Problem set 8 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!
Exercise 1. Let G be a finite group. Recall that given an class function f on G we let $\psi_{2}(f)$ be the class function sending g to $f\left(g^{2}\right)$. Let (V, π) be a representation of G. Recall that In the proof of Theorem 3.2 in the notes on real representations we saw that

$$
\psi_{2}\left(\chi_{V}\right)=\chi_{S_{S y m}(V)}-\chi_{\wedge^{2}(V)}
$$

(1) What does it mean in terms of representations if $\psi_{2}\left(\chi_{V}\right)=\chi_{W}$ for some representation (W, ρ) of $G ?$
(2) Give an example of a finite group G and an irreducible (V, π) of dimension >1 such that there exists a (W, ρ) as in (1).
(3) Give an example of a finite group G and an irreducible (V, π) of dimension >1 where there does not exist a (W, ρ) as in (1).
(4) Show that if for every irreducible (V, π) there exists a (W, ρ) as in (1), then the same is true for every representation (V, π) of G.
(5) For a class function f on G define $\psi_{3}(f)$ to be the class function sending g to $f\left(g^{3}\right)$. Can you find an expression for $\psi_{3}\left(\chi_{V}\right)$ in terms of characters of representations of G ?

Exercise 2. Let a_{0}, a_{1}, \ldots be a series of integers. Suppose that there exist integers $c, n>0$ such that for all $i=0,1, \ldots, n-1$ there exists a polynomial $P_{i} \in \mathbf{Q}[x]$ with $a_{i+n k}=P_{i}(k)$ for $k \geq c$. Explain why $\sum_{k} a_{k} t^{k}$ is a rational function of t.
Remark. Let A be a commutative, graded \mathbf{C}-algebra which is finitely generated as a \mathbf{C}-algebra and such that $\operatorname{dim}_{\mathbf{C}} A_{0}<\infty$. Then the sequence of numbers $a_{k}=$ $\operatorname{dim}_{\mathbf{C}} A_{k}$ satisfies the assumptions and hence the conclusions of Exercise 2 above.

Exercise 3. Consider the commutative, graded \mathbf{C}-algebra

$$
A=\mathbf{C}\left[x_{1}, \ldots, x_{r}\right] /(f)
$$

where x_{1}, \ldots, x_{r} are homogenous of degrees d_{1}, \ldots, d_{r} and f is nonzero and homogenous of degree e. Compute the Poincaré series $P(A, t)=\sum_{k} \operatorname{dim}_{\mathbf{C}} A_{k}$ as a rational function of t. An example is $\mathbf{C}[x, y, z] /\left(x^{15}+y^{10}+z^{6}\right)$ where $\operatorname{deg}(x)=2$, $\operatorname{deg}(y)=3$, and $\operatorname{deg}(z)=5$. Feel free to only work out the exercise in the example case.

Exercise 4. Let G be a finite group. Let us consider the condition on the group
$\left(^{*}\right)$ for every representation (V, π) of G there exists a representation (W, ρ) of G such that $\psi_{2}\left(\chi_{V}\right)=\chi_{W}$.
We studied this condition in Exercise 1. My guess while writing these exercises is that $\left({ }^{*}\right)$ holds if $|G|$ is odd. Can you say anything about this? For example, take the group G of order p^{5} we considered in the previous exercise set (or you can take the similar group of order p^{3} we discussed in the lecture that I called a "Heisenberg" group). Does $\left({ }^{*}\right)$ hold for G ?

