
Problem set 10 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!

Material from lecture on Thursday, November 16. Let me explain it a little
bit more here.

Situation. Let G be a finite group. For i = 1, 2, let Hi ⊂ G be a subgroup and let
χi : Hi → C∗ be a group homomorphism (sometimes called a character, or a linear
character, or a degree 1 character). Assume the following

(A1) χ1|H1∩H2
= χ2|H1∩H2

(A2) for g ∈ G, g 6∈ H1H2 there exist a z ∈ H1 ∩ gH2g
−1 such that χ1(z) 6=

χ2(g−1zg).

Lemma 1. There exists a unique (up to isomorphism) irreducible representation

(V, π) of G such that (V, π) occurs in both IndGH1
χ1 and IndGH2

χ2.

Proof. It suffices to show that

HomG(IndGH1
χ1, IndGH2

χ2)

is 1-dimensional. To see this we use adjointness of functors

HomG(IndGH1
χ1, IndGH1

χ1) = HomH1
(χ1,ResGH1

IndGH2
χ2)

Write

G = H1g1H2 q . . .qH1gnH2

We may and do choose g1 = 1. Then gi 6∈ H1H2 for i = 2, . . . , n. By Mackey’s
second theorem we have

ResGH1
IndGH2

χ2 = IndH1

H1∩H2
χ2|H1∩H2

⊕
⊕

i=2,...,n
IndH1

H1,i
ψi

where

H1,i = H1 ∩ giH2g
−1
i and ψi(z) = χ2(g−1i zgi)

Thus we have

HomH1
(χ1,ResGH1

IndGH2
χ2)

= HomH1
(χ1, IndH1

H1∩H2
χ2|H1∩H2

)⊕
⊕

i=2,...,n
HomH1

(χ1, IndH1

H1,i
ψi)

= HomH1∩H2(χ1|H1∩H2 , χ2|H1∩H2)⊕
⊕

i=2,...,n
HomH1,i(χ1|H1,i , ψi)

where in the second equality we used adjointness of restriction and induction again.
Thus condition (A1) tells us that the first summand has dimension 1 and condition
(A2) tells us that the other summand have dimension 0. QED

Lemma 2. The representation (V, π) has multiplicity 1 in both IndGH1
(χ1) and

IndGH2
(χ2).

Proof. Follows immediately from the fact that we proved HomG(IndGH1
χ1, IndGH2

χ2)
is 1-dimensional in the proof of Lemma 1. QED

Lemma 3. The representation (V, π) is the only irreducible representation of G (up

to isomorphism) such that χ1 occurs in ResGH1
(V, π) and χ2 occurs in ResGH2

(V, π).

Proof. Follows from adjointness of restriction and induction. QED
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For i = 1, 2 let us denote

Pi =
∑

h∈Hi

χ−1i (h)δh ∈ C[G]

Recall that an element T =
∑
agδg ∈ C[G] acts on a representation (W,ρ) of G by

the rule W 3 w 7→ T (w) =
∑
agρ(g)(w). Recall that T = 0 ⇔ T acts as the zero

operator on each representationW ⇔ T acts as the zero operator on each irreducible
representation W . Recall that we have the convolution product ? on C[G] and that
this product is compatible with the action of C[G] on the representation W .

Lemma 4. For any representation (W,ρ) the subspace Pi(W ) of W is nonzero if

and only if HomHi
(χi,ResGHi

W ) is nonzero.

Proof. For h ∈ Hi we have

δh ? Pi = χi(h)Pi

in C[G]. Hence if w = Pi(w
′) then ρ(h)(w) = χi(h)w for h ∈ Hi. Converesely, if

w ∈ W satisfies ρ(h)(w) = χi(h)w, then Pi(w) = |Hi|w and we see that Pi is not
the zero operator. QED

Lemma 5. For an irreducible representation (W,ρ) of G the following are equiva-
lent

(1) (W,ρ) is isomorphic to (V, π),
(2) P1(W ) and P2(W ) are nonzero,
(3) P1(P2(W )) is nonzero.

Proof. The equivalence of (1) and (2) follows from Lemmas 1 and 4. If (3) holds,
then (2) holds. In particular, we see that if P1 ? P2 is nonzero, then it must act
nontrivially on V and (2) and (3) are equivalent. To finish the proof write

P1 ? P2 =
∑

h1∈H1, h2∈H2

χ−11 (h1)χ−12 (h2)δh1h2

The coefficient of δ1 is∑
h∈H1∩H2

χ−11 (h)χ2(h) = |H1 ∩H2|

by assumption (A1) and hence P1 ? P2 is nonzero.

Lemma 6. There exists a constant µ ∈ C∗ such that

χπ(g′) = µ
(∑

g∈G, h1∈H1, h2∈H2, g′=gh1h2g−1
χ1(h1)χ2(h2)

)
for all g′ ∈ G.

Proof. We claim that there exists a constant µ ∈ C∗ such that

µ
(∑

g∈G
δg ? P1 ? P2 ? δg−1

)
=
∑

g∈G
χπ(g)δg

in C[G]. Of course, if this is true, then we see the lemma holds by looking at values
of left and right hand side on g′ ∈ G. The displayed equality follows from the
following three observations

(1) Both right and left hand side of the equation are in the center of C[G], i.e.,
they are class functions on G.

(2) Both right and left hand side act as 0 on each irreducible representation of
G, except on V .

(3) The expression
∑
g∈G δg ? P1 ? P2 ? δg−1 is nonzero.
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Namely, assume (1), (2), and (3) hold. By (1) both T =
∑
g∈G δg ? P1 ? P2 ? δg−1

and T ′ =
∑
g∈G χπ(g)δg act as a scalar on each irreducible representation W of G.

By (2) this scalar is zero, except for W = V . By (3) there exists an µ such that
µT and T ′ act by the same scalar on V as well. Then T ′−µT acts as zero on each
irreducible representation of G and hence T ′ − µT is zero in C[G].

Proof of (1), (2), and (3). Part (1) is left to the reader. Part (2) holds for the left

hand side by Lemma 5 and for the right hand side because
∑
g∈G χπ(g)δg is up

to a scalar the projection onto the V -isotypical component (see lectures). Part (3)
holds by the computation in the proof of Lemma 5. QED

Lemma 7. For g ∈ G denote Cg the conjugacy class of g. We have

χπ(g) =
dim(V )

|Cg| · |H1 ∩H2|

(∑
h1∈H1, h2∈H2, h1h2∈Cg

χ1(h1)χ2(h2)

)
This agrees with Burrow’s article “A generalization of the Young diagram”.

Proof. A counting argument using the result of Lemma 6 gives that there exists a
constant µ′ ∈ C∗ such that for all g ∈ G we have

χπ(g) =
µ′

|Cg|

(∑
h1∈H1, h2∈H2, h1h2∈Cg

χ1(h1)χ2(h2)

)
where Cg ⊂ G is the conjugacy class of g. Evaluating this for g = 1 using (A1) we
conclude that

dim(V ) = µ′|H1 ∩H2|
Filling this into the formula above we get the lemma. QED

Application to symmetric groups. Let G = Sn. Let λ ` n be a partition of n.
Let t0 be the basic tableau of type λ. We want to consider the case

H1 = Sλ = R = Rt0 = row stabilizer of t0

with χ1 = 1 the trivial character and

H2 = C = Ct0 = column stabilizer of t0

with χ2 = ε the sign character.

Result. H1 ∩ H2 = {1}. This we discussed in class and everyone agreed. This
proves that (A1) holds.

Example. Let G = S3 and let λ = (2, 1). Then we have H1 = R = {1, (12)} and
H2 = C = {1, (13)}. The products h1 · h2 for h1 ∈ H1 and h2 ∈ H2 are

1 · 1 = 1, (12) · 1 = (12), 1 · (13) = (13), (12) · (13) = (132)

The elements σ 6∈ H1H2 = RC are the elements

σ = (23), (123)

We have H1 ∩ σH2σ
−1 = H1 in both cases. Thus condition (A2) holds. Let (V, π)

the the corresponding irreducible representation of G = S3. Then we see that

χπ(1) = dim(V ), χπ((12)) = 0, χπ((123)) = −dim(V )

2

The zero in the middle comes from the fact that we are summing the values of the
sign character on the h2 for those pairs (h1, h2) ∈ H1×H2 such that h1 ·h2 is in the
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conjugacy class of (12). To get dim(V ) we use that (χπ, χπ) = 1 for our irreducible
character χπ which in this case means that

1 =
1

6
dim(V )2

(
1 + 0 + 2

1

4

)
=

dim(V )2

4

We conclude that dim(V ) = 2 which gives the usual character of the usual 2-
dimensional irreducible representation.

Notation. For any tableau t of type λ we set

Rt = row stabilizer of t and Ct = column stabilizer of t

Note that given a tableau t of type λ there is a unique σ ∈ G such that t = σ(t0)
and then we have

Ct = σCσ−1 = σH2σ
−1

Exercise 1. Prove that (A2) is equivalent to

(S1) For every g ∈ G, g 6∈ H1H2 the group H1 ∩ gH2g
−1 contains an odd

permutation.

Exercise 2. Prove that (S1) is equivalent to

(S1’) For every t = g(t0) with g ∈ G, g 6∈ RC the group R ∩ Ct contains an odd
permutation.

Exercise 3. Prove that (S1’) is equivalent to (S2) + (S3) which are as follows

(S2) For every tableau t of type λ, if R∩Ct 6= {1}, then R∩Ct contains an odd
permutation.

(S3) For every tableau t of type λ, if R∩Ct = {1}, then t = σ(t0) with σ ∈ RC.

Exercise 4. Prove

(S2’) For every tableau t of type λ, if R ∩ Ct 6= {1}, then R ∩ Ct contains a
transposition.

which of course implies (S2).

Exercise 5. Prove that (S3) follows from

(S3’) For every tableau t of type λ with increasing numbers down the columns,
if R ∩ Ct = {1}, then t = r(t0) with r ∈ R.

Answer to Exercise 5. Assume (S3’) holds. Let t be an arbitrary tableau with
R∩Ct = {1}. Write t = σ(t0). Let t′ be the tableau which is column equivalent to
t and with increasing numbers down the columns. Note that Ct′ = Ct and hence
we have R∩Ct′ = {1}. By assumption, there exists an r ∈ R with t′ = r(t0). Write
t′ = c′(t) with c′ ∈ Ct. Since Ct = σCσ−1, we see that c′ = σcσ−1 for some c ∈ C.
Then we see that

σ(t0) = t = (c′)−1(t′) = σ(c−1(σ−1(r(t0))))

and hence we see that

σ = σc−1σ−1r ⇒ 1 = c−1σ−1r ⇒ cr−1 = σ−1 ⇒ σ = rc−1

which tells us that σ ∈ RC as desired. QED

Exercise 6. Prove (S3’).

Answer to Exercise 6. We will try this in class on Tuesday, November 21.


