Real representations

1 Definition of a real representation

Definition 1.1. Let $V_{\mathbb{R}}$ be a finite dimensional real vector space. A real representation of a group G is a homomorphism $\rho_{V_{\mathbb{R}}}: G \rightarrow$ Aut $V_{\mathbb{R}}$, where Aut $V_{\mathbb{R}}$ denotes the \mathbb{R}-linear isomorphisms from $V_{\mathbb{R}}$ to itself. Homomorphisms and isomorphisms of real representations are defined in the obvious way. After a choice of basis, a real representation is equivalent to a homomorphism $\rho: G \rightarrow G L(n, \mathbb{R})$, and two such homomorphisms ρ_{1} and ρ_{2} are isomorphic real representations \Longleftrightarrow they are conjugate in $G L(n, \mathbb{R})$, i.e. \Longleftrightarrow there exists an $A \in G L(n, \mathbb{R})$ such that $\rho_{2}(g)=A \rho_{1}(g) A^{-1}$ for all $g \in G$.

Because $G L(n, \mathbb{R})$ is a subgroup of $G L(n, \mathbb{C})$, every real representation $V_{\mathbb{R}}$ defines a (complex) representation V. More abstractly, given a real vector space $V_{\mathbb{R}}$, we define its complexification to be the tensor product $V=V_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$. Concretely, think of \mathbb{R}^{n} being enlarged to \mathbb{C}^{n}. For any real vector space $V_{\mathbb{R}}$, if v_{1}, \ldots, v_{n} is a basis for $V_{\mathbb{R}}$, then by definition $V_{\mathbb{R}}$ is the set of all linear combinations of the v_{i} with real coefficients, and V is the set of all linear combinations of the v_{i} with complex coefficients. In particular, v_{1}, \ldots, v_{n} is a basis for the complex vector space V. Conversely, given a (complex) vector space V and a basis v_{1}, \ldots, v_{n} of V, we can define a vector subspace $V_{\mathbb{R}}$ of V by taking the set of all linear combinations of the v_{i} with real coefficients, and V is then the complexification of $V_{\mathbb{R}}$. We have an inclusion Aut $V_{\mathbb{R}} \rightarrow$ Aut V, which can be summarized by the commutative diagram

where the vertical isomorphisms correspond to the choice of basis v_{1}, \ldots, v_{n}. However, the top horizontal inclusion is canonical, i.e. does not depend on the choice of basis.

Definition 1.2. A representation $\rho_{V}: G \rightarrow$ Aut V can be defined over \mathbb{R} if there exists a real vector space $V_{\mathbb{R}}$ and a real representation $\rho_{V_{\mathbb{R}}}: G \rightarrow$ Aut $V_{\mathbb{R}}$ such that V is the complexification of $V_{\mathbb{R}}$ and ρ_{V} is the image of $\rho_{V_{\mathbb{R}}}$ via the inclusion Aut $V_{\mathbb{R}} \rightarrow$ Aut V. Equivalently, there exists a basis of V such that, for every $g \in G$, the matrices $\rho_{V}(g)$ have real entries.

Remark 1.3. (1) We can make the same definition for any subfield K of \mathbb{C}, for example for $K=\mathbb{Q}$.
(2) Every complex vector space V of dimension n is also a real vector space of dimension $2 n$, by only allowing scalar multiplication by real numbers. To see the statement about the dimensions, if v_{1}, \ldots, v_{n} is a basis of V as a complex vector space, then it is easy to check that $v_{1}, i v_{1}, v_{2}, i v_{2}, \ldots, v_{n}, i v_{n}$ is a basis of V viewed as a real vector space. Since every complex linear isomorphism is automatically real liner, there is a homomorphism $G L(n, \mathbb{C}) \rightarrow G L(2 n, \mathbb{R})$ which is a little messy to write down in general. For $n=1$, it corresponds to the homomorphism $\varphi: \mathbb{C}^{*} \rightarrow G L(2, \mathbb{R})$ defined by $\varphi(a+b i)=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$.

The following gives a necessary condition for a representation of a finite group to be defined over \mathbb{R} :

Lemma 1.4. If ρ_{V} can be defined over \mathbb{R}, then, for all $g \in G, \chi_{V}(g) \in \mathbb{R}$. More generally, if K is a subfield of \mathbb{C} and ρ_{V} can be defined over K, then, for all $g \in G, \chi_{V}(g) \in K$.

Proof. This is clear since the trace of an $n \times n$ matrix with entries in K is an element of K.

As we shall see, the necessary condition above is not in general sufficient.

2 When is an irreducible representation defined over \mathbb{R}

We begin by analyzing the condition that $\chi_{V}(g) \in \mathbb{R}$ for all $g \in G$, and shall only consider the case of an irreducible representation in what follows.

Lemma 2.1. If V is a G-representation of the finite group G, then $\chi_{V}(g) \in$ \mathbb{R} for all $g \in G \Longleftrightarrow V \cong V^{*}$. If moreover V is irreducible and $V \cong V^{*}$, then there exists a nonzero $\varphi \in \operatorname{Hom}^{G}\left(V, V^{*}\right)$ and it is unique up to a nonzero scalar, i.e. $\operatorname{dim} \operatorname{Hom}^{G}\left(V, V^{*}\right)=1$.

Proof. Since $\chi_{V^{*}}=\overline{\chi_{V}}$, we see that $\chi_{V}(g) \in \mathbb{R}$ for all $g \in G \Longleftrightarrow \chi_{V}=\overline{\chi_{V}}$ $\Longleftrightarrow \chi_{V}=\chi_{V^{*}} \Longleftrightarrow V \cong V^{*}$. The remaining statement then follows from Schur's lemma.

We define $\operatorname{Bil}(V)$ to be the set of bilinear functions $F: V \times V \rightarrow \mathbb{C}$. General results about tensor products tell us that

$$
\operatorname{Bil}(V) \cong(V \otimes V)^{*} \cong V^{*} \otimes V^{*} \cong \operatorname{Hom}\left(V, V^{*}\right)
$$

However, we will explicitly construct the isomorphism $\operatorname{Bil}(V) \cong \operatorname{Hom}\left(V, V^{*}\right)$:
Lemma 2.2. The map $A: \operatorname{Bil}(V) \rightarrow \operatorname{Hom}\left(V, V^{*}\right)$ defined by

$$
A(F)(v)(w)=F(v, w)
$$

is an isomorphism of vector spaces. If V is a G-representation and we define

$$
\rho_{\operatorname{Bil}(V)}(g)(F)(v, w)=F\left(\rho_{V}(g)^{-1}(v), \rho_{V}(g)^{-1}(w)\right)
$$

then A is a G-isomorphism, where as usual, given $\varphi \in \operatorname{Hom}\left(V, V^{*}\right)$,

$$
\rho_{\operatorname{Hom}\left(V, V^{*}\right)}(g)(\varphi)(v)(w)=\varphi\left(\rho_{V}(g)^{-1} v\right)\left(\rho_{V}(g)^{-1}(w)\right.
$$

Proof. If we define $A(F)$ as in the statement, then it is easy to see that $A(F)(v)$ is linear in w and that $v \mapsto A(F)(v)$ is linear in v, so that $A(F) \in$ $\operatorname{Hom}\left(V, V^{*}\right)$. Also, a short computation shows that $A\left(F_{1}+F_{2}\right)=A\left(F_{1}\right)+$ $A\left(F_{2}\right)$ and that $A(t F)=t A(F)$, so A is a linear map of vector spaces. To show that A is an isomorphism, we define an inverse function: let $B: \operatorname{Hom}\left(V, V^{*}\right) \rightarrow \operatorname{Bil}(V)$ be defined by

$$
B(\varphi)(v, w)=\varphi(v)(w)
$$

Again, an easy calculation shows that $B \circ A=\mathrm{Id}, A \circ B=\mathrm{Id}$. Finally, if V is a G-representation, then

$$
\begin{aligned}
A\left(\rho_{\operatorname{Bil}(V)}(g)(F)\right)(v)(w) & =\rho_{\operatorname{Bil}(V)}(g)(F)(v, w)=F\left(\rho_{V}(g)^{-1}(v), \rho_{V}(g)^{-1}(w)\right) \\
& =\rho_{\operatorname{Hom}\left(V, V^{*}\right)}(g)(A(F))(v)(w)
\end{aligned}
$$

so that A is a G-morphism and hence a G-isomorphism.
Corollary 2.3. If V is an irreducible G-representation, then $\operatorname{dim}\left(\operatorname{Bil}(V)^{G}\right)$ is 0 if V is not isomorphic to V^{*} and 1 if $V \cong V^{*}$.

To analyze $\operatorname{Bil}(V)$ further, we make the following definition:

Definition 2.4. Let $F \in \operatorname{Bil}(V)$. Then F is symmetric if $F(v, w)=F(w, v)$ for all $v, w \in V$, and F is antisymmetric if $F(v, w)=-F(w, v)$ for all $v, w \in V$. Let $\operatorname{Sym}^{2} V^{*}$ be the set of all symmetric $F \in \operatorname{Bil}(V)$ and let $\Lambda^{2} V^{*}$ denote the set of all antisymmetric $F \in \operatorname{Bil}(V)$. Clearly both $\operatorname{Sym}^{2} V^{*}$ and $\bigwedge^{2} V^{*}$ are vector subspaces of $\operatorname{Bil}(V)$. If V is a G-representation, so that $\operatorname{Bil}(V)$ is also a G-representation, then from the definition of $\rho_{\operatorname{Bil}(V)}$ it is easy to see that $\operatorname{Sym}^{2} V^{*}$ and $\bigwedge^{2} V^{*}$ are G-invariant subspaces of $\operatorname{Bil}(V)$.

Lemma 2.5. $\operatorname{Bil}(V)=\operatorname{Sym}^{2} V^{*} \oplus \bigwedge^{2} V^{*}$. If V is a G-representation, then the above is a direct sum of G-invariant subspaces.

Proof. Define $\pi_{1}: \operatorname{Bil}(V) \rightarrow \operatorname{Sym}^{2} V^{*}$ and $\pi_{2}: \operatorname{Bil}(V) \rightarrow \bigwedge^{2} V^{*}$ by:

$$
\begin{aligned}
& \pi_{1}(F)(v, w)=\frac{1}{2}(F(v, w)+F(w, v)) \\
& \pi_{2}(F)(v, w)=\frac{1}{2}(F(v, w)-F(w, v)) .
\end{aligned}
$$

Then clearly $\pi_{1}(F)=F \Longleftrightarrow F \in \operatorname{Sym}^{2} V^{*}, \pi_{1}(F)=0 \Longleftrightarrow F \in \bigwedge^{2} V^{*}$, and similarly $\pi_{2}(F)=0 \Longleftrightarrow F \in \operatorname{Sym}^{2} V^{*}, \pi_{1}(F)=F \Longleftrightarrow F \in \bigwedge^{2} V^{*}$. Also $\pi_{1}+\pi_{2}=$ Id. It then follows that $\operatorname{Bil}(V)=\operatorname{Sym}^{2} V^{*} \oplus \bigwedge^{2} V^{*}$. The last statement is then a general fact.

Corollary 2.6. Let V be an irreducible representation. If V and V^{*} are not isomorphic, then $\operatorname{Bil}(V)^{G}=0$. If V and V^{*} are isomorphic, then either $\operatorname{dim}\left(\operatorname{Sym}^{2} V^{*}\right)^{G}=1$ and $\bigwedge^{2} V^{*}=0$ or $\operatorname{dim}\left(\bigwedge^{2} V^{*}\right)^{G}=1$ and $\operatorname{Sym}^{2} V^{*}=$ 0 .

We can now state the main result concerning real representations:
Theorem 2.7. Let V be an irreducible G-representation.
(i) V and V^{*} are not isomorphic $\Longleftrightarrow \operatorname{Bil}(V)^{G}=0$.
(ii) $V \cong V^{*}$ and V is defined over $\mathbb{R} \Longleftrightarrow \operatorname{dim}\left(\operatorname{Sym}^{2} V^{*}\right)^{G}=1$ and $\Lambda^{2} V^{*}=0$.
(iii) $V \cong V^{*}$ and V is not defined over $\mathbb{R} \Longleftrightarrow \operatorname{dim}\left(\bigwedge^{2} V^{*}\right)^{G}=1$ and $\operatorname{Sym}^{2} V^{*}=0$. Moreover, in this case $\operatorname{dim} V$ is even.

Proof. We have already seen (i). Also (ii) \Longrightarrow (iii), except for the last statement about the dimension, since (iii) is just the equivalence of the negations of the two statements of (ii). So we must prove (ii).
\Longrightarrow : Suppose that V is defined over \mathbb{R}. In other words, there exists a basis v_{1}, \ldots, v_{n} of V such that the matrix of ρ_{V} with respect to this basis has real entries. Let $V_{\mathbb{R}}$ be the real span of the v_{i} :

$$
V_{\mathbb{R}}=\left\{\sum_{i=1}^{n} t_{i} v_{i}: t_{i} \in \mathbb{R}\right\}
$$

Thus $V_{\mathbb{R}}$ is a real vector subspace of V and ρ_{V} comes from a real representation $\rho_{V_{\mathbb{R}}}$ of G on $V_{\mathbb{R}}$, i.e. ρ_{V} is defined over \mathbb{R}. There exists a positive definite inner product (i.e. a symmetric \mathbb{R}-bilinear function) on $V_{\mathbb{R}}$, for example we could define

$$
\left\langle\sum_{i=1}^{n} s_{i} v_{i}, \sum_{i=1}^{n} t_{i} v_{i}\right\rangle=\sum_{i=1}^{n} s_{i} t_{i} .
$$

This inner product is not G-invariant, but we can make it G-invariant by averaging over G : define

$$
F_{\mathbb{R}}(v, w)=\frac{1}{\#(G)} \sum_{g \in G}\left\langle\rho_{V_{\mathbb{R}}}(v), \rho_{V_{\mathbb{R}}}(w)\right\rangle .
$$

Then $F_{\mathbb{R}}$ is symmetric and it is positive definite, because it is a sum of positive definite inner products. In particular $F_{\mathbb{R}} \neq 0$. Note that $F_{\mathbb{R}}$ is specified by its values $F_{\mathbb{R}}\left(v_{i}, v_{j}\right)$ and the G-invariance of $F_{\mathbb{R}}$ is equivalent to the statement that, for all i, j and all $g \in G$,

$$
F_{\mathbb{R}}\left(\rho_{V_{\mathbb{R}}}\left(v_{i}\right), \rho_{V_{\mathbb{R}}}\left(v_{j}\right)\right)=F_{\mathbb{R}}\left(v_{i}, v_{j}\right) .
$$

Now we can extend $F_{\mathbb{R}}$ to a \mathbb{C}-bilinear function F on V, by defining

$$
F(v, w)=\sum_{i, j} s_{i} t_{j} F_{\mathbb{R}}\left(v_{i}, v_{j}\right)
$$

where $v=\sum_{i} s_{i} v_{i}$ and $w=\sum_{i} t_{i} w_{i}$. In particular, if $v, w \in V_{\mathbb{R}}$, then $F(v, w)=F_{\mathbb{R}}(v, w)$ so that $F \neq 0$. Moreover F is symmetric because $F_{\mathbb{R}}$ is symmetric, and hence $F_{\mathbb{R}}\left(v_{i}, v_{j}\right)=F_{\mathbb{R}}\left(v_{j}, v_{i}\right)$. Finally, one checks that F is G-invariant, which is equivalent to the statement that $F\left(\rho_{V_{\mathbb{R}}}\left(v_{i}\right), \rho_{V_{\mathbb{R}}}\left(v_{j}\right)\right)=$ $F\left(v_{i}, v_{j}\right)$ and thus follows from the corresponding statement for $F_{\mathbb{R}}$. Thus F is a nonzero element of $\left.\operatorname{Sym}^{2} V^{*}\right)^{G}$. It follows that $\operatorname{dim}\left(\operatorname{Sym}^{2} V^{*}\right)^{G}=1$ and $\bigwedge^{2} V^{*}=0$.
$\Longleftarrow:$ We must use the existence of a nonzero $\left.F \in \operatorname{Sym}^{2} V^{*}\right)^{G}$ to show that V is defined over \mathbb{R}. We begin with a digression on complex structures. Let $V_{\mathbb{R}}$ be a real vector space with complexification V. We can think of this
as follows: there exists a basis v_{1}, \ldots, v_{n} of V such that $V_{\mathbb{R}}$ is the real span of v_{1}, \ldots, v_{n}. Thus $v_{1}, i v_{1}, v_{2}, i v_{2}, \ldots, v_{n}, i v_{n}$ is a real basis of V and every $v \in V$ can be uniquely written as $w+i u$, where $w, u \in V_{\mathbb{R}}$. In other words, as real vector spaces,

$$
V \cong V_{\mathbb{R}} \oplus i V_{\mathbb{R}}
$$

Now we can define conjugation γ on V :

$$
\gamma(w+i u)=w-i u .
$$

Thus γ is \mathbb{R}-linear with $\gamma^{2}=\mathrm{Id}$ and +1 -eigenspace $V_{\mathbb{R}}$ and -1 -eigenspace $i V_{\mathbb{R}}$. In terms of the basis v_{1}, \ldots, v_{n}, if $v=\sum_{i} t_{i} v_{i}$ is a vector in V, then

$$
\gamma\left(\sum_{i} t_{i} v_{i}\right)=\sum_{i} \bar{t}_{i} v_{i} .
$$

Then γ is conjugate linear: $\gamma(t v)=\bar{t} \gamma(v)$. Finally, if $A \in \operatorname{End} V$ satisfies $A\left(V_{\mathbb{R}}\right) \subseteq V_{\mathbb{R}}$, i.e. the matrix of A with respect to the basis v_{1}, \ldots, v_{n} has real entries, then A commutes with γ since it preserves two eigenspaces, and conversely, if A commutes with γ, then $A\left(V_{\mathbb{R}}\right) \subseteq V_{\mathbb{R}}$ and hence the matrix of A with respect to the basis v_{1}, \ldots, v_{n} has real entries.

Conversely, suppose that V is a complex vector space and that $\gamma: V \rightarrow$ V is conjugate linear and hence \mathbb{R}-linear, and that $\gamma^{2}=\mathrm{Id}$. Then γ is diagonalizable over \mathbb{R}, i.e. $V \cong V_{+} \oplus V_{-}$, where $V_{ \pm}$are real vector subspaces of $V, \gamma \mid V_{+}=$Id and $\gamma \mid V_{-}=-$Id. In fact, we can define V_{+}to be the +1 -eigenspace of γ and V_{-}to be the -1 -eigenspace. Then setting

$$
\begin{aligned}
& \pi_{+}(v)=\frac{1}{2}(v+\gamma(v)) \\
& \pi_{-}(v)=\frac{1}{2}(v-\gamma(v))
\end{aligned}
$$

it is easy to check that $\operatorname{Im} \pi_{ \pm}=V_{ \pm}$, $\operatorname{Ker} \pi_{ \pm}=V_{\mp}$, and $\pi_{+}+\pi_{-}=\operatorname{Id}$, giving the direct sum decomposition. Moreover

$$
v \in V_{+} \Longleftrightarrow \gamma(v)=v \Longleftrightarrow \gamma(i v)=-i v \Longleftrightarrow i v \in V_{-} .
$$

Thus multiplication by i defines an isomorphism from V_{+}to V_{-}. It follows that an \mathbb{R}-basis for V_{+}is a \mathbb{C}-basis for V, and that V is the complexification of V_{+}. Finally, if $A \in \operatorname{End} V$ is complex linear and A commutes with γ, then $A\left(V_{+}\right) \subseteq V_{+}$. Hence A has real coefficients with respect to any basis of V which is a real basis of V_{+}. In particular, if $\rho_{V}: G \rightarrow$ Aut V is a homomorphism and γ commutes with $\rho_{V}(g)$ for every $g \in G$, then ρ_{V} defines a real representation on V_{+}and ρ_{V} is the complexification of this representation.

Returning to our situation, we have a nonzero symmetric G-invariant $F \in \operatorname{Sym}^{2} V^{*}$, corresponding to a G-invariant homomorphism $\varphi: V \rightarrow V^{*}$, necessarily an isomorphism by Schur's lemma. Here $F(v, w)=\varphi(v)(w)$, so the symmetry condition is the statement that, for all $v, w \in V$,

$$
\varphi(v)(w)=\varphi(w)(v)
$$

There exists a positive definite Hermitian inner product on V, so after averaging there exists a G-invariant positive definite Hermitian inner product $H(v, w)$ on V. Such an H defines an \mathbb{R}-linear function $\psi: V \rightarrow V^{*}$ by the rule

$$
\psi(v)(w)=H(w, v)
$$

Note that we have to switch the order to make $\psi(v)$ is linear in w. However, ψ is conjugate linear in v. It is easy to see that ψ is an isomorphism: since V and V^{*} have the same dimension as real vector spaces, it suffices to show that ψ is injective, i.e. that $\psi(v)$ is not the zero element in V^{*} for $v \neq 0$. This follows since $\psi(v)(v)=H(v, v)>0$.

Define $\alpha: V \rightarrow V$ by $\alpha=\psi^{-1} \circ \varphi$. Then α is conjugate linear since it is a composition of a complex linear and a conjugate linear map, and α is an isomorphism of real vector spaces. Finally, α is G-invariant since ψ and φ are G-invariant.

Consider $\alpha^{2}: V \rightarrow V$, which is complex linear as it is the composition of two conjugate linear maps. It is also a G-invariant isomorphism since it is the composition of two such. Thus, by Schur's lemma, $\alpha^{2}=\lambda$ Id for some nonzero complex number λ.
Claim 2.8. λ is a positive real number.
Proof. By the definition of $\psi, \psi(v)(w)=H(w, v)$ for all $v, w \in V$. Thus, for all $f \in V^{*}$,

$$
f(w)=H\left(w, \psi^{-1}(f)\right)
$$

If in addition $f=\varphi(v)$, this says that

$$
F(v, w)=\varphi(v)(w)=H\left(w, \psi^{-1} \circ \varphi(v)\right)=H(w, \alpha(v)) .
$$

Replacing w by $\alpha(w)$ and using the symmetry of F gives

$$
H(\alpha(w), \alpha(v))=F(v, \alpha(w))=F(\alpha(w), v)=H\left(v, \alpha^{2}(w)\right)=H(v, \lambda w)
$$

Now choose $v=w, v \neq 0$. We get

$$
H(\alpha(v), \alpha(v))=H(v, \lambda v)=\bar{\lambda} H(v, v) .
$$

Since both $H(\alpha(v), \alpha(v))$ and $H(v, v)$ are real and positive, it follows that $\bar{\lambda}$ is real and positive, and thus the same is true for $\lambda=\bar{\lambda}$.

Returning to the proof of Theorem 2.7, define $\gamma=\lambda^{-1 / 2} \alpha$. Then γ is a conjugate linear isomorphism and $\gamma^{2}=$ Id. Finally, γ commutes with the G-action, and so as in the above discussion on real structures, γ defines a realstructure on V for which ρ_{V} is a real representation.

Thus we have proved all of the statements in Theorem 2.7 except for the fact that, in case (iii), $\operatorname{dim} V$ is even. This is a general linear algebra fact about vector spaces for which there exists an $F \in \bigwedge^{2} V^{*}$ such that the corresponding map $V \rightarrow V^{*}$ is an isomorphism.

3 A computational characterization

We would like a computational method for deciding when a representation can be defined over \mathbb{R}. First, a definition:

Definition 3.1. Let f be a class function on G. Define a new function $\psi_{2}(f)$ by

$$
\psi_{2}(f)(g)=f\left(g^{2}\right)
$$

Then $\psi_{2}(f)$ is also a class function, since

$$
\psi_{2}(f)\left(x g x^{-1}\right)=f\left(\left(x g x^{-1}\right)^{2}\right)=f\left(x g^{2} x^{-1}\right)=f\left(g^{2}\right)=\psi_{2}(f)(g)
$$

(One can define $\psi_{n}(f)$ similarly for every $n \in \mathbb{Z}$.)
In particular, for a character χ_{V} of G, we can consider the expression

$$
\left\langle\psi_{2}\left(\chi_{V}\right), 1\right\rangle=\frac{1}{\#(G)} \sum_{g \in G} \chi_{V}\left(g^{2}\right)
$$

Theorem 3.2. Let V be an irreducible G-representation.
(i) V and V^{*} are not isomorphic $\Longleftrightarrow\left\langle\psi_{2}\left(\chi_{V}\right), 1\right\rangle=0$.
(ii) $V \cong V^{*}$ and V is defined over $\mathbb{R} \Longleftrightarrow\left\langle\psi_{2}\left(\chi_{V}\right), 1\right\rangle=1$.
(iii) $V \cong V^{*}$ and V is not defined over $\mathbb{R} \Longleftrightarrow\left\langle\psi_{2}\left(\chi_{V}\right), 1\right\rangle=-1$.

Proof. By Theorem 2.7, we have the following:
(i) V and V^{*} are not isomorphic $\Longleftrightarrow \operatorname{Hom}^{G}\left(V, V^{*}\right)=\operatorname{Bil}^{G}(V)=0$ $\Longleftrightarrow\left\langle\chi_{\operatorname{Bil}^{G}(V)}, 1\right\rangle=0$.
(ii) $V \cong V^{*}$ and V is defined over $\mathbb{R} \Longleftrightarrow \operatorname{dim}\left(\operatorname{Sym}^{2} V^{*}\right)=1$ and $\bigwedge^{2} V^{*}=$ $0 \Longleftrightarrow\left\langle\chi_{\operatorname{Sym}^{2} V^{*}}, 1\right\rangle=1$ and $\left\langle\chi_{\Lambda^{2} V^{*}}, 1\right\rangle=0$.
(iii) $V \cong V^{*}$ and V is not defined over $\mathbb{R} \Longleftrightarrow \operatorname{dim}\left(\bigwedge^{2} V^{*}\right)=1$ and $\operatorname{Sym}^{2} V^{*}=0 \Longleftrightarrow\left\langle\chi_{\Lambda^{2} V^{*}}, 1\right\rangle=1$ and $\left\langle\chi_{\operatorname{Sym}^{2} V^{*}}, 1\right\rangle=0$.
So we must compute these characters. In fact, we claim:
$(\text { i })^{\prime} \chi_{\mathrm{Bil}^{G}(V)}=\chi_{\operatorname{Hom}^{G}\left(V, V^{*}\right)}=\bar{\chi}_{V}^{2}$.
(ii) $\chi_{\mathrm{Sym}^{2} V^{*}}=\frac{1}{2}\left(\bar{\chi}_{V}^{2}+\psi_{2}\left(\bar{\chi}_{V}\right)\right)$.
(iii) $\chi_{\Lambda^{2} V^{*}}=\frac{1}{2}\left(\bar{\chi}_{V}^{2}-\psi_{2}\left(\bar{\chi}_{V}\right)\right)$.

Assuming this, we have

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{Sym}^{2} V^{*}\right) & =\left\langle\chi_{\operatorname{Sym}^{2} V^{*}}, 1\right\rangle=\frac{1}{2}\left(\left\langle\bar{\chi}_{V}^{2}, 1\right\rangle+\left\langle\psi_{2}\left(\bar{\chi}_{V}\right), 1\right\rangle\right) ; \\
\operatorname{dim}\left(\bigwedge^{2} V^{*}\right) & =\left\langle\chi_{\Lambda^{2} V^{*}}, 1\right\rangle=\frac{1}{2}\left(\left\langle\bar{\chi}_{V}^{2}, 1\right\rangle-\left\langle\psi_{2}\left(\bar{\chi}_{V}\right), 1\right\rangle\right) .
\end{aligned}
$$

Then $\left\langle\psi_{2}\left(\bar{\chi}_{V}\right), 1\right\rangle=0 \Longleftrightarrow \operatorname{dim}\left(\operatorname{Sym}^{2} V^{*}\right)=\operatorname{dim}\left(\bigwedge^{2} V^{*}\right)$, which happens exactly when $\operatorname{Hom}^{G}\left(V, V^{*}\right)=0$, since otherwise one of the dimensions is 0 and the other is 1 . Since $\left\langle\psi_{2}\left(\bar{\chi}_{V}\right), 1\right\rangle$ is real in this case,

$$
\left\langle\psi_{2}\left(\bar{\chi}_{V}\right), 1\right\rangle=\left\langle\psi_{2}\left(\chi_{V}\right), 1\right\rangle .
$$

A brief computation in the remaining cases shows that $\left\langle\chi_{\operatorname{Sym}^{2} V^{*}}, 1\right\rangle=1$ and $\left\langle\chi_{\wedge^{2} V^{*}}, 1\right\rangle=0 \Longleftrightarrow\left\langle\psi_{2}\left(\bar{\chi}_{V}\right), 1\right\rangle=1$, and $\left\langle\chi_{\wedge^{2} V^{*}}, 1\right\rangle=1$ and $\left\langle\chi_{\operatorname{Sym}^{2} V^{*}}, 1\right\rangle=0 \Longleftrightarrow\left\langle\psi_{2}\left(\bar{\chi}_{V}\right), 1\right\rangle=-1$. As before, by taking conjugates, the first case happens $\Longleftrightarrow\left\langle\psi_{2}\left(\chi_{V}\right), 1\right\rangle=1$ and the second \Longleftrightarrow $\left\langle\psi_{2}\left(\chi_{V}\right), 1\right\rangle=-1$.

So we must prove the claim. For $g \in G$, the linear map $\rho_{V}(g)$ is diagonalizable. Let v_{1}, \ldots, v_{n} be a basis of V such that $\rho_{V}\left(v_{i}\right)=\lambda_{i} v_{i}$ and let v_{i}^{*} be the dual basis. Then $\rho_{V}\left(g^{2}\right)$ is also diagonalized by the basis v_{1}, \ldots, v_{n}, with eigenvalues λ_{i}^{2}, and hence

$$
\psi_{2}\left(\bar{\chi}_{V}\right)(g)=\bar{\chi}_{V}\left(g^{2}\right)=\sum_{i} \bar{\lambda}_{i}^{2} .
$$

Let $v_{i}^{*} v_{j}^{*} \in \operatorname{Hom}\left(V, V^{*}\right)$ be the linear map defined by $v_{i}^{*} v_{j}^{*}(w)=v_{i}^{*}(w) v_{j}^{*}$. Then $v_{i}^{*} v_{j}^{*}, 1 \leq i, j \leq n$ is a basis for $\operatorname{Hom}\left(V, V^{*}\right)$ and each $v_{i}^{*} v_{j}^{*}$ is an
eigenvector for $\rho_{\operatorname{Hom}\left(V, V^{*}\right)}(g)$ with eigenvalue $\lambda_{i}^{-1} \lambda_{j}^{-1}=\bar{\lambda}_{i} \bar{\lambda}_{j}$. Thus we see as previously noted that

$$
\chi_{\operatorname{Hom}\left(V, V^{*}\right)}(g)=\sum_{i, j} \bar{\lambda}_{i} \bar{\lambda}_{j}=\left(\sum_{i} \bar{\lambda}_{i}\right)\left(\sum_{j} \bar{\lambda}_{j}\right)=\left(\bar{\chi}_{V}(g)\right)^{2} .
$$

We can also write this as

$$
\left(\bar{\chi}_{V}(g)\right)^{2}=\sum_{i} \bar{\lambda}_{i}^{2}+2 \sum_{i<j} \bar{\lambda}_{i} \bar{\lambda}_{j} .
$$

As for $\mathrm{Sym}^{2} V^{*}$, we can find a basis for it by symmetrizing the expressions $v_{i}^{*} v_{j}^{*}$ to $\frac{1}{2}\left(v_{i}^{*} v_{j}^{*}+v_{j}^{*} v_{i}^{*}\right)$. This expression is unchanged by switching i and i, and the functions

$$
\frac{1}{2}\left(v_{i}^{*} v_{j}^{*}+v_{j}^{*} v_{i}^{*}\right), \quad i \leq j
$$

are linearly independent. A similar argument shows that a basis for $\Lambda^{2} V^{*}$ is given by

$$
\frac{1}{2}\left(v_{i}^{*} v_{j}^{*}-v_{j}^{*} v_{i}^{*}\right), \quad i<j .
$$

Thus

$$
\begin{aligned}
\chi_{\mathrm{Sym}^{2} V^{*}}(g) & =\sum_{i \leq j} \bar{\lambda}_{i} \bar{\lambda}_{j} ; \\
\chi_{\wedge^{2} V^{*}}(g) & =\sum_{i<j} \bar{\lambda}_{i} \bar{\lambda}_{j} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{1}{2}\left(\bar{\chi}_{V}^{2}(g)+\psi_{2}\left(\bar{\chi}_{V}\right)(g)\right) & =\frac{1}{2}\left(\sum_{i} \bar{\lambda}_{i}^{2}+2 \sum_{i<j} \bar{\lambda}_{i} \bar{\lambda}_{j}+\sum_{i} \bar{\lambda}_{i}^{2}\right) \\
& =\frac{1}{2}\left(2 \sum_{i} \bar{\lambda}_{i}^{2}+2 \sum_{i<j} \bar{\lambda}_{i} \bar{\lambda}_{j}\right) \\
& =\sum_{i \leq j} \bar{\lambda}_{i} \bar{\lambda}_{j}=\chi_{\operatorname{Sym}^{2} V^{*}}(g) .
\end{aligned}
$$

A similar calculation establishes the formula for $\chi_{\wedge^{2} V^{*}}(g)$.

Example 3.3. (1) Let $G=D_{4}$ and let V be the irreducible 2-dimensional representation of D_{4}. The elements of D_{4} are $\alpha^{k}, 0 \leq k \leq 3$, and $\tau \alpha^{k}$, $0 \leq k \leq 3$. Moreover, $\left(\alpha^{k}\right)^{2}=1$ if $k=0,2,\left(\alpha^{k}\right)^{2}=\alpha^{2}$ if $k=1,3$, and $\left(\tau \alpha^{k}\right)^{2}=1$ for all k. Thus, in D_{4}, there are 6 elements whose square is 1 and 2 elements whose square is α^{2}. We know that $\chi_{V}(1)=2$ and that $\chi_{V}\left(\alpha^{2}\right)=-2$. Then

$$
\left\langle\psi_{2}\left(\chi_{V}\right), 1\right\rangle=\frac{1}{8}(6 \cdot 2+2 \cdot(-2))=1 .
$$

Thus the irreducible 2-dimensional representation of D_{4} can be defined over \mathbb{R}. Of course, we have seen this directly.
(2) Let $G=Q$, the quaternion group, and let V be the irreducible 2dimensional representation of Q. The elements of Q are $\pm 1, \pm i, \pm j, \pm k$. Moreover, $(1)^{2}=(-1)^{2}=1$ and all other elements have square -1 . Thus, in Q, there are 2 elements whose square is 1 and 6 elements whose square is -1 . We know that $\chi_{V}(1)=2$ and that $\chi_{V}(-1)=-2$. Then

$$
\left\langle\psi_{2}\left(\chi_{V}\right), 1\right\rangle=\frac{1}{8}(2 \cdot 2+6 \cdot(-2))=-1 .
$$

Thus the irreducible 2-dimensional representation of Q cannot be defined over \mathbb{R}.

4 Irreducible real representations

In this section, we switch gears and look at things from the perspective of an irreducible real representation $V_{\mathbb{R}}$. We shall just state the main result (although its proof is not that difficult).

Recall that, if $V_{\mathbb{R}}$ is a real representation which is irreducible as a real representation, then Schur's lemma only says that $\operatorname{Hom}^{G}\left(V_{\mathbb{R}}, V_{\mathbb{R}}\right)$ is a division ring containing \mathbb{R} in its center, and is a finite dimensional \mathbb{R}-vector space since it is isomorphic to a vector subspace of $\mathbb{M}_{n}(\mathbb{R})$ for $n=\operatorname{dim} V_{\mathbb{R}}$. It is not hard to classify such division rings: $\operatorname{Hom}^{G}\left(V_{\mathbb{R}}, V_{\mathbb{R}}\right)$ is isomorphic to \mathbb{R}, \mathbb{C}, or \mathbb{H}, the quaternions. We can then look at the complexification V of $V_{\mathbb{R}}$. Although $V_{\mathbb{R}}$ is an irreducible real representation, V need not be irreducible. The possibilities are as follows:

Theorem 4.1. Let $V_{\mathbb{R}}$ be an irreducible real representation and let V be its complexification.
(i) $\operatorname{Hom}^{G}\left(V_{\mathbb{R}}, V_{\mathbb{R}}\right) \cong \mathbb{R} \Longleftrightarrow V$ is irreducible.
(ii) $\operatorname{Hom}^{G}\left(V_{\mathbb{R}}, V_{\mathbb{R}}\right) \cong \mathbb{C} \Longleftrightarrow V \cong W \oplus W^{*}$, where W and W^{*} are irreducible and W and W^{*} are not isomorphic.
(iii) $\operatorname{Hom}^{G}\left(V_{\mathbb{R}}, V_{\mathbb{R}}\right) \cong \mathbb{H} \Longleftrightarrow V \cong W \oplus W$, where W is irreducible and $W \cong W^{*}$.

5 Real conjugacy classes

One question related to our previous discussion is the following: given a representation V of G, when is $\chi_{V}(g) \in \mathbb{R}$? Of course, if g is conjugate to g^{-1} then, for every representation V,

$$
\chi_{V}(g)=\chi_{V}\left(g^{-1}\right)=\bar{\chi}_{V}(g),
$$

and thus $\chi_{V}(g) \in \mathbb{R}$ for every V.
We make the following preliminary observation:
Lemma 5.1. Let $x \in G$, and suppose that y is conjugate to x. Then y^{-1} is conjugate to x^{-1}. Hence, $C(x)$ is the conjugacy class of x and if we define

$$
C(x)^{-1}=\left\{y^{-1}: y \in C(x)\right\}
$$

then $C(x)^{-1}=C\left(x^{-1}\right)$.
Proof. For the first statement, if $y=g x g^{-1}$, then

$$
y^{-1}=\left(g x g^{-1}\right)^{-1}=g x^{-1} g^{-1} .
$$

Thus, if $y \in C(x)$, then $y^{-1} \in C\left(x^{-1}\right)$ and so $C(x)^{-1} \subseteq C\left(x^{-1}\right)$. Conversely, if $z \in C\left(x^{-1}\right)$, then z is conjugate to x^{-1} and hence $y=z^{-1}$ is conjugate to $\left(x^{-1}\right)^{-1}=x$. Then by definition $z=y^{-1} \in C(x)^{-1}$, so that $C\left(x^{-1}\right) \subseteq$ $C(x)^{-1}$. Thus $C(x)^{-1}=C\left(x^{-1}\right)$.

Definition 5.2. A conjugacy class $C(x)$ is real if $C(x)^{-1}=C(x)$, or equivalently if there exists a $y \in C(x)$ such that y is conjugate to y^{-1}. By the lemma, if there exists one such y, then y is conjugate to y^{-1} for every $y \in C(x)$.

Example 5.3. (1) Clearly, $C(1)=\{1\}$ is a real conjugacy class.
(2) If G is abelian, then $C(x)=\{x\}$ for every $x \in G$. Thus $C(x)$ is a real conjugacy class $\Longleftrightarrow x=x^{-1} \Longleftrightarrow x$ has order 1 or 2 . In particular, if G is an abelian group of odd order, then the only real conjugacy class is $C(1)$.
(3) In S_{n}, every element σ is conjugate to σ^{-1}, and thus every conjugacy class is real. In fact, every element σ can be written as $\sigma=\gamma_{1} \cdots \gamma_{\ell}$, where each γ_{i} is a cycle of some length $n_{i}>1$ and the γ_{i} are pairwise disjoint. As disjoint cycles commute,

$$
\sigma^{-1}=\left(\gamma_{1} \cdots \gamma_{\ell}\right)^{-1}=\gamma_{\ell}^{-1} \cdots \gamma_{1}^{-1}=\gamma_{1}^{-1} \cdots \gamma_{\ell}^{-1} .
$$

But each γ_{i}^{-1} is also a cycle of length n_{i}, and it is easy to check that, in S_{n}, two elements $\gamma_{1} \cdots \gamma_{\ell}$ and $\delta_{1} \cdots \delta_{\ell}$, both products of disjoint cycles of the same lengths, are conjugate.
(4) It is easy to check that the quaternion group Q also has the property that every element g is conjugate to g^{-1}, and thus that every conjugacy class is real.

As usual, enumerate the irreducible representations of G up to isomorphism as V_{1}, \ldots, V_{h}. We then have the following curious fact about real conjugacy classes:
Theorem 5.4 (Burnside). The number of real conjugacy classes of G is equal to the number of i such that the irreducible representation V_{i} is isomorphic to V_{i}^{*}, or equivalently such that $\chi_{V_{i}}(g) \in \mathbb{R}$ for all $g \in G$.
Proof. Enumerate the set of conjugacy classes of G as $C\left(x_{1}\right), \ldots, C\left(x_{h}\right)$. Note that this enumeration doesn't necessarily have anything to do with the enumeration V_{1}, \ldots, V_{h} of irreducible representations chosen above. As usual, we let $Z \subseteq L^{2}(G)$ be the subspace of class functions. Then there are two natural bases for Z : the set of characteristic functions $f_{C\left(x_{i}\right)}$ and the set of characters $\chi_{V_{i}}$. We abbreviate $f_{C\left(x_{i}\right)}$ by f_{i}. There are two permutations τ and σ of the index set $\{1, \ldots, h\}$. We let $\tau(i)$ be the unique j such that $C\left(x_{i}\right)^{-1}=C\left(x_{j}\right)$, and we let $\sigma(i)$ be the unique j such that $V_{i}^{*}=V_{j}$. The content of the theorem is then that the number of i such that $\tau(i)=i$ is equal to the number of i such that $\sigma(i)=i$.

As permutations of the index set, both τ and σ define permutation matrices $P_{\tau}, P_{\sigma} \in G L(h, \mathbb{C})$ by the rule $P_{\tau}\left(f_{i}\right)=f_{\tau(i)}$, and similarly $P_{\sigma}\left(f_{i}\right)=f_{\sigma(i)}$. As with all permutation matrices, $\operatorname{Tr} P_{\tau}$ is the number of i such that $\tau(i)=i$ and $\operatorname{Tr} P_{\sigma}$ is the number of i such that $\sigma(i)=i$. So we must show that $\operatorname{Tr} P_{\tau}=\operatorname{Tr} P_{\sigma}$. It suffices to find an invertible $h \times h$ matrix M such that $P \tau \cdot M=M \cdot P_{\sigma}$, for then $P_{\tau}=M P_{\sigma} M^{-1}$ and so the traces are equal.

Let $M=\left(\chi_{V_{j}}\left(x_{i}\right)\right)$. Then M is the change of basis matrix for the two bases f_{1}, \ldots, f_{h} and $\chi_{V_{1}}, \ldots, \chi_{V_{h}}$, because

$$
M f_{i}=\sum_{j=1}^{h} \chi_{V_{i}}\left(x_{j}\right) f_{j}=\sum_{j=1}^{h} \chi_{V_{i}}\left(x_{j}\right) f_{C\left(x_{j}\right)},
$$

and by comparing the values of the above class function on every x_{j} we see that $M f_{i}=\chi_{V_{i}}$. In particular, M is invertible. By definition, since P_{τ} acts by permuting the f_{i} according to τ, we see that

$$
\begin{aligned}
P_{\tau} M f_{i} & =\sum_{j=1}^{h} \chi_{V_{i}}\left(x_{j}\right) f_{\tau(j)}=\sum_{j=1}^{h} \chi_{V_{i}}\left(x_{j}\right) f_{C\left(x_{j}^{-1}\right)} \\
& =\sum_{j=1}^{h} \chi_{V_{i}}\left(x_{j}^{-1}\right) f_{C\left(x_{j}\right)}=\sum_{j=1}^{h} \chi_{V_{i}^{*}}\left(x_{j}\right) f_{C\left(x_{j}\right)} \\
& =\chi_{V_{i}^{*}} .
\end{aligned}
$$

On the other hand,

$$
M P_{\sigma} f_{i}=M f_{\sigma(i)}=\chi_{V_{\sigma}(i)}=\chi_{V_{i}^{*}}
$$

Thus $P \tau \cdot M=M \cdot P_{\sigma}$, concluding the proof.
The following is a purely group-theoretic argument:
Proposition 5.5. The order $\#(G)$ is odd \Longleftrightarrow the only real conjugacy class is $C(1)=\{1\}$.

Proof. Equivalently, we have to show that the order $\#(G)$ is even \Longleftrightarrow there exists a real conjugacy class $C(x)$ with $x \neq 1$. If $\#(G)$ is even, then an easy special case of Cauchy's theorem says that there exists an element x of order 2 . Then $x \neq 1$ and $x=x^{-1}$, so that $C(x)$ is a real conjugacy class and $C(x) \neq C(1)$.

Conversely, suppose that there exists a real conjugacy class $C(x)$ with $x \neq 1$. If $x=x^{-1}$, then x has order 2. By Lagrange's theorem, the order of any element of G divides the order of G, so $\#(G)$ is even in this case. Otherwise, $x \neq x^{-1}$ but there exists an $h \in G$ such that $h x h^{-1}=x^{-1}$. Then $h^{2} x h^{-2}=h\left(h x h^{-1}\right) h^{-1}=h x^{-1} h^{-1}=x$, and by induction we see that

$$
h^{a} x h^{-a}= \begin{cases}x^{-1}, & \text { if } a \text { is odd } \\ x, & \text { if } a \text { is even }\end{cases}
$$

Let N be the order of h. Then N must be even, since $h^{N} x h^{-N}=1 x 1=x$ and $x \neq x^{-1}$. But then N divides $\#(G)$, again by Lagrange's theorem, so that $\#(G)$ is divisible by an even number and hence is even.

Corollary 5.6. The order $\#(G)$ is odd \Longleftrightarrow the only irreducible representation V_{i} such that $V_{i} \cong V_{i}^{*}$, or equivalently such that $\chi_{V_{i}}(g) \in \mathbb{R}$ for all $g \in G$, is the trivial representation.

Proof. By the previous corollary, $\#(G)$ is odd \Longleftrightarrow there exists exactly one real conjugacy class \Longleftrightarrow there exists exactly one irreducible representation V of G up to isomorphism such that $V \cong V^{*}$. Since the trivial representation has this property, if there is only one such it must be the trivial representation.

We then have the following purely group-theoretic fact:
Proposition 5.7. If $\#(G)$ is odd and the number of conjugacy classes of G is h, then

$$
h \equiv \#(G) \quad(\bmod 16)
$$

Proof. We use the following basic fact: if n is an odd integer, then $n^{2} \equiv 1$ $(\bmod 8)$. This can be proved by checking all the possibilities (n must be $\equiv 1,3,5,7(\bmod 8))$, or directly: $n=2 m+1$ for some integer m, so that

$$
n^{2}=(2 m+1)^{2}=4 m^{2}+4 m+1=4 m(m+1)+1 .
$$

But $m(m+1)$ is always even, so $n^{2} \equiv 1(\bmod 8)$.
Now let h be the number of conjugacy classes of G or equivalently the number of irreducible representations up to isomorphism. If we enumerate these as V_{1}, \ldots, V_{h}, we can assume that V_{1} is the trivial representation. If $d_{i}=\operatorname{dim} V_{i}$, then $d_{1}=1$ and d_{i} divides $\#(G)$, hence $d_{i}=2 e_{i}+1$. Moreover, if $i \neq 1$, then V_{i} and V_{i}^{*} are not isomorphic, so there are $2 r$ remaining representations V_{i} and they occur in pairs V_{i}, V_{i}^{*} with $\operatorname{dim} V_{i}^{*}=\operatorname{dim} V_{i}=$ $2 e_{i}+1$. For example, we could index the representations so that V_{1} is the trivial representation and $V_{i+2} \cong V_{2}^{*}, \ldots, V_{2 r+1} \cong V_{r+1}^{*}$. Hence $d_{i}=d_{i+r}$ for $2 \leq i \leq r+1$. Then

$$
\begin{aligned}
\#(G) & =\sum_{i=1}^{h} d_{i}^{2}=1+\sum_{i=2}^{2 r+1} d_{i}^{2}=1+2 \sum_{i=2}^{r+1} d_{i}^{2} \\
& =1+2 \sum_{i=2}^{r+1}\left(2 e_{i}+1\right)^{2}=1+\sum_{i=2}^{r+1} 2\left(4 e_{i}^{2}+4 e_{i}+1\right) \\
& =1+\sum_{i=2}^{r+1} 8 e_{i}\left(e_{i}+1\right)+2 r=2 r+1+\sum_{i=2}^{r+1} 8 e_{i}\left(e_{i}+1\right) .
\end{aligned}
$$

As before, $8 e_{i}\left(e_{i}+1\right) \equiv 0(\bmod 16)$, so that

$$
\#(G) \equiv 2 r+1=h \quad(\bmod 16)
$$

as claimed.

6 The case of the rational numbers

We begin with some general comments about the possible values of a character χ_{V} of a finite group G.

Definition 6.1. If G is a finite group, then the exponent of G is the least common multiple of the orders of the elements of G. Equivalently, N is the smallest positive integer such that $g^{N}=1$ for all $g \in G$. Note that N divides $\#(G)$ and that (by Cauchy's theorem) N and $\#(G)$ have the same prime factors. However, N can be strictly smaller that $\#(G)$. For example, for $D_{4}, N=4$ but $\#\left(D_{4}\right)=8$. More generally, if $\#(G)=p^{n}$ where p is a prime, then the exponent of G is $p^{n} \Longleftrightarrow G$ is cyclic. For another example, the exponent of S_{4} is 12 but $\#\left(S_{4}\right)=24$.

Suppose now that ρ_{V} is a G-representation. For every $g \in G$, the eigenvalues λ_{i} of $\rho_{V}(g)$ are $a^{\text {th }}$ roots of unity, where a is the order of g, and hence they are $N^{\text {th }}$ roots of unity, where N is the exponent of G. Since $\chi_{V}(g)$ is the sum of the λ_{i}, it follows that, for every $g \in G, \chi_{V}(g) \in \mathbb{Q}\left(\mu_{N}\right)$, the extension of \mathbb{Q} generated by the $N^{\text {th }}$ roots of unity.

We can then ask when a G-representation V is defined over \mathbb{Q}. In general, this is a very hard question. An easy question to ask is: given a finite group G, when is $\chi_{V}(g) \in \mathbb{Q}$ for every representation V of G (or equivalently every irreducible representation) and every $g \in G$? Note that $\chi_{V}(g) \in \mathbb{Q}$ $\Longleftrightarrow \chi_{V}(g) \in \mathbb{Z}$, since $\chi_{V}(g)$ is an algebraic integer. This question can be answered:

Theorem 6.2. For a finite group $G, \chi_{V}(g) \in \mathbb{Q}$ for every representation V of G and every element $g \in G \Longleftrightarrow$ for every $g \in G$ and every $a \in \mathbb{Z}$ such that $\operatorname{gcd}(a, \#(G))=1, g^{a}$ is conjugate to g.

Proof. We shall give the proof modulo a little Galois theory and number theory. Note that $\mathbb{Q}\left(\mu_{N}\right)$ is a normal, hence Galois extension of \mathbb{Q} since it is the splitting field of $x^{N}-1$. Thus, given $\alpha \in \mathbb{Q}\left(\mu_{N}\right), \alpha \in \mathbb{Q} \Longleftrightarrow \sigma(\alpha)=\alpha$ for all $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\mu_{N}\right) / \mathbb{Q}\right)$. Moreover, $\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{N}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / N \mathbb{Z})^{*}$. In fact, let ζ be a generator of the cyclic group μ_{N}. For example, we could take $\zeta=e^{2 \pi i / N}$. Then for all $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\mu_{N}\right) / \mathbb{Q}\right), \sigma(\zeta)$ is another generator of μ_{N}, hence $\sigma(\zeta)=\zeta^{a}$ for some integer $a \bmod N$, necessarily relatively prime to N. Viewing a as an element of $(\mathbb{Z} / N \mathbb{Z})^{*}$, the map $\sigma \mapsto a$ sets up an isomorphism $\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{N}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / N \mathbb{Z})^{*}$. Note also that, if $\sigma(\zeta)=\zeta^{a}$, then $\sigma(\lambda)=\lambda^{a}$ for all $\lambda \in \mu_{N}$.

If V is a G-representation, then $\chi_{V}(g)=\sum_{i} \lambda_{i}$, where the $\lambda_{i} \in \mathbb{Q}\left(\mu_{N}\right)$. Moreover, given $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\mu_{N}\right) / \mathbb{Q}\right)$ corresponding to $a \in(\mathbb{Z} / N \mathbb{Z})^{*}$,

$$
\sigma\left(\chi_{V}(g)\right)=\sum_{i} \sigma\left(\lambda_{i}\right)=\sum_{i} \lambda_{i}^{a}=\chi_{V}\left(g^{a}\right) .
$$

Thus $\chi_{V}(g) \in \mathbb{Q}$ for every representation V of G and every element $g \in G$ $\Longleftrightarrow \chi_{V}(g)=\chi_{V}\left(g^{a}\right)$ for every representation V of G, every element $g \in G$, and every $a \in \mathbb{Z}$ which is relatively prime to N. Since the functions χ_{V} span the space of class functions, this is the case $\Longleftrightarrow g$ is conjugate to g^{a} for every $g \in G$ and every $a \in \mathbb{Z}$ which is relatively prime to N. Finally, since N and $\#(G)$ have the same prime factors, a is relatively prime to $N \Longleftrightarrow$ a is relatively prime to $\#(G)$.

Example 6.3. (1) The symmetric group S_{n} has the property that, for every $\sigma \in S_{n}$ and every $a \in \mathbb{Z}$ which is relatively prime to $\#\left(S_{n}\right)=n!$, σ^{a} is conjugate to σ. In fact, we have seen that $\sigma=\gamma_{1} \cdots \gamma_{\ell}$, where the γ_{i} are pairwise disjoint cycles of lengths $n_{i}>1$. Since the γ_{i} commute,

$$
\sigma^{a}=\left(\gamma_{1} \cdots \gamma_{\ell}\right)^{a}=\gamma_{1}^{a} \cdots \gamma_{\ell}^{a} .
$$

As each γ_{i} is a cycle of length n_{i} and $\operatorname{gcd}\left(a, n_{i}\right)=1$ since n_{i} divides n !, a Modern Algebra I argument shows that γ_{i}^{a} is an n_{i}-cycle for every i. Also, the elements of $\{1, \ldots, n\}$ appearing in γ_{i}^{a} are the same as the elements appearing in γ_{i}, so that $\gamma_{1}^{a}, \ldots, \gamma_{\ell}^{a}$ are disjoint cycles of lengths n_{i}. As we have seen before, this implies that $\sigma^{a}=\gamma_{1}^{a} \cdots \gamma_{\ell}^{a}$ is conjugate to σ. We shall see that, in fact, every representation of S_{n} can be defined over \mathbb{Q}.
(2) For the quaternion group Q, as $\#(Q)=8, a \in \mathbb{Z}$ is relatively prime to $\#(Q) \Longleftrightarrow a$ is odd. For odd a, it is easy to check that g^{a} is conjugate to g for every $g \in Q$. For example, $1^{a}=1,(-1)^{a}=-1$, and $(\pm i)^{a}= \pm i$ if $a \equiv 1$ $(\bmod 4)$ and $(\pm i)^{a}=\mp i$ if $a \equiv 3(\bmod 4)$. But i and $-i$ are conjugate, since e.g. $-i=j i j^{-1}$. Thus (as is easy to see directly) $\chi_{V}(g) \in \mathbb{Q}$ for every representation V of Q and every element $g \in Q$. On the other hand, the irreducible 2-dimensional representation of Q cannot be defined over \mathbb{Q}. In fact, we have seen that it cannot be defined over \mathbb{R}.

