Problem set 1 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!
Exercise 1. Let V be a finite dimensional complex vector space. Let $T: V \rightarrow V$ be a finite order linear automorphism. Explain why T is diagonizable in your own words.
Exercise 2. Let V_{1}, V_{2} be finite dimensional complex vector spaces. Let $T_{i}: V_{i} \rightarrow$ $V_{i}, i=1,2$ be linear maps. Set $V=V_{1} \oplus V_{2}$ (direct sum). Denote $T=T_{1} \oplus T_{2}$: $V \rightarrow V$ the induced linear map defined by the rule $T\left(v_{1} \oplus v_{2}\right)=\left(T_{1}\left(v_{1}\right), T_{2}\left(v_{2}\right)\right)$.
(1) Express the rank of T in terms of the ranks of T_{1} and T_{2}.
(2) Express $\operatorname{Tr}(T)$ in terms of $\operatorname{Tr}\left(T_{1}\right)$ and $\operatorname{Tr}\left(T_{2}\right)$.
(3) Express $\operatorname{det}(T)$ in terms of $\operatorname{det}\left(T_{1}\right)$ and $\operatorname{det}\left(T_{2}\right)$.

Please explain briefly.
Exercise 3. Let V_{1}, V_{2} be finite dimensional complex vector spaces. Let $T_{i}: V_{i} \rightarrow$ $V_{i}, i=1,2$ be linear maps. Set $V=V_{1} \otimes V_{2}$ (tensor product). Recall that elements v of V are finite linear combinations

$$
v=\sum v_{1, k} \otimes v_{2, k}
$$

subject to the relations
$\left(v_{1}+v_{1}^{\prime}\right) \otimes v_{2}=v_{1} \otimes v_{2}+v_{1}^{\prime} \otimes v_{2}, \quad v_{1} \otimes\left(v_{2}+v_{2}^{\prime}\right)=v_{1} \otimes v_{2}+v_{1} \otimes v_{2}^{\prime}, \quad a v_{1} \otimes v_{2}=v_{1} \otimes a v_{2}$
Thus there is a unique linear map $T=T_{1} \otimes T_{2}: V \rightarrow V$ such that for all $v_{i} \in V_{i}$, $i=1,2$ we have $T\left(v_{1} \otimes v_{2}\right)=T_{1}\left(v_{1}\right) \otimes T_{2}\left(v_{2}\right)$.
(1) Express the rank of T in terms of the ranks of T_{1} and T_{2}.
(2) Express $\operatorname{Tr}(T)$ in terms of $\operatorname{Tr}\left(T_{1}\right)$ and $\operatorname{Tr}\left(T_{2}\right)$.
(3) Express $\operatorname{det}(T)$ in terms of $\operatorname{det}\left(T_{1}\right)$ and $\operatorname{det}\left(T_{2}\right)$.

Please explain briefly. Hint: If e_{1}, \ldots, e_{n} is a basis of V_{1} and f_{1}, \ldots, f_{m} is a basis of V_{2}, then $e_{i} \otimes f_{j}, i=1, \ldots, n, j=1, \ldots, m$ is a basis for V. If it helps, first restrict to the case of diagonizable T_{1} and T_{2}.

Exercise 4. Let $G=S_{4}$ be the symmetric group on 4 letters. Let $\rho: G \rightarrow G L_{4}(\mathbf{C})$ be the representation given by permutation matrices as in the first lecture.
(1) Compute the subspace of G-invariant vectors $V=\left(\mathbf{C}^{4}\right)^{G}$.
(2) As in the lecture, find a G-invariant subspace $W \subset \mathbf{C}^{4}$ such that $V \oplus W=$ \mathbf{C}^{4} (this is called an "internal direct sum" in the linear algebra notes).
(3) Show that W is irreducible.
(4) Discuss to what extent your arguments would work if 4 is replaced by $n>4$. Hints: two possible things you can try for (3): (a) you could show that for any nonzero vector x in W the span of the elements $\sigma \cdot x$ must be all of W, or (b) you could first show that no 1-dimensional subspace $W^{\prime} \subset W$ can be G-invariant (as in the first lecture) and then show that if $W^{\prime} \subset W$ is 2-dimensional, then it contains a nonzero vector x of the form $x=\left(x_{1}, x_{2}, x_{3}, 0\right)$ and use the result in 3 dimensions to conclude.
Exercise 5. For any integer $n>1$ find a nonabelian group G of order $6 n^{3}$ inside $G L_{3}(\mathbf{C})$. Is the representation you found irreducible?

