Problem set 10 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!

Material from lecture on Thursday, November 16. Let me explain it a little bit more here.

Situation. Let G be a finite group. For $i = 1, 2$, let $H_i \subset G$ be a subgroup and let $\chi_i : H_i \to \mathbb{C}^*$ be a group homomorphism (sometimes called a character, or a linear character, or a degree 1 character). Assume the following

(A1) $\chi_1|_{H_1 \cap H_2} = \chi_2|_{H_1 \cap H_2}$

(A2) for $g \in G$, $g \notin H_1H_2$ there exist a $z \in H_1 \cap gH_2g^{-1}$ such that $\chi_1(z) \neq \chi_2(g^{-1}zg)$.

Lemma 1. There exists a unique (up to isomorphism) irreducible representation (V, π) of G such that (V, π) occurs in both $\text{Ind}_{H_1}^G \chi_1$ and $\text{Ind}_{H_2}^G \chi_2$.

Proof. It suffices to show that

$$\text{Hom}_G(\text{Ind}_{H_1}^G \chi_1, \text{Ind}_{H_2}^G \chi_2)$$

is 1-dimensional. To see this we use adjointness of functors

$$\text{Hom}_G(\text{Ind}_{H_1}^G \chi_1, \text{Ind}_{H_2}^G \chi_2) = \text{Hom}_{H_1}(\chi_1, \text{Res}_{H_1}^G \text{Ind}_{H_2}^G \chi_2)$$

Write

$$G = H_1g_1H_2 \cdots H_ng_nH_2$$

We may and do choose $g_1 = 1$. Then $g_i \notin H_1H_2$ for $i = 2, \ldots, n$. By Mackey’s second theorem we have

$$\text{Res}_{H_1}^G \text{Ind}_{H_2}^G \chi_2 = \text{Ind}_{H_1 \cap H_2}^G \chi_2|_{H_1 \cap H_2} \oplus \bigoplus_{i=2,\ldots,n} \text{Ind}_{H_1,i}^G \psi_i$$

where

$$H_{1,i} = H_1 \cap g_iH_2g_i^{-1} \quad \text{and} \quad \psi_i(z) = \chi_2(g_i^{-1}zg_i)$$

Thus we have

$$\text{Hom}_{H_1}(\chi_1, \text{Res}_{H_1}^G \text{Ind}_{H_2}^G \chi_2)$$

$$\quad = \text{Hom}_{H_1}(\chi_1, \text{Ind}_{H_1 \cap H_2}^G \chi_2|_{H_1 \cap H_2}) \oplus \bigoplus_{i=2,\ldots,n} \text{Hom}_{H_1,i}(\chi_1, \text{Ind}_{H_1,i}^G \psi_i)$$

$$\quad = \text{Hom}_{H_1 \cap H_2}(\chi_1|_{H_1 \cap H_2}, \chi_2|_{H_1 \cap H_2}) \oplus \bigoplus_{i=2,\ldots,n} \text{Hom}_{H_1,i}(\chi_1|_{H_1,i}, \psi_i)$$

where in the second equality we used adjointness of restriction and induction again.

Thus condition (A1) tells us that the first summand has dimension 1 and condition (A2) tells us that the other summand have dimension 0. QED

Lemma 2. The representation (V, π) has multiplicity 1 in both $\text{Ind}_{H_1}^G \chi_1$ and $\text{Ind}_{H_2}^G \chi_2$.

Proof. Follows immediately from the fact that we proved $\text{Hom}_G(\text{Ind}_{H_1}^G \chi_1, \text{Ind}_{H_2}^G \chi_2)$ is 1-dimensional in the proof of Lemma 1. QED

Lemma 3. The representation (V, π) is the only irreducible representation of G (up to isomorphism) such that χ_1 occurs in $\text{Res}_{H_1}^G (V, \pi)$ and χ_2 occurs in $\text{Res}_{H_2}^G (V, \pi)$.

Proof. Follows from adjointness of restriction and induction. QED
For \(i = 1, 2 \) let us denote
\[
P_i = \sum_{h \in H_i} \chi_i^{-1}(h)\delta_h \in \mathbb{C}[G]
\]
Recall that an element \(T = \sum a_g \delta_g \in \mathbb{C}[G] \) acts on a representation \((W, \rho)\) of \(G \) by the rule \(W \ni w \mapsto T(w) = \sum a_g \rho(g)(w) \). Recall that \(T = 0 \Leftrightarrow T \) acts as the zero operator on each representation \(W \Leftrightarrow T \) acts as the zero operator on each irreducible representation \(W \). Recall that we have the convolution product \(* \) on \(\mathbb{C}[G] \) and that this product is compatible with the action of \(\mathbb{C}[G] \) on the representation \(W \).

Lemma 4. For any representation \((W, \rho)\) the subspace \(P_i(W) \) of \(W \) is nonzero if and only if \(\text{Hom}_{H_i}(\chi, \text{Res}^G_{H_i}W) \) is nonzero.

Proof. For \(h \in H_i \) we have
\[
\delta_h * P_i = \chi_i(h)P_i
\]
in \(\mathbb{C}[G] \). Hence if \(w = P_i(w') \) then \(\rho(h)(w) = \chi_i(h)w \) for \(h \in H_i \). Conversely, if \(w \in W \) satisfies \(\rho(h)(w) = \chi_i(h)w \), then \(P_i(w) = |H_i|w \) and we see that \(P_i \) is not the zero operator. **QED**

Lemma 5. For an irreducible representation \((W, \rho)\) of \(G \) the following are equivalent

1. \((W, \rho)\) is isomorphic to \((V, \pi)\),
2. \(P_1(W) \) and \(P_2(W) \) are nonzero,
3. \(P_1(P_2(W)) \) is nonzero.

Proof. The equivalence of (1) and (2) follows from Lemmas 1 and 4. If (3) holds, then (2) holds. In particular, we see that if \(P_1 * P_2 \) is nonzero, then it must act nontrivially on \(V \) and (2) and (3) are equivalent. To finish the proof write
\[
P_1 * P_2 = \sum_{h_1 \in H_1, h_2 \in H_2} \chi_1^{-1}(h_1)\chi_2^{-1}(h_2)\delta_{h_1 h_2}
\]
The coefficient of \(\delta_1 \) is
\[
\sum_{h \in H_1 \cap H_2} \chi_1^{-1}(h)\chi_2(h) = |H_1 \cap H_2|
\]
by assumption (A1) and hence \(P_1 * P_2 \) is nonzero.

Lemma 6. There exists a constant \(\mu \in \mathbb{C}^* \) such that
\[
\chi_{\pi}(g') = \mu \left(\sum_{g \in G, h_1 \in H_1, h_2 \in H_2, g' = gh_1 h_2^{-1}} \chi_1(h_1)\chi_2(h_2) \right)
\]
for all \(g' \in G \).

Proof. We claim that there exists a constant \(\mu \in \mathbb{C}^* \) such that
\[
\mu \left(\sum_{g \in G} \delta_g * P_1 * P_2 * \delta_{g^{-1}} \right) = \sum_{g \in G} \chi_{\pi}(g)\delta_g
\]
in \(\mathbb{C}[G] \). Of course, if this is true, then we see the lemma holds by looking at values of left and right hand side on \(g' \in G \). The displayed equality follows from the following three observations

1. Both right and left hand side of the equation are in the center of \(\mathbb{C}[G] \), i.e., they are class functions on \(G \).
2. Both right and left hand side act as 0 on each irreducible representation of \(G \), except on \(V \).
3. The expression \(\sum_{g \in G} \delta_g * P_1 * P_2 * \delta_{g^{-1}} \) is nonzero.
Namely, assume (1), (2), and (3) hold. By (1) both $T = \sum_{g \in G} \delta_g \ast P_1 \ast P_2 \ast \delta_{g^{-1}}$ and $T' = \sum_{g \in G} \chi_\pi(g) \delta_g$ act as a scalar on each irreducible representation W of G. By (2) this scalar is zero, except for $W = V$. By (3) there exists an μ such that μT and T' act by the same scalar on V as well. Then $T' - \mu T$ acts as zero on each irreducible representation of G and hence $T' - \mu T$ is zero in $C[G]$.

Proof of (1), (2), and (3). Part (1) is left to the reader. Part (2) holds for the left hand side by Lemma 5 and for the right hand side because $\sum_{g \in G} \chi_\pi(g) \delta_g$ is up to a scalar the projection onto the V-isotypical component (see lectures). Part (3) holds by the computation in the proof of Lemma 5. QED

Lemma 7. For $g \in G$ denote C_g the conjugacy class of g. We have

$$\chi_\pi(g) = \frac{\dim(V)}{|C_g| \cdot |H_1 \cap H_2|} \left(\sum_{h_1 \in H_1, h_2 \in H_2, h_1 h_2 \in C_g} \chi_1(h_1) \chi_2(h_2) \right)$$

This agrees with Burrow’s article “A generalization of the Young diagram”.

Proof. A counting argument using the result of Lemma 6 gives that there exists a constant $\mu' \in C^*$ such that for all $g \in G$ we have

$$\chi_\pi(g) = \frac{\mu'}{|C_g|} \left(\sum_{h_1 \in H_1, h_2 \in H_2, h_1 h_2 \in C_g} \chi_1(h_1) \chi_2(h_2) \right)$$

where $C_g \subset G$ is the conjugacy class of g. Evaluating this for $g = 1$ using (A1) we conclude that

$$\dim(V) = \mu' |H_1 \cap H_2|$$

Filling this into the formula above we get the lemma. QED

Application to symmetric groups. Let $G = S_n$. Let $\lambda \vdash n$ be a partition of n. Let t_0 be the basic tableau of type λ. We want to consider the case

$$H_1 = S_{\lambda} = R = R_{t_0} = \text{row stabilizer of } t_0$$

with $\chi_1 = 1$ the trivial character and

$$H_2 = C = C_{t_0} = \text{column stabilizer of } t_0$$

with $\chi_2 = \epsilon$ the sign character.

Result. $H_1 \cap H_2 = \{1\}$. This we discussed in class and everyone agreed. This proves that (A1) holds.

Example. Let $G = S_3$ and let $\lambda = (2,1)$. Then we have $H_1 = R = \{1, (12)\}$ and $H_2 = C = \{1, (13)\}$. The products $h_1 \cdot h_2$ for $h_1 \in H_1$ and $h_2 \in H_2$ are

$$1 \cdot 1 = 1, \quad (12) \cdot 1 = (12), \quad 1 \cdot (13) = (13), \quad (12) \cdot (13) = (132)$$

The elements $\sigma \not\in H_1 H_2 = RC$ are the elements

$$\sigma = (23), (123)$$

We have $H_1 \cap \sigma H_2 \sigma^{-1} = H_1$ in both cases. Thus condition (A2) holds. Let (V, π) the the corresponding irreducible representation of $G = S_3$. Then we see that

$$\chi_\pi(1) = \dim(V), \quad \chi_\pi((12)) = 0, \quad \chi_\pi((123)) = -\frac{\dim(V)}{2}$$

The zero in the middle comes from the fact that we are summing the values of the sign character on the h_2 for those pairs $(h_1, h_2) \in H_1 \times H_2$ such that $h_1 \cdot h_2$ is in the
conjunctly class of (12). To get \(\text{dim}(V) \) we use that \((\chi_\pi, \chi_\pi) = 1\) for our irreducible character \(\chi_\pi \) which in this case means that

\[
1 = \frac{1}{6} \text{dim}(V)^2 \left(1 + 0 + \frac{1}{4}\right) = \frac{\text{dim}(V)^2}{4}
\]

We conclude that \(\text{dim}(V) = 2 \) which gives the usual character of the usual 2-dimensional irreducible representation.

Notation. For any tableau \(t \) of type \(\lambda \) we set

\[
R_t = \text{row stabilizer of } t \quad \text{and} \quad C_t = \text{column stabilizer of } t
\]

Note that given a tableau \(t \) of type \(\lambda \) there is a unique \(\sigma \in G \) such that \(t = \sigma(t_0) \) and then we have

\[
C_t = \sigma C \sigma^{-1} = \sigma H_2 \sigma^{-1}
\]

Exercise 1. Prove that (A2) is equivalent to

(S1) For every \(g \in G, \ g \notin H_1 H_2 \) the group \(H_1 \cap gH_2 g^{-1} \) contains an odd permutation.

Exercise 2. Prove that (S1) is equivalent to

(S1') For every \(t = g(t_0) \) with \(g \in G, \ g \notin RC \) the group \(R \cap C_t \) contains an odd permutation.

Exercise 3. Prove that (S1') is equivalent to (S2) + (S3) which are as follows

(S2) For every tableau \(t \) of type \(\lambda \), if \(R \cap C_t \neq \{1\} \), then \(R \cap C_t \) contains an odd permutation.

(S3) For every tableau \(t \) of type \(\lambda \), if \(R \cap C_t = \{1\} \), then \(t = \sigma(t_0) \) with \(\sigma \in RC \).

Exercise 4. Prove

(S2') For every tableau \(t \) of type \(\lambda \), if \(R \cap C_t \neq \{1\} \), then \(R \cap C_t \) contains a transposition.

which of course implies (S2).

Exercise 5. Prove that (S3) follows from

(S3') For every tableau \(t \) of type \(\lambda \) with increasing numbers down the columns, if \(R \cap C_t = \{1\} \), then \(t = r(t_0) \) with \(r \in R \).

Answer to Exercise 5. Assume (S3') holds. Let \(t \) be an arbitrary tableau with \(R \cap C_t = \{1\} \). Write \(t = \sigma(t_0) \). Let \(t' \) be the tableau which is column equivalent to \(t \) and with increasing numbers down the columns. Note that \(C_{t'} = C_t \) and hence we have \(R \cap C_{t'} = \{1\} \). By assumption, there exists an \(r \in R \) with \(t' = r(t_0) \). Write \(t' = c'(t) \) with \(c' \in C_t \). Since \(C_t = \sigma C \sigma^{-1} \), we see that \(c' = \sigma c \sigma^{-1} \) for some \(c \in C \). Then we see that

\[
\sigma(t_0) = t = (c')^{-1}(t') = \sigma(c^{-1}(\sigma^{-1}(r(t_0))))
\]

and hence we see that

\[
\sigma = \sigma c^{-1} \sigma^{-1} r \Rightarrow 1 = c^{-1} \sigma^{-1} r \Rightarrow cr^{-1} = \sigma^{-1} \Rightarrow \sigma = rc^{-1}
\]

which tells us that \(\sigma \in RC \) as desired. QED

Exercise 6. Prove (S3').

Answer to Exercise 6. We will try this in class on Tuesday, November 21.