Problem set 7 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!
Exercise 1. Let G be a finite group. Let V be a finite dimensional C-vector space. Let

$$
\pi_{t}: G \longrightarrow G L(V), \quad t \in[0,1]
$$

be a continuous family of representations of G. This means that for each $t \in$ $[0,1]$ the map π_{t} is a homomorphism and that for each fixed $g \in G$ the function $[0,1] \rightarrow G L(V), t \mapsto \pi_{t}(g)$ is continuous ${ }^{1}$. Prove that π_{0} and π_{1} are isomorphic representations of G.
Exercise 2. Let p be a prime number. Let G be the group

$$
G=\left\langle a_{1}, a_{2}, b_{1}, b_{2}, c\right\rangle / \text { relations }
$$

where the relations are
(1) all of the elements $a_{1}, a_{2}, b_{1}, b_{2}, c$ have order p,
(2) c is central,
(3) the pairs a_{1}, a_{2} and a_{1}, b_{2} and a_{2}, b_{1} and b_{1}, b_{2} commute,
(4) $a_{1} b_{1} a_{1}^{-1} b_{1}^{-1}=c$ and $a_{2} b_{2} a_{2}^{-1} b_{2}^{-1}=c$.

You may use that in this group every element has a unique expression of the form $a_{1}^{i_{1}} a_{2}^{i_{2}} b_{1}^{j_{1}} b_{2}^{j_{2}} c^{k}$ with $0 \leq i_{1}, i_{2}, j_{1}, j_{2}, k<p$. Construct all irreducible representations of G using the method discussed in the lectures.
Exercise 3. Let p be an odd prime number. Let $k=\mathbf{F}_{p}$ be the field with p elements. Let $G=G L_{2}(k)$. Let $B \subset G$ be the Borel subgroup, i.e.,

$$
B=\left\{\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)\right\}
$$

Choose a character $\chi_{0}: k^{*} \rightarrow \mathbf{C}^{*}$ and define a character $\chi: B \longrightarrow \mathbf{C}^{*}$ by the rule

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \longmapsto \chi_{0}(a)
$$

Compute the character of $\operatorname{Ind}_{B}^{G}(\chi)$.

[^0]
[^0]: ${ }^{1}$ Here $[0,1] \subset \mathbf{R}$ is the closed interval. Choosing a basis of V we may think of π_{t} as a homomorphism into $G L_{n}(\mathbf{C})$ where $n=\operatorname{dim}(V)$, so the condition is that the map $[0,1] \rightarrow$ $G L_{n}(\mathbf{C}), t \mapsto \pi_{t}(g)$ is continuous, which in turn means that the matrix coefficients $\pi_{t}(g)_{i j}$ are continuous maps $[0,1] \rightarrow \mathbf{C}$.

