Problem set 2 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!

Exercise 1. Let \(k \) be a finite field with \(q \) elements. If you like, you may take \(k = \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \) where \(p \) is a prime number and take \(q = p \). Let \(V \) be a vector space of dimension \(n \geq 1 \) over \(k \).

1. Explain why \(GL(V) \) is a finite group.
2. Compute the order of \(GL(V) \) in terms of \(n \) and \(q \).

Denote \(SL(V) \) the subgroup \(GL(V) \) consisting of elements whose determinant is 1.

3. Explain why \(SL(V) \) is a normal subgroup of \(GL(V) \).
4. Describe the group \(GL(V)/SL(V) \).
5. How many elements does \(SL(V) \) have?

Exercise 2. Let \(G \) be a finite group. In each of the following cases, explain briefly why there does not exist a finite dimensional representation \(\pi \) of \(G \) with character \(\chi_\pi \) having the stated properties:

1. \(\chi_\pi(1) = -1 \) where 1 \(\in \) \(G \) is the identity element.
2. \(\chi_\pi(1) = 1/2 \).
3. \(\chi_\pi(1) = 5 \) and \(\chi_\pi(g) = 6 \) for some \(g \in G \).
4. \(\chi_\pi(1) = 2 \) and \(\chi_\pi(g) = 1/11 \) for some \(g \in G \).
5. \(\chi_\pi(g) = 4 \) and \(\chi_\pi(g^{-1}) = -4 \) for some \(g \in G \).

Exercise 3. Let \(G \) be a finite group. Let \(X \) be a finite set. Let \(G \times X \to X \), \((g, x) \mapsto g \cdot x \) be an action of \(G \) on \(X \). Let \(C[X] \) be the corresponding permutation representation of \(G \). What this means is this:

(a) as a vector space \(C[X] = \{ \text{maps } f : X \to C \} \)
(b) for \(f \in C[X] \) and \(g \in G \) we define \(g \cdot f \) by the rule

\[
(g \cdot f)(x) = f(g^{-1} \cdot x)
\]
for all \(x \in X \).

Carefully explain why

1. the inverse in the formula is necessary,
2. the delta functions \(\delta_x \in C[X] \) where \(x \in X \) form a basis for \(C[X] \), and
3. \(g \cdot \delta_x = \delta_{g \cdot x} \).

Remark. Often people think of elements of \(C[X] \) as formal linear sums \(\xi = \sum t_x \cdot x \) with \(t_x \in C \). In other words, they think of \(C[X] \) as a \(C \)-vector space with basis given by the elements of \(X \). Then they define the \(G \)-action by the rule \(g \cdot \xi = \sum t_x g \cdot x \). This version is isomorphic to ours in the exercise above, via the maps sending the element \(\xi = \sum t_x \cdot x \) to the function \(f = \sum t_x \delta_x \).

Exercise 4. Let us call a representation isomorphic to one of the representations of Exercise 3 a permutation representation.

1. Give an example of a finite group \(G \) and a (finite dimensional as always) representation \(V \) which is not a permutation representation.
2. Show that if \(V_1 \) and \(V_2 \) are permutation representations of the same finite group \(G \), then so is \(V_1 \oplus V_2 \).
3. Show that if \(V_1 \) and \(V_2 \) are permutation representations of the same finite group \(G \), then so is \(V_1 \otimes V_2 \).
(4) Give an example of a group G and a permutation representation V such that $\wedge^2(V)$ is not a permutation representation. (If you solve this, then you’ve solved part (1) as well.)

(5) Show that a permutation representation is isomorphic to its dual. Hint: you may use that a representation V is isomorphic to its dual if and only if there exists a G-invariant nondegenerate bilinear pairing $\langle , \rangle : V \times V \to \mathbb{C}$.

Exercise 5. Let $n \geq 1$. Let $\zeta = \exp(2i\pi/n)$ be the usual primitive nth root of 1. Consider the $n \times n$ matrix

$$A = \text{diag}(1, \zeta, \zeta^2, \ldots) = \begin{pmatrix}
1 & 0 & 0 & \ldots \\
0 & \zeta & 0 & \ldots \\
0 & 0 & \zeta^2 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

and the permutation matrix corresponding to the n-cycle $(12\ldots n)$, namely

$$B = \begin{pmatrix}
0 & 0 & 0 & \ldots & 0 & 1 \\
1 & 0 & 0 & \ldots \\
0 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

Prove that

(1) A and B generate a finite subgroup G of $GL_n(\mathbb{C})$

(2) the representation of G on \mathbb{C}^n you get in this way is irreducible.