
Real representations

1 Definition of a real representation

Definition 1.1. Let VR be a finite dimensional real vector space. A real
representation of a group G is a homomorphism ρVR : G → AutVR, where
AutVR denotes the R-linear isomorphisms from VR to itself. Homomor-
phisms and isomorphisms of real representations are defined in the obvious
way. After a choice of basis, a real representation is equivalent to a homo-
morphism ρ : G → GL(n,R), and two such homomorphisms ρ1 and ρ2 are
isomorphic real representations ⇐⇒ they are conjugate in GL(n,R), i.e.
⇐⇒ there exists an A ∈ GL(n,R) such that ρ2(g) = Aρ1(g)A−1 for all
g ∈ G.

Because GL(n,R) is a subgroup of GL(n,C), every real representation
VR defines a (complex) representation V . More abstractly, given a real
vector space VR, we define its complexification to be the tensor product
V = VR ⊗R C. Concretely, think of Rn being enlarged to Cn. For any real
vector space VR, if v1, . . . , vn is a basis for VR, then by definition VR is the
set of all linear combinations of the vi with real coefficients, and V is the set
of all linear combinations of the vi with complex coefficients. In particular,
v1, . . . , vn is a basis for the complex vector space V . Conversely, given a
(complex) vector space V and a basis v1, . . . , vn of V , we can define a vector
subspace VR of V by taking the set of all linear combinations of the vi with
real coefficients, and V is then the complexification of VR. We have an
inclusion AutVR → AutV , which can be summarized by the commutative
diagram

AutVR −−−−→ AutV

∼=
y y∼=

GL(n,R) −−−−→ GL(n,C),

where the vertical isomorphisms correspond to the choice of basis v1, . . . , vn.
However, the top horizontal inclusion is canonical, i.e. does not depend on
the choice of basis.
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Definition 1.2. A representation ρV : G→ AutV can be defined over R if
there exists a real vector space VR and a real representation ρVR : G→ AutVR
such that V is the complexification of VR and ρV is the image of ρVR via
the inclusion AutVR → AutV . Equivalently, there exists a basis of V such
that, for every g ∈ G, the matrices ρV (g) have real entries.

Remark 1.3. (1) We can make the same definition for any subfield K of
C, for example for K = Q.

(2) Every complex vector space V of dimension n is also a real vector space of
dimension 2n, by only allowing scalar multiplication by real numbers. To see
the statement about the dimensions, if v1, . . . , vn is a basis of V as a complex
vector space, then it is easy to check that v1, iv1, v2, iv2, . . . , vn, ivn is a basis
of V viewed as a real vector space. Since every complex linear isomorphism
is automatically real liner, there is a homomorphism GL(n,C)→ GL(2n,R)
which is a little messy to write down in general. For n = 1, it corresponds

to the homomorphism ϕ : C∗ → GL(2,R) defined by ϕ(a+ bi) =

(
a −b
b a

)
.

The following gives a necessary condition for a representation of a finite
group to be defined over R:

Lemma 1.4. If ρV can be defined over R, then, for all g ∈ G, χV (g) ∈ R.
More generally, if K is a subfield of C and ρV can be defined over K, then,
for all g ∈ G, χV (g) ∈ K.

Proof. This is clear since the trace of an n × n matrix with entries in K is
an element of K.

As we shall see, the necessary condition above is not in general sufficient.

2 When is an irreducible representation defined
over R

We begin by analyzing the condition that χV (g) ∈ R for all g ∈ G, and shall
only consider the case of an irreducible representation in what follows.

Lemma 2.1. If V is a G-representation of the finite group G, then χV (g) ∈
R for all g ∈ G ⇐⇒ V ∼= V ∗. If moreover V is irreducible and V ∼= V ∗,
then there exists a nonzero ϕ ∈ HomG(V, V ∗) and it is unique up to a
nonzero scalar, i.e. dim HomG(V, V ∗) = 1.
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Proof. Since χV ∗ = χV , we see that χV (g) ∈ R for all g ∈ G ⇐⇒ χV = χV
⇐⇒ χV = χV ∗ ⇐⇒ V ∼= V ∗. The remaining statement then follows from
Schur’s lemma.

We define Bil(V ) to be the set of bilinear functions F : V × V → C.
General results about tensor products tell us that

Bil(V ) ∼= (V ⊗ V )∗ ∼= V ∗ ⊗ V ∗ ∼= Hom(V, V ∗).

However, we will explicitly construct the isomorphism Bil(V ) ∼= Hom(V, V ∗):

Lemma 2.2. The map A : Bil(V )→ Hom(V, V ∗) defined by

A(F )(v)(w) = F (v, w)

is an isomorphism of vector spaces. If V is a G-representation and we define

ρBil(V )(g)(F )(v, w) = F (ρV (g)−1(v), ρV (g)−1(w)),

then A is a G-isomorphism, where as usual, given ϕ ∈ Hom(V, V ∗),

ρHom(V,V ∗)(g)(ϕ)(v)(w) = ϕ(ρV (g)−1v)(ρV (g)−1(w).

Proof. If we define A(F ) as in the statement, then it is easy to see that
A(F )(v) is linear in w and that v 7→ A(F )(v) is linear in v, so that A(F ) ∈
Hom(V, V ∗). Also, a short computation shows that A(F1 + F2) = A(F1) +
A(F2) and that A(tF ) = tA(F ), so A is a linear map of vector spaces.
To show that A is an isomorphism, we define an inverse function: let
B : Hom(V, V ∗)→ Bil(V ) be defined by

B(ϕ)(v, w) = ϕ(v)(w).

Again, an easy calculation shows that B ◦A = Id, A ◦B = Id. Finally, if V
is a G-representation, then

A(ρBil(V )(g)(F ))(v)(w) = ρBil(V )(g)(F )(v, w) = F (ρV (g)−1(v), ρV (g)−1(w))

= ρHom(V,V ∗)(g)(A(F ))(v)(w),

so that A is a G-morphism and hence a G-isomorphism.

Corollary 2.3. If V is an irreducible G-representation, then dim(Bil(V )G)
is 0 if V is not isomorphic to V ∗ and 1 if V ∼= V ∗.

To analyze Bil(V ) further, we make the following definition:
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Definition 2.4. Let F ∈ Bil(V ). Then F is symmetric if F (v, w) = F (w, v)
for all v, w ∈ V , and F is antisymmetric if F (v, w) = −F (w, v) for all
v, w ∈ V . Let Sym2 V ∗ be the set of all symmetric F ∈ Bil(V ) and let

∧2 V ∗

denote the set of all antisymmetric F ∈ Bil(V ). Clearly both Sym2 V ∗ and∧2 V ∗ are vector subspaces of Bil(V ). If V is a G-representation, so that
Bil(V ) is also a G-representation, then from the definition of ρBil(V ) it is

easy to see that Sym2 V ∗ and
∧2 V ∗ are G-invariant subspaces of Bil(V ).

Lemma 2.5. Bil(V ) = Sym2 V ∗ ⊕
∧2 V ∗. If V is a G-representation, then

the above is a direct sum of G-invariant subspaces.

Proof. Define π1 : Bil(V )→ Sym2 V ∗ and π2 : Bil(V )→
∧2 V ∗ by:

π1(F )(v, w) =
1

2
(F (v, w) + F (w, v));

π2(F )(v, w) =
1

2
(F (v, w)− F (w, v)).

Then clearly π1(F ) = F ⇐⇒ F ∈ Sym2 V ∗, π1(F ) = 0 ⇐⇒ F ∈
∧2 V ∗,

and similarly π2(F ) = 0 ⇐⇒ F ∈ Sym2 V ∗, π1(F ) = F ⇐⇒ F ∈
∧2 V ∗.

Also π1 +π2 = Id. It then follows that Bil(V ) = Sym2 V ∗⊕
∧2 V ∗. The last

statement is then a general fact.

Corollary 2.6. Let V be an irreducible representation. If V and V ∗ are
not isomorphic, then Bil(V )G = 0. If V and V ∗ are isomorphic, then either
dim(Sym2 V ∗)G = 1 and

∧2 V ∗ = 0 or dim(
∧2 V ∗)G = 1 and Sym2 V ∗ =

0.

We can now state the main result concerning real representations:

Theorem 2.7. Let V be an irreducible G-representation.

(i) V and V ∗ are not isomorphic ⇐⇒ Bil(V )G = 0.

(ii) V ∼= V ∗ and V is defined over R ⇐⇒ dim(Sym2 V ∗)G = 1 and∧2 V ∗ = 0.

(iii) V ∼= V ∗ and V is not defined over R ⇐⇒ dim(
∧2 V ∗)G = 1 and

Sym2 V ∗ = 0. Moreover, in this case dimV is even.

Proof. We have already seen (i). Also (ii) =⇒ (iii), except for the last
statement about the dimension, since (iii) is just the equivalence of the
negations of the two statements of (ii). So we must prove (ii).
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=⇒ : Suppose that V is defined over R. In other words, there exists a
basis v1, . . . , vn of V such that the matrix of ρV with respect to this basis
has real entries. Let VR be the real span of the vi:

VR =

{
n∑
i=1

tivi : ti ∈ R

}
.

Thus VR is a real vector subspace of V and ρV comes from a real representa-
tion ρVR of G on VR, i.e. ρV is defined over R. There exists a positive definite
inner product (i.e. a symmetric R-bilinear function) on VR, for example we
could define 〈

n∑
i=1

sivi,
n∑
i=1

tivi

〉
=

n∑
i=1

siti.

This inner product is not G-invariant, but we can make it G-invariant by
averaging over G: define

FR(v, w) =
1

#(G)

∑
g∈G
〈ρVR(v), ρVR(w)〉.

Then FR is symmetric and it is positive definite, because it is a sum of
positive definite inner products. In particular FR 6= 0. Note that FR is
specified by its values FR(vi, vj) and the G-invariance of FR is equivalent to
the statement that, for all i, j and all g ∈ G,

FR(ρVR(vi), ρVR(vj)) = FR(vi, vj).

Now we can extend FR to a C-bilinear function F on V , by defining

F (v, w) =
∑
i,j

sitjFR(vi, vj),

where v =
∑

i sivi and w =
∑

i tiwi. In particular, if v, w ∈ VR, then
F (v, w) = FR(v, w) so that F 6= 0. Moreover F is symmetric because FR is
symmetric, and hence FR(vi, vj) = FR(vj , vi). Finally, one checks that F is
G-invariant, which is equivalent to the statement that F (ρVR(vi), ρVR(vj)) =
F (vi, vj) and thus follows from the corresponding statement for FR. Thus
F is a nonzero element of Sym2 V ∗)G. It follows that dim(Sym2 V ∗)G = 1
and

∧2 V ∗ = 0.
⇐= : We must use the existence of a nonzero F ∈ Sym2 V ∗)G to show

that V is defined over R. We begin with a digression on complex structures.
Let VR be a real vector space with complexification V . We can think of this

5



as follows: there exists a basis v1, . . . , vn of V such that VR is the real span
of v1, . . . , vn. Thus v1, iv1, v2, iv2, . . . , vn, ivn is a real basis of V and every
v ∈ V can be uniquely written as w + iu, where w, u ∈ VR. In other words,
as real vector spaces,

V ∼= VR ⊕ iVR.

Now we can define conjugation γ on V :

γ(w + iu) = w − iu.

Thus γ is R-linear with γ2 = Id and +1-eigenspace VR and −1-eigenspace
iVR. . In terms of the basis v1, . . . , vn, if v =

∑
i tivi is a vector in V , then

γ(
∑
i

tivi) =
∑
i

t̄ivi.

Then γ is conjugate linear: γ(tv) = t̄γ(v). Finally, if A ∈ EndV satisfies
A(VR) ⊆ VR, i.e. the matrix of A with respect to the basis v1, . . . , vn has
real entries, then A commutes with γ since it preserves two eigenspaces, and
conversely, if A commutes with γ, then A(VR) ⊆ VR and hence the matrix
of A with respect to the basis v1, . . . , vn has real entries.

Conversely, suppose that V is a complex vector space and that γ : V →
V is conjugate linear and hence R-linear, and that γ2 = Id. Then γ is
diagonalizable over R, i.e. V ∼= V+⊕V−, where V± are real vector subspaces
of V , γ|V+ = Id and γ|V− = − Id. In fact, we can define V+ to be the
+1-eigenspace of γ and V− to be the −1-eigenspace. Then setting

π+(v) =
1

2
(v + γ(v))

π−(v) =
1

2
(v − γ(v)),

it is easy to check that Imπ± = V±, Kerπ± = V∓, and π+ +π− = Id, giving
the direct sum decomposition. Moreover

v ∈ V+ ⇐⇒ γ(v) = v ⇐⇒ γ(iv) = −iv ⇐⇒ iv ∈ V−.

Thus multiplication by i defines an isomorphism from V+ to V−. It follows
that an R-basis for V+ is a C-basis for V , and that V is the complexification
of V+. Finally, if A ∈ EndV is complex linear and A commutes with γ, then
A(V+) ⊆ V+. Hence A has real coefficients with respect to any basis of V
which is a real basis of V+. In particular, if ρV : G→ AutV is a homomor-
phism and γ commutes with ρV (g) for every g ∈ G, then ρV defines a real
representation on V+ and ρV is the complexification of this representation.
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Returning to our situation, we have a nonzero symmetric G-invariant
F ∈ Sym2 V ∗, corresponding to a G-invariant homomorphism ϕ : V → V ∗,
necessarily an isomorphism by Schur’s lemma. Here F (v, w) = ϕ(v)(w), so
the symmetry condition is the statement that, for all v, w ∈ V ,

ϕ(v)(w) = ϕ(w)(v).

There exists a positive definite Hermitian inner product on V , so after av-
eraging there exists a G-invariant positive definite Hermitian inner product
H(v, w) on V . Such an H defines an R-linear function ψ : V → V ∗ by the
rule

ψ(v)(w) = H(w, v).

Note that we have to switch the order to make ψ(v) is linear in w. However,
ψ is conjugate linear in v. It is easy to see that ψ is an isomorphism: since
V and V ∗ have the same dimension as real vector spaces, it suffices to show
that ψ is injective, i.e. that ψ(v) is not the zero element in V ∗ for v 6= 0.
This follows since ψ(v)(v) = H(v, v) > 0.

Define α : V → V by α = ψ−1 ◦ ϕ. Then α is conjugate linear since it is
a composition of a complex linear and a conjugate linear map, and α is an
isomorphism of real vector spaces. Finally, α is G-invariant since ψ and ϕ
are G-invariant.

Consider α2 : V → V , which is complex linear as it is the composition of
two conjugate linear maps. It is also a G-invariant isomorphism since it is
the composition of two such. Thus, by Schur’s lemma, α2 = λ Id for some
nonzero complex number λ.

Claim 2.8. λ is a positive real number.

Proof. By the definition of ψ, ψ(v)(w) = H(w, v) for all v, w ∈ V . Thus, for
all f ∈ V ∗,

f(w) = H(w,ψ−1(f)).

If in addition f = ϕ(v), this says that

F (v, w) = ϕ(v)(w) = H(w,ψ−1 ◦ ϕ(v)) = H(w,α(v)).

Replacing w by α(w) and using the symmetry of F gives

H(α(w), α(v)) = F (v, α(w)) = F (α(w), v) = H(v, α2(w)) = H(v, λw).

Now choose v = w, v 6= 0. We get

H(α(v), α(v)) = H(v, λv) = λ̄H(v, v).
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Since both H(α(v), α(v)) and H(v, v) are real and positive, it follows that
λ̄ is real and positive, and thus the same is true for λ = λ̄.

Returning to the proof of Theorem 2.7, define γ = λ−1/2α. Then γ is
a conjugate linear isomorphism and γ2 = Id. Finally, γ commutes with the
G-action, and so as in the above discussion on real structures, γ defines a
realstructure on V for which ρV is a real representation.

Thus we have proved all of the statements in Theorem 2.7 except for
the fact that, in case (iii), dimV is even. This is a general linear algebra
fact about vector spaces for which there exists an F ∈

∧2 V ∗ such that the
corresponding map V → V ∗ is an isomorphism.

3 A computational characterization

We would like a computational method for deciding when a representation
can be defined over R. First, a definition:

Definition 3.1. Let f be a class function on G. Define a new function
ψ2(f) by

ψ2(f)(g) = f(g2).

Then ψ2(f) is also a class function, since

ψ2(f)(xgx−1) = f((xgx−1)2) = f(xg2x−1) = f(g2) = ψ2(f)(g).

(One can define ψn(f) similarly for every n ∈ Z.)

In particular, for a character χV of G, we can consider the expression

〈ψ2(χV ), 1〉 =
1

#(G)

∑
g∈G

χV (g2).

Theorem 3.2. Let V be an irreducible G-representation.

(i) V and V ∗ are not isomorphic ⇐⇒ 〈ψ2(χV ), 1〉 = 0.

(ii) V ∼= V ∗ and V is defined over R ⇐⇒ 〈ψ2(χV ), 1〉 = 1.

(iii) V ∼= V ∗ and V is not defined over R ⇐⇒ 〈ψ2(χV ), 1〉 = −1.

Proof. By Theorem 2.7, we have the following:

(i) V and V ∗ are not isomorphic ⇐⇒ HomG(V, V ∗) = BilG(V ) = 0
⇐⇒ 〈χBilG(V ), 1〉 = 0.
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(ii) V ∼= V ∗ and V is defined over R ⇐⇒ dim(Sym2 V ∗) = 1 and
∧2 V ∗ =

0 ⇐⇒ 〈χSym2 V ∗ , 1〉 = 1 and 〈χ∧2 V ∗ , 1〉 = 0.

(iii) V ∼= V ∗ and V is not defined over R ⇐⇒ dim(
∧2 V ∗) = 1 and

Sym2 V ∗ = 0 ⇐⇒ 〈χ∧2 V ∗ , 1〉 = 1 and 〈χSym2 V ∗ , 1〉 = 0.

So we must compute these characters. In fact, we claim:

(i)′ χBilG(V ) = χHomG(V,V ∗) = χ2
V .

(ii)′ χSym2 V ∗ = 1
2(χ2

V + ψ2(χV )).

(iii)′ χ∧2 V ∗ = 1
2(χ2

V − ψ2(χV )).

Assuming this, we have

dim(Sym2 V ∗) = 〈χSym2 V ∗ , 1〉 =
1

2
(〈χ2

V , 1〉+ 〈ψ2(χV ), 1〉);

dim(

2∧
V ∗) = 〈χ∧2 V ∗ , 1〉 =

1

2
(〈χ2

V , 1〉 − 〈ψ2(χV ), 1〉).

Then 〈ψ2(χV ), 1〉 = 0 ⇐⇒ dim(Sym2 V ∗) = dim(
∧2 V ∗), which happens

exactly when HomG(V, V ∗) = 0, since otherwise one of the dimensions is 0
and the other is 1. Since 〈ψ2(χV ), 1〉 is real in this case,

〈ψ2(χV ), 1〉 = 〈ψ2(χV ), 1〉.

A brief computation in the remaining cases shows that 〈χSym2 V ∗ , 1〉 = 1
and 〈χ∧2 V ∗ , 1〉 = 0 ⇐⇒ 〈ψ2(χV ), 1〉 = 1, and 〈χ∧2 V ∗ , 1〉 = 1 and

〈χSym2 V ∗ , 1〉 = 0 ⇐⇒ 〈ψ2(χV ), 1〉 = −1. As before, by taking conju-
gates, the first case happens ⇐⇒ 〈ψ2(χV ), 1〉 = 1 and the second ⇐⇒
〈ψ2(χV ), 1〉 = −1.

So we must prove the claim. For g ∈ G, the linear map ρV (g) is diago-
nalizable. Let v1, . . . , vn be a basis of V such that ρV (vi) = λivi and let v∗i
be the dual basis. Then ρV (g2) is also diagonalized by the basis v1, . . . , vn,
with eigenvalues λ2i , and hence

ψ2(χV )(g) = χV (g2) =
∑
i

λ̄2i .

Let v∗i v
∗
j ∈ Hom(V, V ∗) be the linear map defined by v∗i v

∗
j (w) = v∗i (w)v∗j .

Then v∗i v
∗
j , 1 ≤ i, j ≤ n is a basis for Hom(V, V ∗) and each v∗i v

∗
j is an
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eigenvector for ρHom(V,V ∗)(g) with eigenvalue λ−1i λ−1j = λ̄iλ̄j . Thus we see
as previously noted that

χHom(V,V ∗)(g) =
∑
i,j

λ̄iλ̄j =

(∑
i

λ̄i

)∑
j

λ̄j

 = (χV (g))2.

We can also write this as

(χV (g))2 =
∑
i

λ̄2i + 2
∑
i<j

λ̄iλ̄j .

As for Sym2 V ∗, we can find a basis for it by symmetrizing the expressions
v∗i v
∗
j to 1

2(v∗i v
∗
j + v∗j v

∗
i ). This expression is unchanged by switching i and i,

and the functions
1

2
(v∗i v

∗
j + v∗j v

∗
i ), i ≤ j

are linearly independent. A similar argument shows that a basis for
∧2 V ∗

is given by
1

2
(v∗i v

∗
j − v∗j v∗i ), i < j.

Thus

χSym2 V ∗(g) =
∑
i≤j

λ̄iλ̄j ;

χ∧2 V ∗(g) =
∑
i<j

λ̄iλ̄j .

Then

1

2
(χ2
V (g) + ψ2(χV )(g)) =

1

2

∑
i

λ̄2i + 2
∑
i<j

λ̄iλ̄j +
∑
i

λ̄2i


=

1

2

2
∑
i

λ̄2i + 2
∑
i<j

λ̄iλ̄j


=
∑
i≤j

λ̄iλ̄j = χSym2 V ∗(g).

A similar calculation establishes the formula for χ∧2 V ∗(g).
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Example 3.3. (1) Let G = D4 and let V be the irreducible 2-dimensional
representation of D4. The elements of D4 are αk, 0 ≤ k ≤ 3, and ταk,
0 ≤ k ≤ 3. Moreover, (αk)2 = 1 if k = 0, 2, (αk)2 = α2 if k = 1, 3, and
(ταk)2 = 1 for all k. Thus, in D4, there are 6 elements whose square is
1 and 2 elements whose square is α2. We know that χV (1) = 2 and that
χV (α2) = −2. Then

〈ψ2(χV ), 1〉 =
1

8
(6 · 2 + 2 · (−2)) = 1.

Thus the irreducible 2-dimensional representation of D4 can be defined over
R. Of course, we have seen this directly.

(2) Let G = Q, the quaternion group, and let V be the irreducible 2-
dimensional representation of Q. The elements of Q are ±1,±i,±j,±k.
Moreover, (1)2 = (−1)2 = 1 and all other elements have square −1. Thus,
in Q, there are 2 elements whose square is 1 and 6 elements whose square
is −1. We know that χV (1) = 2 and that χV (−1) = −2. Then

〈ψ2(χV ), 1〉 =
1

8
(2 · 2 + 6 · (−2)) = −1.

Thus the irreducible 2-dimensional representation of Q cannot be defined
over R.

4 Irreducible real representations

In this section, we switch gears and look at things from the perspective of
an irreducible real representation VR. We shall just state the main result
(although its proof is not that difficult).

Recall that, if VR is a real representation which is irreducible as a real
representation, then Schur’s lemma only says that HomG(VR, VR) is a di-
vision ring containing R in its center, and is a finite dimensional R-vector
space since it is isomorphic to a vector subspace of Mn(R) for n = dimVR.
It is not hard to classify such division rings: HomG(VR, VR) is isomorphic
to R, C, or H, the quaternions. We can then look at the complexification
V of VR. Although VR is an irreducible real representation, V need not be
irreducible. The possibilities are as follows:

Theorem 4.1. Let VR be an irreducible real representation and let V be its
complexification.

(i) HomG(VR, VR) ∼= R ⇐⇒ V is irreducible.
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(ii) HomG(VR, VR) ∼= C ⇐⇒ V ∼= W ⊕ W ∗, where W and W ∗ are
irreducible and W and W ∗ are not isomorphic.

(iii) HomG(VR, VR) ∼= H ⇐⇒ V ∼= W ⊕W , where W is irreducible and
W ∼= W ∗.

5 Real conjugacy classes

One question related to our previous discussion is the following: given a
representation V of G, when is χV (g) ∈ R? Of course, if g is conjugate to
g−1 then, for every representation V ,

χV (g) = χV (g−1) = χV (g),

and thus χV (g) ∈ R for every V .
We make the following preliminary observation:

Lemma 5.1. Let x ∈ G, and suppose that y is conjugate to x. Then y−1 is
conjugate to x−1. Hence, C(x) is the conjugacy class of x and if we define

C(x)−1 = {y−1 : y ∈ C(x)},

then C(x)−1 = C(x−1).

Proof. For the first statement, if y = gxg−1, then

y−1 = (gxg−1)−1 = gx−1g−1.

Thus, if y ∈ C(x), then y−1 ∈ C(x−1) and so C(x)−1 ⊆ C(x−1). Conversely,
if z ∈ C(x−1), then z is conjugate to x−1 and hence y = z−1 is conjugate
to (x−1)−1 = x. Then by definition z = y−1 ∈ C(x)−1, so that C(x−1) ⊆
C(x)−1. Thus C(x)−1 = C(x−1).

Definition 5.2. A conjugacy class C(x) is real if C(x)−1 = C(x), or equiv-
alently if there exists a y ∈ C(x) such that y is conjugate to y−1. By
the lemma, if there exists one such y, then y is conjugate to y−1 for every
y ∈ C(x).

Example 5.3. (1) Clearly, C(1) = {1} is a real conjugacy class.

(2) If G is abelian, then C(x) = {x} for every x ∈ G. Thus C(x) is a real
conjugacy class ⇐⇒ x = x−1 ⇐⇒ x has order 1 or 2. In particular, if G
is an abelian group of odd order, then the only real conjugacy class is C(1).
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(3) In Sn, every element σ is conjugate to σ−1, and thus every conjugacy
class is real. In fact, every element σ can be written as σ = γ1 · · · γ`, where
each γi is a cycle of some length ni > 1 and the γi are pairwise disjoint. As
disjoint cycles commute,

σ−1 = (γ1 · · · γ`)−1 = γ−1` · · · γ
−1
1 = γ−11 · · · γ

−1
` .

But each γ−1i is also a cycle of length ni, and it is easy to check that, in Sn,
two elements γ1 · · · γ` and δ1 · · · δ`, both products of disjoint cycles of the
same lengths, are conjugate.

(4) It is easy to check that the quaternion group Q also has the property
that every element g is conjugate to g−1, and thus that every conjugacy
class is real.

As usual, enumerate the irreducible representations of G up to isomor-
phism as V1, . . . , Vh. We then have the following curious fact about real
conjugacy classes:

Theorem 5.4 (Burnside). The number of real conjugacy classes of G is
equal to the number of i such that the irreducible representation Vi is iso-
morphic to V ∗i , or equivalently such that χVi(g) ∈ R for all g ∈ G.

Proof. Enumerate the set of conjugacy classes of G as C(x1), . . . , C(xh).
Note that this enumeration doesn’t necessarily have anything to do with
the enumeration V1, . . . , Vh of irreducible representations chosen above. As
usual, we let Z ⊆ L2(G) be the subspace of class functions. Then there are
two natural bases for Z: the set of characteristic functions fC(xi) and the set
of characters χVi . We abbreviate fC(xi) by fi. There are two permutations
τ and σ of the index set {1, . . . , h}. We let τ(i) be the unique j such that
C(xi)

−1 = C(xj), and we let σ(i) be the unique j such that V ∗i = Vj . The
content of the theorem is then that the number of i such that τ(i) = i is
equal to the number of i such that σ(i) = i.

As permutations of the index set, both τ and σ define permutation matri-
ces Pτ , Pσ ∈ GL(h,C) by the rule Pτ (fi) = fτ(i), and similarly Pσ(fi) = fσ(i).
As with all permutation matrices, TrPτ is the number of i such that τ(i) = i
and TrPσ is the number of i such that σ(i) = i. So we must show that
TrPτ = TrPσ. It suffices to find an invertible h × h matrix M such that
Pτ ·M = M · Pσ, for then Pτ = MPσM

−1 and so the traces are equal.
Let M = (χVj (xi)). Then M is the change of basis matrix for the two

bases f1, . . . , fh and χV1 , . . . , χVh , because

Mfi =
h∑
j=1

χVi(xj)fj =
h∑
j=1

χVi(xj)fC(xj),

13



and by comparing the values of the above class function on every xj we see
that Mfi = χVi . In particular, M is invertible. By definition, since Pτ acts
by permuting the fi according to τ , we see that

PτMfi =

h∑
j=1

χVi(xj)fτ(j) =

h∑
j=1

χVi(xj)fC(x−1
j )

=

h∑
j=1

χVi(x
−1
j )fC(xj) =

h∑
j=1

χV ∗
i

(xj)fC(xj)

= χV ∗
i
.

On the other hand,

MPσfi = Mfσ(i) = χVσ(i) = χV ∗
i
.

Thus Pτ ·M = M · Pσ, concluding the proof.

The following is a purely group-theoretic argument:

Proposition 5.5. The order #(G) is odd ⇐⇒ the only real conjugacy
class is C(1) = {1}.

Proof. Equivalently, we have to show that the order #(G) is even ⇐⇒
there exists a real conjugacy class C(x) with x 6= 1. If #(G) is even, then
an easy special case of Cauchy’s theorem says that there exists an element
x of order 2. Then x 6= 1 and x = x−1, so that C(x) is a real conjugacy
class and C(x) 6= C(1).

Conversely, suppose that there exists a real conjugacy class C(x) with
x 6= 1. If x = x−1, then x has order 2. By Lagrange’s theorem, the order
of any element of G divides the order of G, so #(G) is even in this case.
Otherwise, x 6= x−1 but there exists an h ∈ G such that hxh−1 = x−1. Then
h2xh−2 = h(hxh−1)h−1 = hx−1h−1 = x, and by induction we see that

haxh−a =

{
x−1, if a is odd;

x, if a is even.

Let N be the order of h. Then N must be even, since hNxh−N = 1x1 = x
and x 6= x−1. But then N divides #(G), again by Lagrange’s theorem, so
that #(G) is divisible by an even number and hence is even.

Corollary 5.6. The order #(G) is odd ⇐⇒ the only irreducible repre-
sentation Vi such that Vi ∼= V ∗i , or equivalently such that χVi(g) ∈ R for all
g ∈ G, is the trivial representation.

14



Proof. By the previous corollary, #(G) is odd ⇐⇒ there exists exactly
one real conjugacy class ⇐⇒ there exists exactly one irreducible repre-
sentation V of G up to isomorphism such that V ∼= V ∗. Since the trivial
representation has this property, if there is only one such it must be the
trivial representation.

We then have the following purely group-theoretic fact:

Proposition 5.7. If #(G) is odd and the number of conjugacy classes of G
is h, then

h ≡ #(G) (mod 16).

Proof. We use the following basic fact: if n is an odd integer, then n2 ≡ 1
(mod 8). This can be proved by checking all the possibilities (n must be
≡ 1, 3, 5, 7 (mod 8)), or directly: n = 2m+ 1 for some integer m, so that

n2 = (2m+ 1)2 = 4m2 + 4m+ 1 = 4m(m+ 1) + 1.

But m(m+ 1) is always even, so n2 ≡ 1 (mod 8).
Now let h be the number of conjugacy classes of G or equivalently the

number of irreducible representations up to isomorphism. If we enumerate
these as V1, . . . , Vh, we can assume that V1 is the trivial representation. If
di = dimVi, then d1 = 1 and di divides #(G), hence di = 2ei+1. Moreover,
if i 6= 1, then Vi and V ∗i are not isomorphic, so there are 2r remaining
representations Vi and they occur in pairs Vi, V

∗
i with dimV ∗i = dimVi =

2ei + 1. For example, we could index the representations so that V1 is the
trivial representation and Vi+2

∼= V ∗2 , . . . , V2r+1
∼= V ∗r+1. Hence di = di+r

for 2 ≤ i ≤ r + 1. Then

#(G) =

h∑
i=1

d2i = 1 +

2r+1∑
i=2

d2i = 1 + 2

r+1∑
i=2

d2i

= 1 + 2
r+1∑
i=2

(2ei + 1)2 = 1 +
r+1∑
i=2

2(4e2i + 4ei + 1)

= 1 +

r+1∑
i=2

8ei(ei + 1) + 2r = 2r + 1 +

r+1∑
i=2

8ei(ei + 1).

As before, 8ei(ei + 1) ≡ 0 (mod 16), so that

#(G) ≡ 2r + 1 = h (mod 16)

as claimed.
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6 The case of the rational numbers

We begin with some general comments about the possible values of a char-
acter χV of a finite group G.

Definition 6.1. If G is a finite group, then the exponent of G is the least
common multiple of the orders of the elements of G. Equivalently, N is
the smallest positive integer such that gN = 1 for all g ∈ G. Note that N
divides #(G) and that (by Cauchy’s theorem) N and #(G) have the same
prime factors. However, N can be strictly smaller that #(G). For example,
for D4, N = 4 but #(D4) = 8. More generally, if #(G) = pn where p is a
prime, then the exponent of G is pn ⇐⇒ G is cyclic. For another example,
the exponent of S4 is 12 but #(S4) = 24.

Suppose now that ρV is a G-representation. For every g ∈ G, the eigen-
values λi of ρV (g) are ath roots of unity, where a is the order of g, and hence
they are N th roots of unity, where N is the exponent of G. Since χV (g)
is the sum of the λi, it follows that, for every g ∈ G, χV (g) ∈ Q(µN ), the
extension of Q generated by the N th roots of unity.

We can then ask when a G-representation V is defined over Q. In general,
this is a very hard question. An easy question to ask is: given a finite group
G, when is χV (g) ∈ Q for every representation V of G (or equivalently
every irreducible representation) and every g ∈ G? Note that χV (g) ∈ Q
⇐⇒ χV (g) ∈ Z, since χV (g) is an algebraic integer. This question can be
answered:

Theorem 6.2. For a finite group G, χV (g) ∈ Q for every representation V
of G and every element g ∈ G ⇐⇒ for every g ∈ G and every a ∈ Z such
that gcd(a,#(G)) = 1, ga is conjugate to g.

Proof. We shall give the proof modulo a little Galois theory and number
theory. Note that Q(µN ) is a normal, hence Galois extension of Q since it is
the splitting field of xN − 1. Thus, given α ∈ Q(µN ), α ∈ Q ⇐⇒ σ(α) = α
for all σ ∈ Gal(Q(µN )/Q). Moreover, Gal(Q(µN )/Q) ∼= (Z/NZ)∗. In fact,
let ζ be a generator of the cyclic group µN . For example, we could take
ζ = e2πi/N . Then for all σ ∈ Gal(Q(µN )/Q), σ(ζ) is another generator of
µN , hence σ(ζ) = ζa for some integer a mod N , necessarily relatively prime
to N . Viewing a as an element of (Z/NZ)∗, the map σ 7→ a sets up an
isomorphism Gal(Q(µN )/Q) ∼= (Z/NZ)∗. Note also that, if σ(ζ) = ζa, then
σ(λ) = λa for all λ ∈ µN .
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If V is a G-representation, then χV (g) =
∑

i λi, where the λi ∈ Q(µN ).
Moreover, given σ ∈ Gal(Q(µN )/Q) corresponding to a ∈ (Z/NZ)∗,

σ(χV (g)) =
∑
i

σ(λi) =
∑
i

λai = χV (ga).

Thus χV (g) ∈ Q for every representation V of G and every element g ∈ G
⇐⇒ χV (g) = χV (ga) for every representation V of G, every element g ∈ G,
and every a ∈ Z which is relatively prime to N . Since the functions χV span
the space of class functions, this is the case ⇐⇒ g is conjugate to ga for
every g ∈ G and every a ∈ Z which is relatively prime to N . Finally, since
N and #(G) have the same prime factors, a is relatively prime to N ⇐⇒
a is relatively prime to #(G).

Example 6.3. (1) The symmetric group Sn has the property that, for
every σ ∈ Sn and every a ∈ Z which is relatively prime to #(Sn) = n!, σa

is conjugate to σ. In fact, we have seen that σ = γ1 · · · γ`, where the γi are
pairwise disjoint cycles of lengths ni > 1. Since the γi commute,

σa = (γ1 · · · γ`)a = γa1 · · · γa` .

As each γi is a cycle of length ni and gcd(a, ni) = 1 since ni divides n!, a
Modern Algebra I argument shows that γai is an ni-cycle for every i. Also,
the elements of {1, . . . , n} appearing in γai are the same as the elements
appearing in γi, so that γa1 , . . . , γ

a
` are disjoint cycles of lengths ni. As we

have seen before, this implies that σa = γa1 · · · γa` is conjugate to σ. We shall
see that, in fact, every representation of Sn can be defined over Q.

(2) For the quaternion group Q, as #(Q) = 8, a ∈ Z is relatively prime to
#(Q) ⇐⇒ a is odd. For odd a, it is easy to check that ga is conjugate to g
for every g ∈ Q. For example, 1a = 1, (−1)a = −1, and (±i)a = ±i if a ≡ 1
(mod 4) and (±i)a = ∓i if a ≡ 3 (mod 4). But i and −i are conjugate,
since e.g. −i = jij−1. Thus (as is easy to see directly) χV (g) ∈ Q for every
representation V of Q and every element g ∈ Q. On the other hand, the
irreducible 2-dimensional representation of Q cannot be defined over Q. In
fact, we have seen that it cannot be defined over R.
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