Problem set 5 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!

Exercise 1. Consider the subgroup $H = S_5 \subset S_6 = G$. Let $\chi : S_5 \to {\pm 1} \subset \mathbb{C}^*$ be the sign character which we also may and do view as a 1-dimensional irreducible representation of H. Let $\pi : S_5 \to GL_4(\mathbb{C})$ be the usual 4-dimensional irreducible representation (which is a summand of the standard permutation representation).

- (1) Compute the character of the representation $\operatorname{Ind}_{H}^{G}(\chi)$.
- (2) Compute the character of the representation $\operatorname{Ind}_{H}^{G}(\pi)$.
- (3) How many irreducible constituents does $\operatorname{Ind}_{H}^{G}(\chi)$ have?
- (4) How many irreducible constituents does $\operatorname{Ind}_{H}^{G}(\pi)$ have?

Exercise 2. Let H be a subgroup of a finite group G. Let V, W be nonzero representations of H. Using the universal property, show that there is a nonzero map

$$\operatorname{Ind}_{H}^{G}(V \otimes W) \longrightarrow \operatorname{Ind}_{H}^{G}(V) \otimes \operatorname{Ind}_{H}^{G}(W)$$

of representations of G.

Exercise 3. Fix an integer $n \ge 2$. Given a complex $n \times n$ matrix $A = (a_{ij})$ we define

$$|A| = \max |a_{ij}|$$

Below, we denote 1 the $n \times n$ identity matrix and A and B are complex $n \times n$ matrices. You can skip parts (1) – (5) if they are obvious to you.

- (1) Briefly explain why $|A + B| \le |A| + |B|$.
- (2) Briefly explain why $|A + B| \ge |A| |B|$.
- (3) Briefly explain why $|AB| \le n|A||B|$.
- (4) Show that $|1 BA| \le |1 A| + |1 B| + n|1 A||1 B|$.
- (5) Show that $|AB| \ge (1 n|1 A|)|B|$.
- (6) Prove that for A and B invertible and $|1 A| \le \epsilon_1$ and $|1 B| \le \epsilon_2$ we have

$$|1 - ABA^{-1}B^{-1}| \le f(\epsilon_1, \epsilon_2) = \frac{2n\epsilon_1\epsilon_2}{1 - n\epsilon_1 - n\epsilon_2 - n^2\epsilon_1\epsilon_2}$$

Hint: set $U = 1 - ABA^{-1}B^{-1}$ and V = BA - AB = (1 - B)(1 - A) - (1 - A)(1 - B). Then V = UBA and hence by (4) and (5) we can find a lower bound for |V| in terms of |U| and ϵ_1, ϵ_2 . But we also have an upper bound for |V| by (1) and (3).

Next, let $G \subset GL_n(\mathbf{C})$ be a finite subgroup. For an $\epsilon \geq 0$ define

 H_{ϵ} = subgroup of G generated by $g \in G$ such that $|1 - g| \leq \epsilon$

Because G is finite, we obtain a sequence

$$0 = \epsilon_0 < \epsilon_1 < \epsilon_2 < \dots < \epsilon_r < \epsilon_{r+1} = \infty$$

of real numbers where the groups H_{ϵ} jump. In other words, we have a sequence of subgroups

$$\{1\} = H_0 \subsetneq H_1 \subsetneq H_2 \subsetneq \ldots \subsetneq H_r = G$$

and we have $H_{\epsilon} = H_i$ if and only if $\epsilon \in [\epsilon_i, \epsilon_{i+1})$.

(7) Show that H_1 is abelian provided ϵ_1 is small enough with a bound depending only on n. (Hint: It suffices if $f(\epsilon_1, \epsilon_1) < \epsilon_1$.)

- (8) Show that H_2 is nilpotent provided ϵ_2 is small enough with a bound depending only on n. (Hint: it suffices if $f(\epsilon_1, \epsilon_2) < \epsilon_1$ and $f(\epsilon_2, \epsilon_2) < \epsilon_2$.)
- (9) Briefly indicate why the arguments above analogously prove that H_t is nilpotent provided ϵ_t is small enough with a bound depending only on n.

Remark. This exercise is a start towards proving Jordan's theorem about finite subgroups of $GL_n(\mathbf{C})$ having "large" commutative subgroups.

 $\mathbf{2}$