Problem set 2 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!
Exercise 1. Let k be a finite field with q elements. If you like, you may take $k=\mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z}$ where p is a prime number and take $q=p$. Let V be a vector space of dimension $n \geq 1$ over k.
(1) Explain why $G L(V)$ is a finite group.
(2) Compute the order of $G L(V)$ in terms of n and q.

Denote $S L(V)$ the subgroup $G L(V)$ consisting of elements whose determinant is 1 .
(3) Explain why $S L(V)$ is a normal subgroup of $G L(V)$.
(4) Describe the group $G L(V) / S L(V)$.
(5) How many elements does $S L(V)$ have?

Exercise 2. Let G be a finite group. In each of the following cases, explain briefly why there does not exist a finite dimensional representation π of G with character χ_{π} having the stated properties:
(1) $\chi_{\pi}(1)=-1$ where $1 \in G$ is the identity element.
(2) $\chi_{\pi}(1)=1 / 2$,
(3) $\chi_{\pi}(1)=5$ and $\chi_{\pi}(g)=6$ for some $g \in G$,
(4) $\chi_{\pi}(1)=2$ and $\chi_{\pi}(g)=1 / 11$ for some $g \in G$,
(5) $\chi_{\pi}(g)=4$ and $\chi_{\pi}\left(g^{-1}\right)=-4$ for some $g \in G$.

Exercise 3. Let G be a finite group. Let X be a finite set. Let $G \times X \rightarrow X$, $(g, x) \mapsto g \cdot x$ be an action of G on X. Let $\mathbf{C}[X]$ be the corresponding permutation representation of G. What this means is this:
(a) as a vector space $\mathbf{C}[X]=\{$ maps $f: X \rightarrow \mathbf{C}\}$
(b) for $f \in \mathbf{C}[X]$ and $g \in G$ we define $g \cdot f$ by the rule

$$
(g \cdot f)(x)=f\left(g^{-1} \cdot x\right)
$$

for all $x \in X$.
Carefully explain why
(1) the inverse in the formula is necessary,
(2) the delta functions $\delta_{x} \in \mathbf{C}[X]$ where $x \in X$ form a basis for $\mathbf{C}[X]$, and
(3) $g \cdot \delta_{x}=\delta_{g \cdot x}$.

Remark. Often people think of elements of $\mathbf{C}[X]$ as formal linear sums $\xi=\sum t_{x} x$ with $t_{x} \in \mathbf{C}$. In other words, they think of $\mathbf{C}[X]$ as a \mathbf{C}-vector space with basis given by the elements of X. Then they define the G-action by the rule $g \cdot \xi=\sum t_{x} g \cdot x$ This version is isomorphic to ours in the exercise above, via the maps sending the element $\xi=\sum t_{x} x$ to the function $f=\sum t_{x} \delta_{x}$.
Exercise 4. Let us call a representation isomorphic to one of the representations of Exercise 3 a permutation representation.
(1) Give an example of a finite group G and a (finite dimensional as always) representation V which is not a permutation representation.
(2) Show that if V_{1} and V_{2} are permutation representations of the same finite group G, then so is $V_{1} \oplus V_{2}$.
(3) Show that if V_{1} and V_{2} are permutation representations of the same finite group G, then so is $V_{1} \otimes V_{2}$.
(4) Give an example of a group G and a permutation representation V such that $\wedge^{2}(V)$ is not a permutation representation. (If you solve this, then you've solved part (1) as well.)
(5) Show that a permutation representation is isomorphic to its dual. Hint: you may use that a representation V is isomorphic to its dual if and only if there exists a G-invariant nondegenerate bilinear pairing $\langle\rangle:, V \times V \rightarrow \mathbf{C}$.
Exercise 5. Let $n \geq 1$. Let $\zeta=\exp (2 i \pi / n)$ be the usual primitive nth root of 1 . Consider the $n \times n$ matrix

$$
A=\operatorname{diag}\left(1, \zeta, \zeta^{2}, \ldots\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & \ldots \\
0 & \zeta & 0 & \ldots \\
0 & 0 & \zeta^{2} & \ldots \\
\ldots & & &
\end{array}\right)
$$

and the permutation matrix corresponding to the n-cycle $(12 \ldots n)$, namely

$$
B=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 1 \\
1 & 0 & 0 & \ldots & & \\
0 & 1 & 0 & \ldots & & \\
\ldots & & & & & \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

Prove that
(1) A and B generate a finite subgroup G of $G L_{n}(\mathbf{C})$
(2) the representation of G on \mathbf{C}^{n} you get in this way is irreducible.

