Problem set 10 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!
Material from lecture on Thursday, November 16. Let me explain it a little bit more here.

Situation. Let G be a finite group. For $i=1,2$, let $H_{i} \subset G$ be a subgroup and let $\chi_{i}: H_{i} \rightarrow \mathbf{C}^{*}$ be a group homomorphism (sometimes called a character, or a linear character, or a degree 1 character). Assume the following
(A1) $\left.\chi_{1}\right|_{H_{1} \cap H_{2}}=\left.\chi_{2}\right|_{H_{1} \cap H_{2}}$
(A2) for $g \in G, g \notin H_{1} H_{2}$ there exist a $z \in H_{1} \cap g H_{2} g^{-1}$ such that $\chi_{1}(z) \neq$ $\chi_{2}\left(g^{-1} z g\right)$.

Lemma 1. There exists a unique (up to isomorphism) irreducible representation (V, π) of G such that (V, π) occurs in both $\operatorname{Ind}_{H_{1}}^{G} \chi_{1}$ and $\operatorname{Ind}_{H_{2}}^{G} \chi_{2}$.
Proof. It suffices to show that

$$
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H_{1}}^{G} \chi_{1}, \operatorname{Ind}_{H_{2}}^{G} \chi_{2}\right)
$$

is 1-dimensional. To see this we use adjointness of functors

$$
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H_{1}}^{G} \chi_{1}, \operatorname{Ind}_{H_{1}}^{G} \chi_{1}\right)=\operatorname{Hom}_{H_{1}}\left(\chi_{1}, \operatorname{Res}_{H_{1}}^{G} \operatorname{Ind}_{H_{2}}^{G} \chi_{2}\right)
$$

Write

$$
G=H_{1} g_{1} H_{2} \amalg \ldots \amalg H_{1} g_{n} H_{2}
$$

We may and do choose $g_{1}=1$. Then $g_{i} \notin H_{1} H_{2}$ for $i=2, \ldots, n$. By Mackey's second theorem we have

$$
\operatorname{Res}_{H_{1}}^{G} \operatorname{Ind}_{H_{2}}^{G} \chi_{2}=\left.\operatorname{Ind}_{H_{1} \cap H_{2}}^{H_{1}} \chi_{2}\right|_{H_{1} \cap H_{2}} \oplus \bigoplus_{i=2, \ldots, n} \operatorname{Ind}_{H_{1, i}}^{H_{1}} \psi_{i}
$$

where

$$
H_{1, i}=H_{1} \cap g_{i} H_{2} g_{i}^{-1} \quad \text { and } \quad \psi_{i}(z)=\chi_{2}\left(g_{i}^{-1} z g_{i}\right)
$$

Thus we have

$$
\begin{aligned}
& \operatorname{Hom}_{H_{1}}\left(\chi_{1}, \operatorname{Res}_{H_{1}}^{G} \operatorname{Ind}_{H_{2}}^{G} \chi_{2}\right) \\
= & \operatorname{Hom}_{H_{1}}\left(\chi_{1},\left.\operatorname{Ind}_{H_{1} \cap H_{2}}^{H_{1}} \chi_{2}\right|_{H_{1} \cap H_{2}}\right) \oplus \bigoplus_{i=2, \ldots, n} \operatorname{Hom}_{H_{1}}\left(\chi_{1}, \operatorname{Ind}_{H_{1, i}}^{H_{1}} \psi_{i}\right) \\
= & \operatorname{Hom}_{H_{1} \cap H_{2}}\left(\left.\chi_{1}\right|_{H_{1} \cap H_{2}},\left.\chi_{2}\right|_{H_{1} \cap H_{2}}\right) \oplus \bigoplus_{i=2, \ldots, n} \operatorname{Hom}_{H_{1, i}}\left(\left.\chi_{1}\right|_{H_{1, i}}, \psi_{i}\right)
\end{aligned}
$$

where in the second equality we used adjointness of restriction and induction again. Thus condition (A1) tells us that the first summand has dimension 1 and condition (A2) tells us that the other summand have dimension 0. QED

Lemma 2. The representation (V, π) has multiplicity 1 in both $\operatorname{Ind}_{H_{1}}^{G}\left(\chi_{1}\right)$ and $\operatorname{Ind}_{H_{2}}^{G}\left(\chi_{2}\right)$.
Proof. Follows immediately from the fact that we proved $\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H_{1}}^{G} \chi_{1}, \operatorname{Ind}_{H_{2}}^{G} \chi_{2}\right)$ is 1-dimensional in the proof of Lemma 1. QED
Lemma 3. The representation (V, π) is the only irreducible representation of G (up to isomorphism) such that χ_{1} occurs in $\operatorname{Res}_{H_{1}}^{G}(V, \pi)$ and χ_{2} occurs in $\operatorname{Res}_{H_{2}}^{G}(V, \pi)$.
Proof. Follows from adjointness of restriction and induction. QED

For $i=1,2$ let us denote

$$
P_{i}=\sum_{h \in H_{i}} \chi_{i}^{-1}(h) \delta_{h} \in \mathbf{C}[G]
$$

Recall that an element $T=\sum a_{g} \delta_{g} \in \mathbf{C}[G]$ acts on a representation (W, ρ) of G by the rule $W \ni w \mapsto T(w)=\sum a_{g} \rho(g)(w)$. Recall that $T=0 \Leftrightarrow T$ acts as the zero operator on each representation $W \Leftrightarrow T$ acts as the zero operator on each irreducible representation W. Recall that we have the convolution product \star on $\mathbf{C}[G]$ and that this product is compatible with the action of $\mathbf{C}[G]$ on the representation W.
Lemma 4. For any representation (W, ρ) the subspace $P_{i}(W)$ of W is nonzero if and only if $\operatorname{Hom}_{H_{i}}\left(\chi_{i}, \operatorname{Res}_{H_{i}}^{G} W\right)$ is nonzero.
Proof. For $h \in H_{i}$ we have

$$
\delta_{h} \star P_{i}=\chi_{i}(h) P_{i}
$$

in $\mathbf{C}[G]$. Hence if $w=P_{i}\left(w^{\prime}\right)$ then $\rho(h)(w)=\chi_{i}(h) w$ for $h \in H_{i}$. Converesely, if $w \in W$ satisfies $\rho(h)(w)=\chi_{i}(h) w$, then $P_{i}(w)=\left|H_{i}\right| w$ and we see that P_{i} is not the zero operator. QED

Lemma 5. For an irreducible representation (W, ρ) of G the following are equivalent
(1) (W, ρ) is isomorphic to (V, π),
(2) $P_{1}(W)$ and $P_{2}(W)$ are nonzero,
(3) $P_{1}\left(P_{2}(W)\right)$ is nonzero.

Proof. The equivalence of (1) and (2) follows from Lemmas 1 and 4. If (3) holds, then (2) holds. In particular, we see that if $P_{1} \star P_{2}$ is nonzero, then it must act nontrivially on V and (2) and (3) are equivalent. To finish the proof write

$$
P_{1} \star P_{2}=\sum_{h_{1} \in H_{1}, h_{2} \in H_{2}} \chi_{1}^{-1}\left(h_{1}\right) \chi_{2}^{-1}\left(h_{2}\right) \delta_{h_{1} h_{2}}
$$

The coefficient of δ_{1} is

$$
\sum_{h \in H_{1} \cap H_{2}} \chi_{1}^{-1}(h) \chi_{2}(h)=\left|H_{1} \cap H_{2}\right|
$$

by assumption (A1) and hence $P_{1} \star P_{2}$ is nonzero.
Lemma 6. There exists a constant $\mu \in \mathbf{C}^{*}$ such that

$$
\chi_{\pi}\left(g^{\prime}\right)=\mu\left(\sum_{g \in G, h_{1} \in H_{1}, h_{2} \in H_{2}, g^{\prime}=g h_{1} h_{2} g^{-1}} \chi_{1}\left(h_{1}\right) \chi_{2}\left(h_{2}\right)\right)
$$

for all $g^{\prime} \in G$.
Proof. We claim that there exists a constant $\mu \in \mathbf{C}^{*}$ such that

$$
\mu\left(\sum_{g \in G} \delta_{g} \star P_{1} \star P_{2} \star \delta_{g^{-1}}\right)=\sum_{g \in G} \overline{\chi_{\pi}(g)} \delta_{g}
$$

in $\mathbf{C}[G]$. Of course, if this is true, then we see the lemma holds by looking at values of left and right hand side on $g^{\prime} \in G$. The displayed equality follows from the following three observations
(1) Both right and left hand side of the equation are in the center of $\mathbf{C}[G]$, i.e., they are class functions on G.
(2) Both right and left hand side act as 0 on each irreducible representation of G, except on V.
(3) The expression $\sum_{g \in G} \delta_{g} \star P_{1} \star P_{2} \star \delta_{g^{-1}}$ is nonzero.

Namely, assume (1), (2), and (3) hold. By (1) both $T=\sum_{g \in G} \delta_{g} \star P_{1} \star P_{2} \star \delta_{g^{-1}}$ and $T^{\prime}=\sum_{g \in G} \overline{\chi_{\pi}(g)} \delta_{g}$ act as a scalar on each irreducible representation W of G. By (2) this scalar is zero, except for $W=V$. By (3) there exists an μ such that μT and T^{\prime} act by the same scalar on V as well. Then $T^{\prime}-\mu T$ acts as zero on each irreducible representation of G and hence $T^{\prime}-\mu T$ is zero in $\mathbf{C}[G]$.
Proof of (1), (2), and (3). Part (1) is left to the reader. Part (2) holds for the left hand side by Lemma 5 and for the right hand side because $\sum_{g \in G} \overline{\chi_{\pi}(g)} \delta_{g}$ is up to a scalar the projection onto the V-isotypical component (see lectures). Part (3) holds by the computation in the proof of Lemma 5. QED
Lemma 7. For $g \in G$ denote C_{g} the conjugacy class of g. We have

$$
\chi_{\pi}(g)=\frac{\operatorname{dim}(V)}{\left|C_{g}\right| \cdot\left|H_{1} \cap H_{2}\right|}\left(\sum_{h_{1} \in H_{1}, h_{2} \in H_{2}, h_{1} h_{2} \in C_{g}} \chi_{1}\left(h_{1}\right) \chi_{2}\left(h_{2}\right)\right)
$$

This agrees with Burrow's article "A generalization of the Young diagram".
Proof. A counting argument using the result of Lemma 6 gives that there exists a constant $\mu^{\prime} \in \mathbf{C}^{*}$ such that for all $g \in G$ we have

$$
\chi_{\pi}(g)=\frac{\mu^{\prime}}{\left|C_{g}\right|}\left(\sum_{h_{1} \in H_{1}, h_{2} \in H_{2}, h_{1} h_{2} \in C_{g}} \chi_{1}\left(h_{1}\right) \chi_{2}\left(h_{2}\right)\right)
$$

where $C_{g} \subset G$ is the conjugacy class of g. Evaluating this for $g=1$ using (A1) we conclude that

$$
\operatorname{dim}(V)=\mu^{\prime}\left|H_{1} \cap H_{2}\right|
$$

Filling this into the formula above we get the lemma. QED
Application to symmetric groups. Let $G=S_{n}$. Let $\lambda \vdash n$ be a partition of n. Let t_{0} be the basic tableau of type λ. We want to consider the case

$$
H_{1}=S_{\lambda}=R=R_{t_{0}}=\text { row stabilizer of } t_{0}
$$

with $\chi_{1}=1$ the trivial character and

$$
H_{2}=C=C_{t_{0}}=\text { column stabilizer of } t_{0}
$$

with $\chi_{2}=\epsilon$ the sign character.
Result. $H_{1} \cap H_{2}=\{1\}$. This we discussed in class and everyone agreed. This proves that (A1) holds.
Example. Let $G=S_{3}$ and let $\lambda=(2,1)$. Then we have $H_{1}=R=\{1,(12)\}$ and $H_{2}=C=\{1,(13)\}$. The products $h_{1} \cdot h_{2}$ for $h_{1} \in H_{1}$ and $h_{2} \in H_{2}$ are

$$
1 \cdot 1=1, \quad(12) \cdot 1=(12), \quad 1 \cdot(13)=(13), \quad(12) \cdot(13)=(132)
$$

The elements $\sigma \notin H_{1} H_{2}=R C$ are the elements

$$
\sigma=(23),(123)
$$

We have $H_{1} \cap \sigma H_{2} \sigma^{-1}=H_{1}$ in both cases. Thus condition (A2) holds. Let (V, π) the the corresponding irreducible representation of $G=S_{3}$. Then we see that

$$
\chi_{\pi}(1)=\operatorname{dim}(V), \quad \chi_{\pi}((12))=0, \quad \chi_{\pi}((123))=-\frac{\operatorname{dim}(V)}{2}
$$

The zero in the middle comes from the fact that we are summing the values of the sign character on the h_{2} for those pairs $\left(h_{1}, h_{2}\right) \in H_{1} \times H_{2}$ such that $h_{1} \cdot h_{2}$ is in the
conjugacy class of (12). To get $\operatorname{dim}(V)$ we use that $\left(\chi_{\pi}, \chi_{\pi}\right)=1$ for our irreducible character χ_{π} which in this case means that

$$
1=\frac{1}{6} \operatorname{dim}(V)^{2}\left(1+0+2 \frac{1}{4}\right)=\frac{\operatorname{dim}(V)^{2}}{4}
$$

We conclude that $\operatorname{dim}(V)=2$ which gives the usual character of the usual 2 dimensional irreducible representation.
Notation. For any tableau t of type λ we set

$$
R_{t}=\text { row stabilizer of } t \quad \text { and } \quad C_{t}=\text { column stabilizer of } t
$$

Note that given a tableau t of type λ there is a unique $\sigma \in G$ such that $t=\sigma\left(t_{0}\right)$ and then we have

$$
C_{t}=\sigma C \sigma^{-1}=\sigma H_{2} \sigma^{-1}
$$

Exercise 1. Prove that (A2) is equivalent to
(S1) For every $g \in G, g \notin H_{1} H_{2}$ the group $H_{1} \cap g H_{2} g^{-1}$ contains an odd permutation.

Exercise 2. Prove that (S 1) is equivalent to
(S1') For every $t=g\left(t_{0}\right)$ with $g \in G, g \notin R C$ the group $R \cap C_{t}$ contains an odd permutation.

Exercise 3. Prove that ($\mathrm{S} 1^{\prime}$) is equivalent to $(\mathrm{S} 2)+(\mathrm{S} 3)$ which are as follows
(S2) For every tableau t of type λ, if $R \cap C_{t} \neq\{1\}$, then $R \cap C_{t}$ contains an odd permutation.
(S3) For every tableau t of type λ, if $R \cap C_{t}=\{1\}$, then $t=\sigma\left(t_{0}\right)$ with $\sigma \in R C$.
Exercise 4. Prove
(S2') For every tableau t of type λ, if $R \cap C_{t} \neq\{1\}$, then $R \cap C_{t}$ contains a transposition.
which of course implies (S2).
Exercise 5. Prove that (S3) follows from
(S3') For every tableau t of type λ with increasing numbers down the columns, if $R \cap C_{t}=\{1\}$, then $t=r\left(t_{0}\right)$ with $r \in R$.

Answer to Exercise 5. Assume (S3') holds. Let t be an arbitrary tableau with $R \cap C_{t}=\{1\}$. Write $t=\sigma\left(t_{0}\right)$. Let t^{\prime} be the tableau which is column equivalent to t and with increasing numbers down the columns. Note that $C_{t^{\prime}}=C_{t}$ and hence we have $R \cap C_{t^{\prime}}=\{1\}$. By assumption, there exists an $r \in R$ with $t^{\prime}=r\left(t_{0}\right)$. Write $t^{\prime}=c^{\prime}(t)$ with $c^{\prime} \in C_{t}$. Since $C_{t}=\sigma C \sigma^{-1}$, we see that $c^{\prime}=\sigma c \sigma^{-1}$ for some $c \in C$. Then we see that

$$
\sigma\left(t_{0}\right)=t=\left(c^{\prime}\right)^{-1}\left(t^{\prime}\right)=\sigma\left(c^{-1}\left(\sigma^{-1}\left(r\left(t_{0}\right)\right)\right)\right)
$$

and hence we see that

$$
\sigma=\sigma c^{-1} \sigma^{-1} r \Rightarrow 1=c^{-1} \sigma^{-1} r \Rightarrow c r^{-1}=\sigma^{-1} \Rightarrow \sigma=r c^{-1}
$$

which tells us that $\sigma \in R C$ as desired. QED
Exercise 6. Prove (S3').
Answer to Exercise 6. We will try this in class on Tuesday, November 21.

