Problem set 8 for Representations of Finite Groups

If you find errors in this text, please email me, thanks!
Exercise 1. Let p be an odd prime number. Let $k=\mathbf{F}_{p}$ be the field with p elements. Let $G=G L_{2}(k)$. Let $\epsilon \in k$ be a nonsquare (in particular $\epsilon \neq 0$; for example if $p=3,7,11$ we can take $\epsilon=-1$). Let $H \subset G$ be the subgroup

$$
H=\left\{\left.\left(\begin{array}{cc}
a & b \epsilon \\
b & a
\end{array}\right) \right\rvert\,(a, b) \neq(0,0)\right\}
$$

Choose a nontrivial character $\chi: H^{*} \rightarrow \mathbf{C}^{*}$. Compute the character of $\operatorname{Ind}_{H}^{G}(\chi)$.
Exercise 2. Let V be a two dimensional complex vector space. Let $G \subset G L_{2}(V)$ be a finite subgroup. We proved in class that we may assume there is a hermitian positive definite form H which is G-invariant. After choosing an orthonormal basis we may (and do) assume $V=\mathbf{C}^{2}$ with standard hermitian inner product and G is contained in the unitary 2×2 matrices. Let $s \in G$ be a complex reflection and let $V=L \oplus M$ be the decomposition into s-eigenspaces. Given $g \in G L(V)$ we say g fixes L and M if $g(L)=L$ and $g(M)=M$ and we say g switches L and M if $g(L)=M$ and $g(M)=L$.
(1) Prove that an element $g \in G L(V)$ commutes with s if and only if g fixes L and M.
(2) Let $g \in G L(V)$ and set $s^{\prime}=g s g^{-1}$. Prove that if s^{\prime} fixes L and M, then g fixes or switches L and M.
(3) Let $g \in G L(V)$ and set $g^{\prime}=g s g^{-1} s^{-1}$. Prove that if g^{\prime} fixes L and M, then g fixes or switches L and M.
(4) Let $g \in G L(V)$ and set $s^{\prime}=g s g^{-1}$. If s has order $m>2$, then prove that s^{\prime} cannot switch L and M.
(5) Let $g \in G L(V)$ and set $g^{\prime}=g s g^{-1} s^{-1}$. If s has order $m>2$, then prove that g^{\prime} cannot switch L and M.
(6) Assume s has order $m>2$ and for all $g \in G$ the element $s^{\prime}=g s g^{-1}$ fixes or switches L and M. Prove that V is a monomial representation of G.
(7) Let $s \in G$ be a complex reflection with eigenvalues $\lambda, 1$. Prove that

$$
|s-1| \leq|\lambda-1|
$$

where on the left hand side we use the notation $|A|$ for $A \in G L_{2}(\mathbf{C})$ is as in Exercise 3 of problem set 5. Hint: show that s can be written as $u \operatorname{diag}(\lambda, 1) u^{-1}$ for some unitary matrix u and then compute.
(8) Using the methods/results of Exercise 3 of problem set 5 and parts (1), (2) above, prove the following: if G has a complex reflection of "large" order m, then V is a monomial representation. (This is a bit tricky. My calculation says this works for $m>53$ which is very far from the truth, but I think it illustrates the idea.)

Exercise 3. Give an example of a finite group G and a homomorphism $\pi: G \rightarrow$ $G L_{n}(V)$ where V is a finite dimensional vector space over a field k of positive characteristic p such that (V, π) is not a direct sum of irreducible representations over the field k.

Exercise 4. Let k be a field of characteristic $p>0$. Let G be a finite group of order prime to p. Let (V, π) be a representation of G over k, i.e., V is a finite
dimensional k-vector space and $\pi: G \rightarrow G L(V)$ is a homomorphism. Show that

$$
V^{G}=\{x \in V \mid g(v)=v \text { for all } g \in G\}
$$

is the image of the projector

$$
P=\frac{1}{|G|} \sum_{g \in G} \pi(g) \in \operatorname{End}(V)
$$

Deduce that if (W, ρ) is a second representation of G over k and $V \rightarrow W$ is a surjective map of G-representations, then the induced map $V^{G} \rightarrow W^{G}$ is surjective too.

Remark. This exercise can be used to show that the category of representations of G over k is semi-simple, i.e., every representation is completely reducible (a direct sum of irreducible ones). Namely, if $V \rightarrow W$ is a surjective map of representations, then one looks at the surjective map of representations $V \otimes_{k} W^{\vee} \rightarrow W \otimes_{k} W^{\vee}$ and arguing that this induces a surjection on G-invariants, one finds a map of representations $W \rightarrow V$ whose composition with the given map $V \rightarrow W$ is the identity. Hence sub or quotient representations always split off, which implies complete reducibility as in the lectures.

