Problem set 1 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!

Exercise 1. Let V be a finite dimensional complex vector space. Let $T: V \to V$ be a finite order linear automorphism. Explain why T is diagonizable in your own words.

Exercise 2. Let V_1 , V_2 be finite dimensional complex vector spaces. Let $T_i : V_i \rightarrow V_i$, i = 1, 2 be linear maps. Set $V = V_1 \oplus V_2$ (direct sum). Denote $T = T_1 \oplus T_2 : V \rightarrow V$ the induced linear map defined by the rule $T(v_1 \oplus v_2) = (T_1(v_1), T_2(v_2))$.

- (1) Express the rank of T in terms of the ranks of T_1 and T_2 .
- (2) Express Tr(T) in terms of $Tr(T_1)$ and $Tr(T_2)$.
- (3) Express det(T) in terms of $det(T_1)$ and $det(T_2)$.

Please explain briefly.

Exercise 3. Let V_1 , V_2 be finite dimensional complex vector spaces. Let $T_i : V_i \to V_i$, i = 1, 2 be linear maps. Set $V = V_1 \otimes V_2$ (tensor product). Recall that elements v of V are finite linear combinations

$$v = \sum v_{1,k} \otimes v_{2,k}$$

subject to the relations

 $(v_1+v'_1)\otimes v_2 = v_1\otimes v_2+v'_1\otimes v_2, \quad v_1\otimes (v_2+v'_2) = v_1\otimes v_2+v_1\otimes v'_2, \quad av_1\otimes v_2 = v_1\otimes av_2$ Thus there is a unique linear map $T = T_1 \otimes T_2 : V \to V$ such that for all $v_i \in V_i, i = 1, 2$ we have $T(v_1 \otimes v_2) = T_1(v_1) \otimes T_2(v_2).$

- (1) Express the rank of T in terms of the ranks of T_1 and T_2 .
- (2) Express Tr(T) in terms of $Tr(T_1)$ and $Tr(T_2)$.
- (3) Express det(T) in terms of $det(T_1)$ and $det(T_2)$.

Please explain briefly. Hint: If e_1, \ldots, e_n is a basis of V_1 and f_1, \ldots, f_m is a basis of V_2 , then $e_i \otimes f_j$, $i = 1, \ldots, n$, $j = 1, \ldots, m$ is a basis for V. If it helps, first restrict to the case of diagonizable T_1 and T_2 .

Exercise 4. Let $G = S_4$ be the symmetric group on 4 letters. Let $\rho : G \to GL_4(\mathbb{C})$ be the representation given by permutation matrices as in the first lecture.

- (1) Compute the subspace of G-invariant vectors $V = (\mathbf{C}^4)^G$.
- (2) As in the lecture, find a *G*-invariant subspace $W \subset \mathbb{C}^4$ such that $V \oplus W = \mathbb{C}^4$ (this is called an "internal direct sum" in the linear algebra notes).
- (3) Show that W is irreducible.
- (4) Discuss to what extent your arguments would work if 4 is replaced by n > 4.

Hints: two possible things you can try for (3): (a) you could show that for any nonzero vector x in W the span of the elements $\sigma \cdot x$ must be all of W, or (b) you could first show that no 1-dimensional subspace $W' \subset W$ can be G-invariant (as in the first lecture) and then show that if $W' \subset W$ is 2-dimensional, then it contains a nonzero vector x of the form $x = (x_1, x_2, x_3, 0)$ and use the result in 3 dimensions to conclude.

Exercise 5. For any integer n > 1 find a nonabelian group G of order $6n^3$ inside $GL_3(\mathbf{C})$. Is the representation you found irreducible?