \ldots, n\}$ with $i \neq j$ and $k \neq \ell$, the sets $\{1, \ldots, n\}-\{i, j\}$ and $\{1, \ldots, n\}-\{k, \ell\}$ both have $n-2$ elements, so there is some bijection

$$
\sigma_{0}:\{1, \ldots, n\}-\{i, j\} \rightarrow\{1, \ldots, n\}-\{k, \ell\} .
$$

Then define a permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ by

$$
\sigma(i)=k ; \quad \sigma(j)=\ell ; \quad \sigma(x)=\sigma_{0}(x), \quad x \neq i, j .
$$

Then by construction $\sigma(i)=k$ and $\sigma(j)=\ell$, so the action is doubly transitive.
2) The alternating group A_{n} acts doubly transitively on $\{1, \ldots, n\}$ for $n \geq$ 4: Given $i, j, k, \ell \in\{1, \ldots, n\}$ with $i \neq j$ and $k \neq \ell$, use the above to find a $\sigma \in S_{n}$ such that $\sigma(i)=k$ and $\sigma(j)=\ell$. If $\sigma \in A_{n}$, we are done. Otherwise, σ is odd. Since $n \geq 4$, there exists two distinct elements $r, s \in\{1, \ldots, n\}-\{k, \ell\}$. Then $(r, s) \sigma \in A_{n}$ since it is a product of an even number of transpositions and $(r, s) \sigma(i)=(r, s)(k)=k$ and similarly $(r, s) \sigma(j)=(r, s)(\ell)=\ell$. Thus the action is doubly transitive. Note however that for $n=2,3$ the action of A_{n} on $\{1, \ldots, n\}$ is not doubly transitive. For example, there is no $\sigma \in A_{3}$ such that $\sigma(1)=2$ and $\sigma(2)=1$.
3) For $n \geq 4$, the action of D_{n} on the vertices of a regular n-gon (or equivalently on the n points $\left(\cos \frac{2 \pi k}{n}, \sin \frac{2 \pi k}{n}\right)$ in the model for D_{n} we have constructed) is transitive but not doubly transitive. This is because the action must send a pair of adjacent vertices to a pair of adjacent vertices, and, for $n \geq 4$, there are always vertices which are not adjacent.

Let X be a G-set and consider $\mathbb{C}[X]$, viewed as a G-representation. Our goal is to better understand the decomposition of $\mathbb{C}[X]$ into irreducible representations. There is always a one-dimensional G-invariant subspace $W_{1}=t \cdot \sum_{x \in X} x$ on which G acts trivially and a subspace

$$
W_{2}=\left\{\sum_{x \in X} t_{x} \cdot x: \sum_{x \in X} t_{x}=0\right\}
$$

with $\mathbb{C}[X]=W_{1} \oplus W_{2}$. Note that $W_{1} \subseteq \mathbb{C}[X]^{G}$, but equality does not always hold.

Proposition 1.3. $\operatorname{dim} \mathbb{C}[X]^{G}$ is equal to the number of G-orbits of X.
Proof. Write the distinct orbits of G in X as O_{1}, \ldots, O_{t}. For each $i, 1 \leq$ $i \leq t$, set

$$
v_{i}=\sum_{x \in O_{i}} x \in \mathbb{C}[X] .
$$

Viewing $\mathbb{C}[X]$ as $L^{2}(X)$, the vector space of functions from X to \mathbb{C}, the element v_{i} corresponds to the characteristic function of O_{i}, i.e. the function $f_{O_{i}}$ defined by

$$
f_{O_{i}}(x)= \begin{cases}1, & \text { if } x \in O_{i} \\ 0, & \text { if } x \notin O_{i}\end{cases}
$$

Clearly v_{1}, \ldots, v_{t} are linearly independent elements of $\mathbb{C}[X]$. Moreover,

$$
\rho_{\mathbb{C}[X]}(g)\left(v_{i}\right)=\sum_{x \in O_{i}} \rho_{\mathbb{C}[X]}(g)(x)=\sum_{x \in O_{i}} g \cdot x=\sum_{x \in O_{i}} x=v_{i},
$$

since $g \in G$ permutes the orbit O_{i}. Hence v_{1}, \ldots, v_{t} are linearly independent elements of $\mathbb{C}[X]^{G}$. We must show that they span $\mathbb{C}[X]^{G}$. Given an element $\alpha=\sum_{x \in X} t_{x} \cdot x$, we can break the sum up into a sum over the orbits:

$$
\alpha=\sum_{x \in X} t_{x} \cdot x=\sum_{i=1}^{t} \sum_{x \in O_{i}} t_{x} \cdot x .
$$

Claim 1.4. If $\alpha=\sum_{x \in X} t_{x} \cdot x \in \mathbb{C}[X]^{G}$, then, for all $x, y \in O_{i}, t_{x}=t_{y}$, i.e. the value t_{x} is the same for all $x \in O_{i}$.

In fact, assuming the claim, let s_{i} be the common value of t_{x} for $x \in O_{i}$. Then $\alpha=\sum_{i=1}^{t} s_{i} v_{i}$. Thus the v_{i} span $\mathbb{C}[X]^{G}$ and hence are a basis, so $\operatorname{dim} \mathbb{C}[X]^{G}=t$.

Proof of the claim. It follows from the definitions that $\alpha=\sum_{x \in X} t_{x} \cdot x \in$ $\mathbb{C}[X]^{G} \Longleftrightarrow \rho_{\mathbb{C}[X]}(g)(\alpha)=\alpha$ for all $g \in G \Longleftrightarrow$ for all $g \in G$

$$
\sum_{x \in X} t_{x} \cdot(g \cdot x)=\sum_{x \in X} t_{x} \cdot x .
$$

Equivalently, for all $x \in X$ and all $g \in G, t_{x}=t_{g^{-1} \cdot x}$. In particular, if y is in the same orbit O_{i} as x, say $x=g \cdot y$, then $t_{y}=t_{g^{-1 \cdot x}}=t_{x}$, which is the statement of the claim.

Corollary 1.5. The subspace W_{1} of $\mathbb{C}[X]$ is equal to $\mathbb{C}[X]^{G}$, or equivalently $\left(W_{2}\right)^{G}=\{0\} \Longleftrightarrow G$ acts transitively on X.

Corollary 1.6 (Burnside's lemma). If the finite group G acts on a finite set X, and t is the number of G-orbits of X, then

$$
t \#(G)=\sum_{g \in G} \#\left(X^{g}\right)
$$

Proof. By general theory,

$$
\operatorname{dim} \mathbb{C}[X]^{G}=\left\langle\chi_{\mathbb{C}[X]}, 1\right\rangle=\frac{1}{\#(G)} \sum_{g \in G} \chi_{\mathbb{C}[X]}(g)=\frac{1}{\#(G)} \sum_{g \in G} \#\left(X^{g}\right),
$$

where $X^{g}=\{x \in X: g \cdot x=x\}$. Thus the corollary follows from Proposition 1.3.

Theorem 1.7. With notation as above, write $\mathbb{C}[X]=W_{1} \oplus W_{2}$. Then $W_{1}=\mathbb{C}[X]^{G} \Longleftrightarrow G$ acts transitively on X. Moreover, in this case W_{2} is irreducible $\Longleftrightarrow G$ acts doubly transitively on X.

Proof. The first statement is Corollary 1.5. Assume that this is the case. Now W_{2} is irreducible $\Longleftrightarrow\left\langle\chi_{W_{2}}, \chi_{W_{2}}\right\rangle=1$. On the other hand, we can write

$$
\chi_{\mathbb{C}[X]}=\chi_{W_{1}}+\chi_{W_{2}}=1+\chi_{W_{2}} .
$$

Thus

$$
\begin{aligned}
\left\langle\chi_{\mathbb{C}[X]}, \chi_{\mathbb{C}[X]}\right\rangle & =\left\langle 1+\chi_{W_{2}}, 1+\chi_{W_{2}}\right\rangle \\
& =\langle 1,1\rangle+\left\langle 1, \chi_{W_{2}}\right\rangle+\left\langle\chi_{W_{2}}, 1\right\rangle+\left\langle\chi_{W_{2}}, \chi_{W_{2}}\right\rangle .
\end{aligned}
$$

Clearly $\langle 1,1\rangle=1$. Since G acts transitively on $X, W_{2}^{G}=\{0\}$, and hence $\left\langle\chi_{W_{2}}, 1\right\rangle=0$, likewise $\left\langle 1, \chi_{W_{2}}\right\rangle=\overline{\left\langle\chi_{W_{2}}, 1\right\rangle}=0$. It follows that

$$
\left\langle\chi_{\mathbb{C}[X]}, \chi_{\mathbb{C}[X]}\right\rangle=1+\left\langle\chi_{W_{2}}, \chi_{W_{2}}\right\rangle .
$$

Thus W_{2} is irreducible $\Longleftrightarrow\left\langle\chi_{W_{2}}, \chi_{W_{2}}\right\rangle=1 \Longleftrightarrow\left\langle\chi_{\mathbb{C}[X]}, \chi_{\mathbb{C}[X]}\right\rangle=2$.
Clearly, all of the values of $\chi_{\mathbb{C}[X]}$ are integers, since $\chi_{\mathbb{C}[X]}(g)=\#\left(X^{g}\right)$. In particular, they are real numbers. Thus

$$
\left\langle\chi_{\mathbb{C}[X]}, \chi_{\mathbb{C}[X]}\right\rangle=\frac{1}{\#(G)} \sum_{g \in G}\left|\chi_{\mathbb{C}[X]}(g)\right|^{2}=\frac{1}{\#(G)} \sum_{g \in G} \chi_{\mathbb{C}[X]}(g)^{2}=\left\langle\chi_{\mathbb{C}[X]}^{2}, 1\right\rangle .
$$

Next, we claim that

$$
\chi_{\mathbb{C}[X]}^{2}=\chi_{\mathbb{C}[X \times X]} .
$$

In fact, for every $g \in G, \chi_{\mathbb{C}[X]}^{2}(g)=\left(\#\left(X^{g}\right)\right)^{2}$. On the other hand, we have seen that

$$
\chi_{\mathbb{C}[X \times X]}(g)=\#\left((X \times X)^{g}\right),
$$

where $(X \times X)^{g}=\{(x, y) \in X \times X: g \cdot(x, y)=(x, y)\}$. Since $g \cdot(x, y)=$ $(g \cdot x, g \cdot y),(x, y) \in(X \times X)^{g} \Longleftrightarrow g \cdot x=x$ and $g \cdot y=y \Longleftrightarrow$ $x \in X^{g}$ and $y \in X^{g}$. In other words, $(X \times X)^{g}=\left(X^{g}\right) \times\left(X^{g}\right)$. Thus $\#\left((X \times X)^{g}\right)=\left(\#\left(X^{g}\right)\right)^{2}$ and hence $\chi_{\mathbb{C}[X]}^{2}=\chi_{\mathbb{C}[X \times X]}$ as claimed.

Putting this together, we see that

$$
\left\langle\chi_{\mathbb{C}[X]}, \chi_{\mathbb{C}[X]}\right\rangle=\left\langle\chi_{\mathbb{C}[X]}^{2}, 1\right\rangle=\left\langle\chi_{\mathbb{C}[X \times X]}, 1\right\rangle .
$$

By Proposition 1.3, $\left\langle\chi_{\mathbb{C}[X \times X]}, 1\right\rangle$ is the number of orbits of G acting on $X \times X$. Hence, by the remarks in Definition 1.1, $\left\langle\chi_{\mathbb{C}[X]}, \chi_{\mathbb{C}[X]}\right\rangle=2 \Longleftrightarrow$ the G-action on $X \times X$ has exactly two orbits \Longleftrightarrow the G-action on X is doubly transitive.

Corollary 1.8. For $n \geq 2$, the representation of S_{n} on $W=\left\{\left(t_{1}, \ldots, t_{n}\right)\right.$: $\left.\sum_{i} t_{i}=0\right\}$ is an irreducible representation of dimension $n-1$. For $n \geq 4$, the representation of A_{n} on W is an irreducible representation of dimension $n-1$.

