Problem set 5 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!
Exercise 1. Consider the subgroup $H=S_{5} \subset S_{6}=G$. Let $\chi: S_{5} \rightarrow\{ \pm 1\} \subset \mathbf{C}^{*}$ be the sign character which we also may and do view as a 1-dimensional irreducible representation of H. Let $\pi: S_{5} \rightarrow G L_{4}(\mathbf{C})$ be the usual 4-dimensional irreducible representation (which is a summand of the standard permutation representation).
(1) Compute the character of the representation $\operatorname{Ind}_{H}^{G}(\chi)$.
(2) Compute the character of the representation $\operatorname{Ind}_{H}^{G}(\pi)$.
(3) How many irreducible constituents does $\operatorname{Ind}_{H}^{G}(\chi)$ have?
(4) How many irreducible constituents does $\operatorname{Ind}_{H}^{G}(\pi)$ have?

Exercise 2. Let H be a subgroup of a finite group G. Let V, W be nonzero representations of H. Using the universal property, show that there is a nonzero map

$$
\operatorname{Ind}_{H}^{G}(V \otimes W) \longrightarrow \operatorname{Ind}_{H}^{G}(V) \otimes \operatorname{Ind}_{H}^{G}(W)
$$

of representations of G.
Exercise 3. Fix an integer $n \geq 2$. Given a complex $n \times n$ matrix $A=\left(a_{i j}\right)$ we define

$$
|A|=\max \left|a_{i j}\right|
$$

Below, we denote 1 the $n \times n$ identity matrix and A and B are complex $n \times n$ matrices. You can skip parts $(1)-(5)$ if they are obvious to you.
(1) Briefly explain why $|A+B| \leq|A|+|B|$.
(2) Briefly explain why $|A+B| \geq|A|-|B|$.
(3) Briefly explain why $|A B| \leq n|A||B|$.
(4) Show that $|1-B A| \leq|1-A|+|1-B|+n|1-A||1-B|$.
(5) Show that $|A B| \geq(1-n|1-A|)|B|$.
(6) Prove that for A and B invertible and $|1-A| \leq \epsilon_{1}$ and $|1-B| \leq \epsilon_{2}$ we have

$$
\left|1-A B A^{-1} B^{-1}\right| \leq f\left(\epsilon_{1}, \epsilon_{2}\right)=\frac{2 n \epsilon_{1} \epsilon_{2}}{1-n \epsilon_{1}-n \epsilon_{2}-n^{2} \epsilon_{1} \epsilon_{2}}
$$

Hint: set $U=1-A B A^{-1} B^{-1}$ and $V=B A-A B=(1-B)(1-A)-(1-$ $A)(1-B)$. Then $V=U B A$ and hence by (4) and (5) we can find a lower bound for $|V|$ in terms of $|U|$ and $\epsilon_{1}, \epsilon_{2}$. But we also have an upper bound for $|V|$ by (1) and (3).
Next, let $G \subset G L_{n}(\mathbf{C})$ be a finite subgroup. For an $\epsilon \geq 0$ define

$$
H_{\epsilon}=\text { subgroup of } G \text { generated by } g \in G \text { such that }|1-g| \leq \epsilon
$$

Because G is finite, we obtain a sequence

$$
0=\epsilon_{0}<\epsilon_{1}<\epsilon_{2}<\cdots<\epsilon_{r}<\epsilon_{r+1}=\infty
$$

of real numbers where the groups H_{ϵ} jump. In other words, we have a sequence of subgroups

$$
\{1\}=H_{0} \subsetneq H_{1} \subsetneq H_{2} \subsetneq \ldots \subsetneq H_{r}=G
$$

and we have $H_{\epsilon}=H_{i}$ if and only if $\epsilon \in\left[\epsilon_{i}, \epsilon_{i+1}\right)$.
(7) Show that H_{1} is abelian provided ϵ_{1} is small enough with a bound depending only on n. (Hint: It suffices if $f\left(\epsilon_{1}, \epsilon_{1}\right)<\epsilon_{1}$.)
(8) Show that H_{2} is nilpotent provided ϵ_{2} is small enough with a bound depending only on n. (Hint: it suffices if $f\left(\epsilon_{1}, \epsilon_{2}\right)<\epsilon_{1}$ and $f\left(\epsilon_{2}, \epsilon_{2}\right)<\epsilon_{2}$.)
(9) Briefly indicate why the arguments above analogously prove that H_{t} is nilpotent provided ϵ_{t} is small enough with a bound depending only on n.

Remark. This exercise is a start towards proving Jordan's theorem about finite subgroups of $G L_{n}(\mathbf{C})$ having "large" commutative subgroups.

