Problem set 8 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!

Exercise 1. Let \(p \) be an odd prime number. Let \(k = \mathbb{F}_p \) be the field with \(p \) elements. Let \(G = GL_2(k) \). Let \(\epsilon \in k \) be a nonsquare (in particular \(\epsilon \neq 0 \); for example if \(p = 3, 7, 11 \) we can take \(\epsilon = -1 \)). Let \(H \subset G \) be the subgroup

\[
H = \left\{ \begin{pmatrix} a & \epsilon b \\ b & a \end{pmatrix} \mid (a, b) \neq (0, 0) \right\}
\]

Choose a nontrivial character \(\chi : H^* \to \mathbb{C}^* \). Compute the character of \(\text{Ind}^G_H(\chi) \).

Exercise 2. Let \(V \) be a two dimensional complex vector space. Let \(G \subset GL_2(V) \) be a finite subgroup. We proved in class that we may assume there is a hermitian positive definite form \(\langle \cdot, \cdot \rangle \) which is \(G \)-invariant. After choosing an orthonormal basis we may (and do) assume \(V = \mathbb{C}^2 \) with standard hermitian inner product and \(G \) is contained in the unitary \(2 \times 2 \) matrices. Let \(s \in G \) be a complex reflection and let \(V = L \oplus M \) be the decomposition into \(s \)-eigenspaces. Given \(g \in GL(V) \) we say \(g \) fixes \(L \) and \(M \) if \(g(L) = L \) and \(g(M) = M \) and we say \(g \) switches \(L \) and \(M \) if \(g(L) = M \) and \(g(M) = L \).

(1) Prove that an element \(g \in GL(V) \) commutes with \(s \) if and only if \(g \) fixes \(L \) and \(M \).

(2) Let \(g \in GL(V) \) and set \(s' = gsg^{-1} \). Prove that if \(s' \) fixes \(L \) and \(M \), then \(g \) fixes or switches \(L \) and \(M \).

(3) Let \(g \in GL(V) \) and set \(g' = gsg^{-1}s^{-1} \). Prove that if \(g' \) fixes \(L \) and \(M \), then \(g \) fixes or switches \(L \) and \(M \).

(4) Let \(g \in GL(V) \) and set \(s' = gsg^{-1} \). If \(s \) has order \(m > 2 \), then prove that \(s' \) cannot switch \(L \) and \(M \).

(5) Let \(g \in GL(V) \) and set \(g' = gsg^{-1}s^{-1} \). If \(s \) has order \(m > 2 \), then prove that \(g' \) cannot switch \(L \) and \(M \).

(6) Assume \(s \) has order \(m > 2 \) and for all \(g \in G \) the element \(s' = gsg^{-1} \) fixes or switches \(L \) and \(M \). Prove that \(V \) is a monomial representation of \(G \).

(7) Let \(s \in G \) be a complex reflection with eigenvalues \(\lambda, 1 \). Prove that

\[
|s - 1| \leq |\lambda - 1|
\]

where on the left hand side we use the notation \(|A| \) for \(A \in GL_2(\mathbb{C}) \) is as in Exercise 3 of problem set 5. Hint: show that \(s \) can be written as \(u \text{diag}(\lambda, 1)u^{-1} \) for some unitary matrix \(u \) and then compute.

(8) Using the methods/results of Exercise 3 of problem set 5 and parts (1), (2) above, prove the following: if \(G \) has a complex reflection of “large” order \(m \), then \(V \) is a monomial representation. (This is a bit tricky. My calculation says this works for \(m > 53 \) which is very far from the truth, but I think it illustrates the idea.)

Exercise 3. Give an example of a finite group \(G \) and a homomorphism \(\pi : G \to GL_n(V) \) where \(V \) is a finite dimensional vector space over a field \(k \) of positive characteristic \(p \) such that \((V, \pi) \) is not a direct sum of irreducible representations over the field \(k \).

Exercise 4. Let \(k \) be a field of characteristic \(p > 0 \). Let \(G \) be a finite group of order prime to \(p \). Let \((V, \pi) \) be a representation of \(G \) over \(k \), i.e., \(V \) is a finite
dimensional k-vector space and $\pi : G \to GL(V)$ is a homomorphism. Show that

$$V^G = \{ x \in V \mid g(v) = v \text{ for all } g \in G \}$$

is the image of the projector

$$P = \frac{1}{|G|} \sum_{g \in G} \pi(g) \in \text{End}(V)$$

Deduce that if (W, ρ) is a second representation of G over k and $V \to W$ is a surjective map of G-representations, then the induced map $V^G \to W^G$ is surjective too.

Remark. This exercise can be used to show that the category of representations of G over k is semi-simple, i.e., every representation is completely reducible (a direct sum of irreducible ones). Namely, if $V \to W$ is a surjective map of representations, then one looks at the surjective map of representations $V \otimes_k W^\vee \to W \otimes_k W^\vee$ and arguing that this induces a surjection on G-invariants, one finds a map of representations $W \to V$ whose composition with the given map $V \to W$ is the identity. Hence sub or quotient representations always split off, which implies complete reducibility as in the lectures.