Representations of the symmetric group

1 Conjugacy classes and Young diagrams

Let us recall what we know about irreducible representations of S_{n} so far: we have the two 1-dimensional representations \mathbb{C} and $\mathbb{C}(\varepsilon)$, and an irreducible representation V of dimension $n-1$ which satisfies: $V \oplus \mathbb{C} \cong \mathbb{C}\left[S_{n} / S_{n-1}\right]$, where $\mathbb{C}\left[S_{n} / S_{n-1}\right]$ is the standard permutation representation of S_{n} coming from its action on $\{1, \ldots, n\}$. There is also the irreducible representation $V \otimes \varepsilon$, which is not isomorphic to V once $n \geq 4$. Our goal in this set of notes will be to describe a construction of all of the irreducible representations of S_{n}.

We begin by recalling the usual description of the conjugacy classes in S_{n}. Every $\sigma \in S_{n}$ can be written as $\gamma_{1} \cdots \gamma_{k}$, where the γ_{i} are pairwise disjoint n_{i}-cycles and the product is unique up to order. Here the identity 1 corresponds to the empty product $(k=0)$. We may as well reorder so that $n_{1} \geq n_{2} \geq \cdots \geq n_{k}$, so that the n_{i} form a non-increasing sequence of integers at least 2 and $\sum_{i=1}^{k} n_{i} \leq n$. We will refer to the sequence $\left(n_{1}, \ldots, n_{k}\right)$ as the cycle type of σ. For example, an r-cycle has cycle type r. The element $(1,2)(3,4,5)$ has cycle type $(3,2)$. Two elements of S_{n} are conjugate \Longleftrightarrow they have the same cycle type.

It is convenient to rewrite this description of the conjugacy classes via partitions:

Definition 1.1. A partition λ of n, which we write symbolically as $\lambda \vdash n$, is a weakly decreasing (i.e. non-increasing) sequence of positive integers $\lambda_{1} \geq$ $\lambda_{2} \geq \cdots \geq \lambda_{\ell}$, such that $\sum_{i=1}^{\ell} \lambda_{i}=n$.

Note that, given a cycle type, i.e. a non-increasing sequence of integers $n_{1} \geq n_{2} \geq \cdots \geq n_{k}$ at least 2 and $\sum_{i=1}^{\ell} n_{i} \leq n$, we can always enlarge the sequence to a partition by considering

$$
n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq 1 \geq 1 \geq \cdots \geq 1
$$

where the number of terms equal to 1 that we add is $n-\sum_{i=1}^{k} n_{i}$. Conversely, given a partition λ, we obtain a cycle type by dropping off all of the terms at the end with $\lambda_{i}=1$. Thus we see that the conjugacy classes of S_{n} are indexed by partitions of n. It is therefore reasonable to hope that the irreducible representations of S_{n} are also indexed by partitions.

Definition 1.2. Given a partition $\lambda \vdash n$, the Young subgroup $S_{\lambda} \leq S_{n}$ is the subgroup of S_{n} defined by: $\sigma \in S_{\lambda} \Longleftrightarrow \sigma\left(\left\{1, \ldots, \lambda_{1}\right\}\right)=\left\{1, \ldots, \lambda_{1}\right\}$, $\sigma\left(\left\{\lambda_{1}+1, \ldots, \lambda_{1}+\lambda_{2}\right\}\right)=\left\{\lambda_{1}+1, \ldots, \lambda_{1}+\lambda_{2}\right\}, \ldots$, and more generally, for all $i, 1 \leq i \leq \ell$,

$$
\sigma\left(\left\{\sum_{j=1}^{i-1} \lambda_{j}+1, \ldots, \sum_{j=1}^{i} \lambda_{j}\right\}\right)=\left\{\sum_{j=1}^{i-1} \lambda_{j}+1, \ldots, \sum_{j=1}^{i} \lambda_{j}\right\} .
$$

In other words, S_{λ} is the subgroup which preserves the first set of λ_{1} consecutive elements of $\{1, \ldots, n\}$, then the next set of λ_{2} consecutive elements, and so on. Thus clearly

$$
S_{\lambda} \cong S_{\lambda_{1}} \times \cdots \times S_{\lambda_{\ell}} .
$$

Hence $\#\left(S_{\lambda}\right)=\left(\lambda_{1}\right)!\cdots\left(\lambda_{\ell}\right)$! and $\#\left(S_{n} / S_{\lambda}\right)=n!/\left(\lambda_{1}\right)!\cdots\left(\lambda_{\ell}\right)!$.
For example, if $\lambda=(n)$, then $S_{\lambda}=S_{n}$, whereas if $\lambda=(1,1, \ldots, 1)$, then $S_{\lambda}=\{1\}$.

Let $M_{\lambda}=\mathbb{C}\left[S_{n} / S_{\lambda}\right]=\operatorname{Ind}_{S_{\lambda}}^{S_{n}} \mathbb{C}$. The basic idea will be to locate an irreducible subspace S^{λ} of M^{λ} satisfying certain properties. The representations S^{λ} will exactly be the irreducible representations of S_{n} up to isomorphism.

2 Young diagrams and Young tableaux

Definition 2.1. Given a partition $\lambda \vdash n$, its Young diagram is given by drawing n boxes in ℓ rows, flush left, with the $i^{\text {th }}$ row having λ_{i} boxes.

For example, given $\lambda=(3,2,1,1,1) \vdash 8$ its Young diagram is

At the two extremes, for $\lambda=(n)$, the corresponding diagram is

and for $\lambda=(1,1, \ldots, 1)$, the corresponding diagram is

We define an operation of transpose (written $\lambda \mapsto \lambda^{T}$) on Young diagrams by switching rows and columns. For example, with $\lambda=(3,2,1,1,1) \vdash$ 8 as before, the transpose diagram is

which corresponds to $\lambda^{T}=(5,2,1)$. Likewise $(n)^{T}=(1,1,, \ldots, 1)$. Clearly $\left(\lambda^{T}\right)^{T}=\lambda$.

Next, we define a partial order on the set of all partitions:
Definition 2.2. Suppose that $\lambda, \mu \vdash n$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ and $\mu=$ $\left(\mu_{1}, \ldots, \mu_{m}\right)$. Then λ dominates μ, written $\lambda \unrhd \mu$, if, for all i,

$$
\lambda_{1}+\cdots+\lambda_{i} \geq \mu_{1}+\cdots+\mu_{i} .
$$

Here, if $i>\ell$, we set $\lambda_{i}=0$, and similarly if $i>m$ we set $\mu_{i}=0$. The definition amounts to saying that, for every i, the first i rows of the Young diagram for λ contain at least as many boxes as the first i rows of the Young diagram for μ.

The relation \unrhd is only a partial order because not every two partitions are comparable. For example, $(5,2,1) \unrhd(3,4,1)$, but $(5,1,1,1)$ and $(3,4,1)$ are not comparable. For every partition $\lambda,(n) \unrhd \lambda$ and $\lambda \unrhd(1,1, \ldots, 1)$.

The following lemma makes precise the sense in which \unrhd is a partial order:

Lemma 2.3. With \unrhd defined as above, and for all $\lambda, \mu, \nu \vdash n$,
(i) $\lambda \unrhd \lambda$.
(ii) If $\lambda \unrhd \mu$ and $\mu \unrhd \nu$, then $\lambda \unrhd \nu$.
(iii) If $\lambda \unrhd \mu$ and $\mu \unrhd \lambda$, then $\lambda=\mu$.

Proof. (i) and (ii) follow easily from the definition. As for (iii), note that by definition $\lambda_{1} \geq \mu_{1}$ and $\mu_{1} \geq \lambda_{1}$, hence $\lambda_{1}=\mu_{1}$. Assume inductively that we have shown that $\lambda_{k}=\mu_{k}, k \leq i-1$. Then since $\lambda \unrhd \mu$,

$$
\lambda_{1}+\cdots+\lambda_{i} \geq \mu_{1}+\cdots+\mu_{i},
$$

and hence $\lambda_{i} \geq \mu_{i}$. By symmetry, $\mu_{i} \geq \lambda_{i}$. Hence $\lambda_{i}=\mu_{i}$, completing the inductive step and hence the proof of (iii).

Definition 2.4. Given $\lambda \vdash n$, a λ-tableau t or a tableau of type λ is a labeling of the n boxes of the Young diagram of λ by the elements of $\{1, \ldots, n\}$, in other words a way to fill in the n boxes of the Young diagram with the elements of $\{1, \ldots, n\}$, using each element exactly once. Hence, given λ, there are exactly n ! tableau of type λ. For example, given λ, the basic λ-tableau t_{0} is obtained by filling in the boxes consecutively: for $\lambda=(3,2,1) \vdash 6$, the basic tableau t_{0} is

1	2	3
4	5	
6		

Two λ-tableaux t_{1} and t_{2} are equivalent, written $t_{1} \sim t_{2}$, if, for every i, the set of entries in the $i^{\text {th }}$ row of t_{1} is the same as the set of entries in the $i^{\text {th }}$ row of t_{1}. In other words, t_{2} is obtained from t_{1} by permuting each row of t_{1}. For example,

and

6	2	3
1	4	
5		

are equivalent.
We write the equivalence class containing t as $[t]$. An equivalence class of λ-tableaux is called a λ-tabloid or a tabloid of type λ.

Clearly, S_{n} acts transitively on the set of λ-tableaux and preserves the equivalence relation \sim. Thus S_{n} acts transitively on the set of λ-tabloids. If t_{0} is the basic λ-tableau, then the isotropy subgroup of t_{0} is S_{λ}, the Young subgroup. Hence we can identify the set of all λ-tabloids with S_{n} / S_{λ}. In particular, there are $n!/\left(\lambda_{1}\right)!\cdots\left(\lambda_{\ell}\right)$! λ-tabloids.

Given a λ-tableau t, we can define a λ^{T}-tableau t^{T} in the obvious way. Clearly, if $\sigma \in S_{n}$, then $(\sigma \cdot t)^{T}=\sigma \cdot\left(t^{T}\right)$. However, if $t_{1} \sim t_{2}, t_{1}^{T}$ and t_{2}^{T} are not in general equivalent.

As before, let $M_{\lambda}=\mathbb{C}\left[S_{n} / S_{\lambda}\right]=\operatorname{Ind}_{S_{\lambda}}^{S_{n}} \mathbb{C}$. We view M^{λ} as having a basis consisting of λ-tabloids. Our goal will be to find an irreducible subspace S^{λ} of M^{λ} with the property that $\operatorname{dim} \operatorname{Hom}^{S_{n}}\left(S^{\lambda}, M^{\lambda}\right)=1$, i.e. that the multiplicity of S^{λ} in M^{λ} is 1 , and such that $\operatorname{Hom}^{S_{n}}\left(S^{\lambda}, M^{\mu}\right) \neq 0 \Longrightarrow$ $\lambda \unrhd \mu$.

Example 2.5. (1) If $\lambda=(n)$, then $S_{\lambda}=S_{n}, M^{(n)}$ is the trivial representation \mathbb{C}, and necessarily $S^{(n)}=\mathbb{C}$. Note that $(n) \unrhd \mu$ for every partition $\mu \vdash n$, and also that the trivial representation occurs in M^{μ} for every μ because M^{μ} is a permutation representation.
(2) If $\lambda=(1, \ldots, 1)$, then $M^{(1, \ldots, 1)}$ is the regular representation. We will see that $S^{(1, \ldots, 1)}=\mathbb{C}(\varepsilon)$. Note that $\mu \unrhd(1, \ldots, 1)$ for every $\mu \vdash n$. Likewise, $\operatorname{Hom}^{S_{n}}\left(S^{\mu}, M^{(1, \ldots, 1)}\right) \neq 0$ since every irreducible representation is isomorphic to a subspace of the regular representation.
(3) If $\lambda=(n-1,1)$, then $S_{\lambda} \cong S_{n-1}$ and $M^{(n-1,1)}$ is the permutation representation of S_{n} acting on $\{1, \ldots, n\}$. Hence $M^{(n-1,1)} \cong \mathbb{C} \oplus V$, where V is irreducible of dimension $n-1$. Correspondingly, if $\lambda \unrhd(n-1,1)$, then either $\lambda=(n)$ or $\lambda=(n-1,1)$.

3 Row and column stabilizers; polytabloids

Definition 3.1. Let t be a λ-tableau with associated tabloid $[t]$. We define the row stabilizer R_{t} to be the subgroup of S_{n} consisting of all elements σ such that, for every i, σ preserves the set of elements in the $i^{\text {th }}$ row of t. Equivalently, R_{t} is the isotropy subgroup of the associated tabloid $[t]$. For $t=t_{0}, R_{t_{0}}=S_{\lambda}$ is the Young subgroup. For a general t, R_{t} is conjugate to S_{λ} as we shall see shortly.

We likewise define the column stabilizer C_{t} to be the subgroup of S_{n} consisting of all elements σ such that, for every i, σ preserves the set of elements in the $i^{\text {th }}$ column of t. Thus C_{t} is the isotropy subgroup of $\left[t^{T}\right]$, so that $C_{t}=R_{t^{T}}$, and hence C_{t} is conjugate to $S_{\lambda^{T}}$. However, C_{t} depends on the tableau t, not just on the tabloid $[t]$.

Lemma 3.2. For all tableaux t and all $\sigma \in S_{n}$,
(i) $R_{t} \cap C_{t}=\{1\}$.
(ii) $R_{\sigma \cdot t}=\sigma R_{t} \sigma^{-1}$ and $C_{\sigma \cdot t}=\sigma C_{t} \sigma^{-1}$.

Proof. (i) Let a be the $(i, j)^{\text {th }}$ entry of t, i.e. a lies in the $i^{\text {th }}$ row and $j^{\text {th }}$ column of t. If $\sigma \in R_{t} \cap C_{t}$, then $\sigma(a)$ is also in the $i^{\text {th }}$ row and $j^{\text {th }}$ column of t. Thus $\sigma(a)=a$ for all $a \in\{1, \ldots, n\}$, so that $\sigma=1$.
(ii) This is a general fact about isotropy subgroups for group actions.

If t is a λ-tableau, we define the following element of the group algebra:

$$
A_{t}=\sum_{\sigma \in C_{t}} \varepsilon(\sigma) \sigma \in \mathbb{C}\left[S_{n}\right] .
$$

Note that we sum over the column stabilizer C_{t}. Since the group algebra acts on all representations, given an S_{n}-representation V, we can view A_{t} as defining a linear map $V \rightarrow V$. In particular, A_{t} defines a linear map $M^{\mu} \rightarrow M^{\mu}$ for all $\mu \vdash n$.

Definition 3.3. Given a λ-tableau t, the polytabloid e_{t} associated to t is the element

$$
e_{t}=A_{t}([t])=\sum_{\sigma \in C_{t}} \varepsilon(\sigma) \sigma \cdot[t]=\sum_{\sigma \in C_{t}} \varepsilon(\sigma)[\sigma \cdot t] \in M^{\lambda} .
$$

Remark 3.4. As we shall see in numerous examples, e_{t} depends on t, not just on $[t]$, because C_{t} depends on t and not just on $[t]$.

Lemma 3.5. For all tableaux $t, e_{t} \neq 0$.
Proof. Note first that, if $\sigma \in C_{t}$ and $\sigma \cdot[t]=[t]$, then $\sigma \in R_{t}$ and hence $\sigma \in R_{t} \cap C_{t}=\{1\}$. Likewise, if $\sigma_{1}, \sigma_{2} \in C_{t}$ and $\sigma_{1} \cdot[t]=\sigma_{2} \cdot[t]$, then $\sigma_{2}^{-1} \sigma_{1}=1$ and hence $\sigma_{1}=\sigma_{2}$. It follows that $e_{t}=\sum_{\sigma \in C_{t}} \varepsilon(\sigma) \sigma \cdot[t]$ is a sum of different basis vectors in M^{λ}, with coefficients ± 1, and hence $e_{t} \neq 0$.

Lemma 3.6. For all tableaux t and all $\sigma \in S_{n}$,
(i) $\sigma \cdot A_{t}=A_{\sigma \cdot t} \sigma$ as elements of the group algebra.
(ii) $\sigma \cdot e_{t}=e_{\sigma \cdot t}$.

Proof. (i) We have $\sigma A_{t}=\sum_{\tau \in C_{t}} \varepsilon(\tau) \sigma \tau$. On the other hand,

$$
\begin{aligned}
A_{\sigma \cdot t} \sigma & =\sum_{\tau \in C_{\sigma \cdot t}} \varepsilon(\tau) \tau \sigma=\sum_{\tau \in \sigma C_{t} \sigma^{-1}} \varepsilon(\tau) \tau \sigma \\
& =\sum_{\tau \in C_{t}} \varepsilon\left(\sigma \tau \sigma^{-1}\right) \sigma \tau \sigma^{-1} \sigma=\sum_{\tau \in C_{t}}=\varepsilon(\tau) \sigma \tau .
\end{aligned}
$$

Comparing, we see that $A_{\sigma \cdot t} \sigma=\sigma \cdot A_{t}$.
(ii) By definition,

$$
\sigma \cdot e_{t}=\sigma A_{t}([t])=A_{\sigma \cdot t} \sigma([t])=A_{\sigma \cdot t}([\sigma \cdot t])=e_{\sigma \cdot t} .
$$

We now define the representation S^{λ}. The idea is as follows: let G be a finite group and V an irreducible G-representation. For a fixed vector $v \in V$, the span of the set

$$
G \cdot v=\left\{\rho_{V}(g)(v): g \in G\right\}
$$

is clearly a nonzero G-invariant subspace of V. If moreover $v \in W$, where W is an irreducible subspace of V, then this span is a nonzero G-invariant subspace of W, hence must equal W.

Definition 3.7. Given $\lambda \vdash n$, define S^{λ}, the Specht representation, to be the span of the polytabloids e_{t}, where t is a λ-tableau. Since $\sigma \cdot e_{t}=e_{\sigma \cdot t}$, S^{λ} is an S_{n}-invariant subspace of M^{λ}, hence an S_{n}-representation.

Example 3.8. (1) If $\lambda=(n)$, then $M^{(n)}=\mathbb{C}$ with the trivial action of S_{n}. Here, there is only one tableau $[t], C_{t}=\{1\}$, and $A_{t}=\mathrm{Id}$.
(2) Let $\lambda=(n-1,1)$. Then every tableau t is of the form

for a unique $k=k(t), 1 \leq k \leq n$. Moreover, two tableaux t_{1} and t_{2} are equivalent $\Longleftrightarrow k\left(t_{1}\right)=k\left(t_{2}\right)$. Hence the ($n-1,1$)-tabloids are indexed by $k \in\{1, \ldots, n\}$. Let $[k]$ denote the corresponding equivalence class. Clearly $\sigma \cdot[k]=[\sigma(k)]$. Thus $M^{(n-1,1)} \cong \mathbb{C}^{n}$, with basis vectors [1],.,$[n]$, and the S_{n}-action is the same as the standard permutation representation. If $t \in[k]$, let the entry in the first row and column of t be i, so that t is of the form

Then $C_{t}=\{1,(i k)\}$. Note that C_{t} depends on t, not just $[t]=[k]$. Hence $A_{t}([t])=[k]+\varepsilon((i k))(i k) \cdot[k]=[k]-[i]$. The vectors $[k]-[i]$ are not linearly independent, and their span in $M^{(n-1,1)} \cong \mathbb{C}^{n}$ is easily seen to be

$$
\left\{a_{1}[1]+\cdots+a_{n}[n]: \sum_{i=1}^{n} a_{i}=0\right\} .
$$

Thus $S^{(n-1,1)} \cong V$, the standard irreducible representation of dimension $n-1$ of S_{n}.
(3) For $\lambda=(1,1, \ldots, 1), M^{(1,1, \ldots, 1)}=\mathbb{C}\left[S_{n}\right], C_{t}=S_{n}$ for every t, and $R_{t}=\{1\}$. The tableaux are the same as the tabloids, and correspond to elements $\sigma \in S_{n}$ via: t_{σ} is the $(1,1, \ldots, 1)$-tableau whose entries going vertically are $\sigma(1), \sigma(2), \ldots, \sigma(n)$. Thus $t_{1}=t_{0}$ is the basic tableau and $t_{\sigma}=\sigma \cdot t_{1}$. Then $A_{t}=\sum_{\sigma \in S_{n}} \varepsilon(\sigma) \sigma$ for every t, and

$$
e_{t_{1}}=A_{t}\left(\left[t_{1}\right]\right)=\sum_{\sigma \in S_{n}} \varepsilon(\sigma)\left[t_{\sigma}\right] .
$$

By a standard calculation in the group algebra, for every $\tau \in S_{n}$,

$$
\tau \cdot A_{t}=A_{t} \cdot \tau=\varepsilon(\tau) A_{t} .
$$

Thus $\tau \cdot e_{t_{1}}=e_{t_{\tau}}=A_{t} \tau\left(\left[t_{1}\right]\right)=\varepsilon(\tau) e_{t_{1}}= \pm e_{t_{1}}$, so $S^{(1,1, \ldots, 1)}$ is 1-dimensional, and $\tau\left(e_{t_{1}}\right)=\varepsilon(\tau) e_{t_{1}}$, so that $S^{(1,1, \ldots, 1)} \cong \mathbb{C}(\varepsilon)$.

4 Proof of irreducibility

We begin with the following lemma:

Lemma 4.1 (Dominance lemma). Let $\lambda, \mu \vdash n$, let t be $a \lambda$-tableau and let s be a μ-tableau. Suppose that, for every i, if $a \neq b$ are two entries in the $i^{\text {th }}$ row of s, then a and b lie in different columns of t. Then $\lambda \unrhd \mu$.

Proof. We first establish a claim which we shall also use:
Claim 4.2. With hypotheses as above, there exists a $\sigma \in C_{t}$ such that, after replacing t by $\sigma \cdot t$, for every i, the elements in the first i rows of s all appear in the first i rows of t. Equivalently, if S_{i} is the set of elements in the $i^{\text {th }}$ row of s and T_{j} is the set of elements in the $j^{\text {th }}$ row of t, then, for every i, $\sigma\left(S_{i}\right) \subseteq \bigcup_{j \leq i} T_{j}$.

First let us show that the claim implies the lemma. Assuming the claim, for every i there are $\mu_{1}+\cdots+\mu_{i}$ elements in the first i rows of s. Since they all appear in the first i rows of t, the number of elements in the first i rows of t, namely $\lambda_{1}+\cdots+\lambda_{i}$, has to be at least as large as $\mu_{1}+\cdots+\mu_{i}$. In other words, for every i,

$$
\lambda_{1}+\cdots+\lambda_{i} \geq \mu_{1}+\cdots+\mu_{i},
$$

and hence $\lambda \unrhd \mu$.
Proof of the claim. Note that the hypotheses of the lemma are unchanged by applying column permutations to t, i.e. by replacing t by $\sigma \cdot t$ for $\sigma \in C_{t}$. We will give an inductive construct of an appropriate σ.

For $i=1$, the entries of the first row of s are in different columns of t. In particular there are $\lambda_{1} \geq \mu_{1}$ columns of t. Permute each column of t containing an element of the first row of s by moving the given element into the first row (for example, by a transposition if it is not already in the first row). This replaces t by $\sigma_{1} \cdot t$ for some $\sigma_{1} \in C_{t}$.

For the inductive step of the construction, suppose that we have found a $\sigma_{i} \in C_{t}$ such that, after replacing t by $\sigma_{i} \cdot t$, the elements in the first i rows of s all appear in the first i rows of t. Now consider the entries in the $(i+1)^{\text {st }}$ row of s. If any of these entries appear in one of the first $(i+1)^{\text {st }}$ rows of t, we leave the corresponding columns alone. If some entry a appears in the $j^{\text {th }}$ row of t with $j>i+1$, suppose that a is also in the $k^{\text {th }}$ column of t. Then no other entry in the $(i+1)^{\text {st }}$ row of s lies in the $k^{\text {th }}$ column of t. Also, since a lies below the $(i+1)^{\text {st }}$ row of t, the $k^{\text {th }}$ column of t has a nonempty intersection with $(i+1)^{\text {st }}$ row of t. Then we can permute the $k^{\text {th }}$ column of t by switching the in the $j^{\text {th }}$ row, namely a, with the entry in the $(i+1)^{\text {st }}$ row. This procedure doesn't affect the first i rows, and can be done independently for each entry in the $(i+1)^{\text {st }}$ row of s which lies in in
the $j^{\text {th }}$ row of t for some $j>i+1$, since these all lie in different columns. We thus modify $\sigma_{i} \cdot t$ by a column permutation, and hence t by a column permutation σ_{i+1}, so that $\sigma_{i+1} \cdot t$ has the desired properties. This completes the inductive step of the construction.

Recall that M^{λ} has a basis consisting of the λ-tabloids $[t]$. We can introduce a positive definite Hermitian inner product $\langle\cdot, \cdot\rangle$ on M^{λ} by decreeing that this basis is unitary, i.e. that

$$
\left\langle\left[t_{1}\right],\left[t_{2}\right]\right\rangle= \begin{cases}1, & \text { if }\left[t_{1}\right]=\left[t_{2}\right] \\ 0, & \text { otherwise }\end{cases}
$$

Since S_{n} acts on M^{λ} by permuting the basis vectors, this Hermitian inner product is S_{n}-invariant. In what follows, when we speak about orthogonality, it will be with respect to $\langle\cdot, \cdot\rangle$.

The key technical result we need now is:
Theorem 4.3 (Submodule theorem). Let V be an S_{n}-invariant subspace of M^{λ}. Then either $S^{\lambda} \subseteq V$ or $V \subseteq\left(S^{\lambda}\right)^{\perp}$.

Proof. We start with the following lemma:
Lemma 4.4. Suppose that $\lambda, \mu \vdash n$, that t is a λ-tableau and that s is a μ-tableau. If $A_{t}([s]) \neq 0$, then $\lambda \unrhd \mu$. If moreover $\lambda=\mu$, then $A_{t}([s])= \pm e_{t}$.

Proof. First, we claim that, if $A_{t}([s]) \neq 0$, then for every i, if a and b are two elements in the $i^{\text {th }}$ row of s, then a and b are in different columns of t. The dominance lemma then implies that $\lambda \unrhd \mu$. To see the claim, suppose by contradiction that a and b are in the same column of t. Then $(a b) \in C_{t}$, and also $(a b) \in R_{s}$, so that $(a b) \cdot[s]=s$. Let $H=\{1,(a b)\} \leq C_{t}$ be the subgroup generated by (ab). We can then break C_{t} up into the left cosets for H : if $\sigma_{1}, \ldots, \sigma_{N}$ are a set of representatives for C_{t} / H, then

$$
C_{t}=\left\{\sigma_{1}, \sigma_{1} \cdot(a b), \ldots, \sigma_{N}, \sigma_{N} \cdot(a b)\right\} .
$$

Then, writing the elements of C_{t} as above,

$$
\begin{aligned}
A_{t}([s]) & =\sum_{\sigma \in C_{t}} \varepsilon(\sigma) \sigma \cdot[s]=\sum_{i=1}^{N}\left(\varepsilon\left(\sigma_{i}\right) \sigma_{i} \cdot[s]+\varepsilon\left(\sigma_{i} \cdot(a b)\right) \sigma_{i} \cdot(a b) \cdot[s]\right) \\
& =\sum_{i=1}^{N}\left(\varepsilon\left(\sigma_{i}\right) \sigma_{i} \cdot[s]-\varepsilon\left(\sigma_{i}\right) \sigma_{i} \cdot[s]\right)=0
\end{aligned}
$$

where we have used the fact that $(a b) \cdot[s]=[s]$ and that

$$
\varepsilon\left(\sigma_{i} \cdot(a b)\right)=\varepsilon\left(\sigma_{i}\right) \varepsilon((a b))=-\varepsilon\left(\sigma_{i}\right) .
$$

But this contradicts the assumption that $A_{t}([s]) \neq 0$.
Now suppose that $\lambda=\mu$ and that $A_{t}([s]) \neq 0$. As we have seen, the hypotheses of the dominance lemma hold. Then by Claim 4.2 there exists a $\tau \in C_{t}$ such that, if S_{i} is the set of elements in the $i^{\text {th }}$ row of s and T_{j} is the set of elements in the $j^{\text {th }}$ row of t, then, for every $i, \tau\left(S_{i}\right) \subseteq \bigcup_{j \leq i} T_{j}$. We claim that this forces $\tau \cdot[s]=[t]$. First, $\tau\left(S_{1}\right) \subseteq T_{1}$, but since $\lambda_{1}=\mu_{1}, S_{1}$ and T_{1} have the same number of elements. Since τ is injective, $\tau\left(S_{1}\right)=T_{1}$. Suppose by induction that we have proved that $\tau\left(S_{j}\right)=T_{j}$ for all $j<i$. Then since τ is injective, the statement that $\tau\left(S_{i}\right) \subseteq \bigcup_{j \leq i} T_{j}$ forces $\tau\left(S_{i}\right) \subseteq T_{i}$. Again by counting, since $\lambda_{i}=\mu_{i}, \tau\left(S_{i}\right)=T_{i}$. It follows that, t is obtained from $\tau \cdot s$ by some permutations of the rows. Thus $\tau \cdot[s]=[t]$. Then

$$
\begin{aligned}
A_{t}([s]) & =\sum_{\sigma \in C_{t}} \varepsilon(\sigma) \sigma \cdot[s]=\sum_{\sigma \in C_{t}} \varepsilon(\sigma) \sigma \tau^{-1} \cdot[t] \\
& =\varepsilon(\tau) \sum_{\sigma \in C_{t}} \varepsilon\left(\sigma \cdot \tau^{-1}\right) \sigma \tau^{-1} \cdot[t]=\varepsilon(\tau) \sum_{\sigma \in C_{t}} \varepsilon(\sigma) \sigma \cdot[t] \\
& =\varepsilon(\tau) A_{t}([t])=\varepsilon(\tau) e_{t} .
\end{aligned}
$$

Thus, if $A_{t}([s]) \neq 0$, then $A_{t}([s])= \pm e_{t}$.
Corollary 4.5. If t is a λ-tableau, then $A_{t}\left(M^{\lambda}\right)=\mathbb{C} \cdot e_{t}$.
Proof. We know that M^{λ} is spanned by the λ-tabloids $[s]$ and that $A_{t}([s])$ is either 0 or $\pm e_{t}$. Thus $A_{t}\left(M^{\lambda}\right) \subseteq \mathbb{C} \cdot e_{t}$. Finally, the image of A_{t} is $\mathbb{C} \cdot e_{t}$, as opposed to 0 , since $A_{t}([t])=e_{t}$.

Returning to the proof of the submodule theorem, let V be an $S_{n^{-}}$ invariant subspace of M^{λ}. Then $\mathbb{C}\left[S_{n}\right](V) \subseteq V$ and hence $A_{t}(v) \in V$ for every λ-tableau t and every $v \in V$. As $A_{t}\left(M^{\lambda}\right)=\mathbb{C} \cdot e_{t}, e_{t} \in V$ as long as there exists a $v \in V$ such that $A_{t}(v) \neq 0$. In this case, since $\sigma \cdot e_{t}=e_{\sigma \cdot t}$ and V is S_{n}-invariant, $e_{\sigma \cdot t} \in V$ for all $\sigma \in S_{n}$. Since S_{n} acts transitively on the set of tableaux, $e_{s} \in V$ for every tableau s. As S^{λ} is generated by the e_{s}, $S^{\lambda} \subseteq V$.

Otherwise, $A_{t}(v)=0$ for every tableau t and $v \in V$. Since the inner product $\langle\cdot, \cdot\rangle$ is S_{n}-invariant, $\langle\sigma(v), w\rangle=\left\langle v, \sigma^{-1}(w)\right\rangle$ for all $v, w \in M^{\lambda}$. Then, for all $v, w \in M^{\lambda},\left\langle A_{t}(v), w\right\rangle=\left\langle v, A_{t}^{*}(w)\right\rangle$, where

$$
A_{t}^{*}=\sum_{\sigma \in C_{t}} \varepsilon(\sigma) \sigma^{-1}=\sum_{\sigma \in C_{t}} \varepsilon\left(\sigma^{-1}\right) \sigma^{-1}=\sum_{\sigma \in C_{t}} \varepsilon(\sigma) \sigma=A_{t} .
$$

Thus $A_{t}(v)=0$ for all $v \in V \Longrightarrow\left\langle v, A_{t}(w)\right\rangle=0$ for every $w \in M^{\lambda}$. Since the image of A_{t} is $\mathbb{C} \cdot e_{t}$, this implies that $\left\langle v, e_{t}\right\rangle=0$ for every λ-tableau t. Since S^{λ} is the span of the $e_{t}, V \subseteq\left(S^{\lambda}\right)^{\perp}$ as claimed.

Corollary 4.6. S^{λ} is irreducible.
Proof. Note that $S^{\lambda} \neq\{0\}$ as $e_{t} \neq 0$ for every t. If V is an S_{n} invariant subspace of S^{λ}, then by the submodule theorem either $S^{\lambda} \subseteq V$ or $V \subseteq$ $\left(S^{\lambda}\right)^{\perp}$. In the first case, $V=S^{\lambda}$ since $V \subseteq S^{\lambda}$ and $S^{\lambda} \subseteq V$. In the second case, $V \subseteq S^{\lambda} \cap\left(S^{\lambda}\right)^{\perp}=\{0\}$. Thus every S_{n}-invariant subspace of S^{λ} is either S^{λ} or $\{0\}$, so that S^{λ} is irreducible.

Corollary 4.7. If $\operatorname{Hom}^{S_{n}}\left(S^{\lambda}, M^{\mu}\right) \neq 0$, then $\lambda \unrhd \mu$. Moreover, if $\lambda=\mu$, then $\operatorname{dim} \operatorname{Hom}^{S_{n}}\left(S^{\lambda}, M^{\lambda}\right)=1$. Thus the multiplicity of S^{λ} in M^{λ} is 1 .

Proof. If $F \neq 0$, then by Schur's lemma F is injective. Thus, for every λ-tableau $t, F\left(e_{t}\right) \neq 0$.

Since there is an S_{n}-invariant isomorphism

$$
M^{\lambda} \cong S^{\lambda} \oplus\left(S^{\lambda}\right)^{\perp},
$$

we can extend F to an S_{n}-morphism $\widetilde{F}: M^{\lambda} \rightarrow M^{\mu}$ by setting $\widetilde{F}=F$ on S^{λ} and $\widetilde{F}=0$ on $\left(S^{\lambda}\right)^{\perp}$. Since \widetilde{F} is an S_{n}-morphism, it commutes with the action of $\mathbb{C}\left[S_{n}\right]$, so that $\widetilde{F} \circ A_{t}=A_{t} \circ \widetilde{F}$. But $A_{t}([t])=e_{t}$, and hence

$$
F\left(e_{t}\right)=\widetilde{F}\left(e_{t}\right)=\widetilde{F}\left(A_{t}([t])\right)=A_{t}(\widetilde{F}([t]))
$$

We can write $\widetilde{F}([t])$ as a linear combination of μ-tabloids $[s]$. Since $F\left(e_{t}\right) \neq$ 0 , there must exist a μ-tabloid s such that $A_{t}([s]) \neq 0$. By Lemma 4.4, $\lambda \unrhd \mu$. Moreover, if $\lambda=\mu$, then $A_{t}([s])= \pm e_{t}$, so that $F\left(e_{t}\right) \in S^{\lambda}$ for all t. It follows that F is given by $i \circ G$, where $i: S^{\lambda} \rightarrow M^{\lambda}$ is the inclusion and $G \in \operatorname{Hom}^{S_{n}}\left(S^{\lambda}, S^{\lambda}\right)$. By Schur's lemma, $\operatorname{Hom}^{S_{n}}\left(S^{\lambda}, S^{\lambda}\right)=\mathbb{C}$ Id. Thus every S_{n} morphism from S^{λ} to M^{λ} is multiplication by a scalar, followed by inclusion, so that $\operatorname{dim} \operatorname{Hom}^{S_{n}}\left(S^{\lambda}, M^{\lambda}\right)=1$.

Corollary 4.8. For all $\lambda, \mu \vdash n, S^{\lambda} \cong S^{\mu}$ as S_{n}-representations \Longleftrightarrow $\lambda=\mu$.

Proof. Trivially, if $\lambda=\mu$, then $S^{\lambda} \cong S^{\mu}$. Conversely, suppose that $S^{\lambda} \cong S^{\mu}$. Then the composition of this isomorphism with the inclusion $S^{\mu} \subseteq M^{\mu}$ gives a nonzero element of $\operatorname{Hom}^{S_{n}}\left(S^{\lambda}, M^{\mu}\right) \neq 0$. The previous corollary then implies that $\lambda \unrhd \mu$. By symmetry, $\mu \unrhd \lambda$. Hence $\lambda=\mu$.

5 Some concluding remarks

In this final section, we make some more remarks about the irreducible representations of S_{n}, mostly without proofs.

5.1 Rationality of the representations

As we have previously noted, if $\operatorname{gcd}(a, n!)=1$ and $\sigma \in S_{n}$, then σ^{a} and σ are conjugate, and this implies that, for every representation V of S_{n}, the value of the character $\chi_{V}(\sigma)$ is an integer for every $\sigma \in S_{n}$. In fact, a stronger statement is true:

Theorem 5.1. The irreducible representations S^{λ} of S_{n} are defined over \mathbb{Q}. Hence every representation of S_{n} can be defined over \mathbb{Q}.

The main point of the proof is as follows. The representation M^{λ} is defined over \mathbb{Q}. In fact, $M^{\lambda}=\mathbb{C}\left[S_{n} / S_{\lambda}\right]$, with a basis consisting of the λ-tabloids $[t]$, and we can just take the corresponding \mathbb{Q}-vector space $M_{\mathbb{Q}}^{\lambda}=$ $\mathbb{Q}\left[S_{n} / S_{\lambda}\right]$, with a \mathbb{Q}-basis consisting of the λ-tabloids $[t]$. Note that $\sigma \in S_{n}$ acts by permuting the tabloids, and hence the matrix corresponding to σ has rational entries, in fact every entry is either 0 or 1 . The polytabloids e_{t} are also elements of $M_{\mathbb{Q}}^{\lambda}$, since they are linear combinations of certain tabloids with coefficients ± 1. Hence they span a vector subspace of M^{λ} which is also defined over \mathbb{Q}.

5.2 Explicit construction of some representations

We have already seen that the trivial representation \mathbb{C} is isomorphic to $S^{(n)}$, that $\mathbb{C}(\varepsilon)$ is isomorphic to $S^{(1, \ldots, 1)}$, and that the standard representation V is isomorphic to $S^{(n-1,1)}$. Linear algebra can construct a few of the other irreducible representations directly. One basic linear algebra construction is exterior or alternating product: given a vector space U, we can construct a new vector space $\bigwedge^{k} U$, which is generated by expressions of the form $v_{1} \wedge \cdots \wedge v_{k}$ which are multilinear in the v_{i}. For any collection v_{1}, \ldots, v_{k} of elements of U, we have the basic transformation law: for all $\sigma \in S_{k}$

$$
v_{\sigma(1)} \wedge \cdots \wedge v_{\sigma(k)}=\varepsilon(\sigma) v_{1} \wedge \cdots \wedge v_{k} .
$$

If u_{1}, \ldots, u_{d} is a basis for U, then a basis for $\bigwedge^{k} U$ is given by:

$$
\left\{u_{i_{1}} \wedge \cdots \wedge u_{i_{k}}: i_{1}<\cdots<i_{k}\right\} .
$$

In particular $\operatorname{dim} \bigwedge^{k} U=\binom{d}{k}$ for $k \leq d$, and $\operatorname{dim} \bigwedge^{k} U=0$ for $k>d$. Then one can show:

Proposition 5.2. For $k \leq n-1$, $\bigwedge^{k} V=\bigwedge^{k} S^{(n-1,1)}$ is an irreducible representation of S_{n}, and it is isomorphic to $S^{(n-k, 1, \ldots, 1)}$.

An explicit proof is sketched in the HW.
Another construction of representations uses the symmetric product: given a vector space U, we can construct a new vector space $\operatorname{Sym}^{k} U$, which is generated by expressions of the form $v_{1} \ldots v_{k}$ which are multilinear in the v_{i}. For any collection v_{1}, \ldots, v_{k} of elements of U, we have the basic transformation law: for all $\sigma \in S_{k}$

$$
v_{\sigma(1)} \ldots v_{\sigma(k)}=v_{1} \ldots v_{k}
$$

If u_{1}, \ldots, u_{d} is a basis for U, then a basis for $\operatorname{Sym}^{k} U$ is given by:

$$
\left\{u_{i_{1}} \cdots u_{i_{k}}: i_{1} \leq \cdots \leq i_{k}\right\}
$$

In particular $\operatorname{dim} \operatorname{Sym}^{k} U=\binom{d+k-1}{k}$. It is then easy to check that, for $k \leq n / 2$, there is an injective S_{n}-morphism $M^{(n-k, k)} \rightarrow \operatorname{Sym}^{k} V$. Hence $S^{(n-k, k)}$ is isomorphic to an S_{n}-invariant summand of $\operatorname{Sym}^{k} V$. For $n=2$, it is easy to make this more explicit:
Proposition 5.3. $\mathrm{Sym}^{2} V \cong \mathbb{C} \oplus V \oplus S^{(n-2,2)}$.
In fact, one can identify the subspace $\mathbb{C} \oplus V$ explicitly as well and so give a concrete realization of $S^{(n-2,2)}$. Note that $\operatorname{dim} S^{(n-2,2)}=\frac{n(n-3)}{2}$.

5.3 Conjugate partitions

For every partition $\lambda \vdash n$, we have defined the transpose $\lambda^{T} \vdash n$, and $\left(\lambda^{T}\right)^{T}=\lambda$. Note that it is possible for $\lambda^{T}=\lambda$. For example, $(n)^{T}=$ $(1, \ldots, 1)$. For the representations S^{λ}, we have the following result, which generalizes $S^{(1, \ldots, 1)}=\mathbb{C}(\varepsilon)$:

Proposition 5.4. $S^{\lambda^{T}} \cong S^{\lambda} \otimes \varepsilon$.

5.4 Representations of the alternating group

The alternating group A_{n} is a subgroup of S_{n} of index two, and so we can apply our general results about restrictions of irreducible representations to subgroups of index two:

Proposition 5.5. Let $\lambda \vdash n$.
(i) $\lambda=\lambda^{T} \Longleftrightarrow S^{\lambda} \cong S^{\lambda} \otimes \varepsilon$. In this case,

$$
\operatorname{Res}_{A_{n}}^{S_{n}} S^{\lambda} \cong \operatorname{Res}_{A_{n}}^{S_{n}}\left(S^{\lambda} \otimes \varepsilon\right) \cong W \oplus W^{\prime}
$$

where W and W^{\prime} are two irreducible representations of A_{n}, with $\operatorname{dim} W=$ $\operatorname{dim} W^{\prime}$ and W, W^{\prime} are not isomorphic.
(ii) $\lambda \neq \lambda^{T} \Longleftrightarrow S^{\lambda}$ and $S^{\lambda} \otimes \varepsilon$. In this case,

$$
\operatorname{Res}_{A_{n}}^{S_{n}} S^{\lambda} \cong \operatorname{Res}_{A_{n}}^{S_{n}}\left(S^{\lambda} \otimes \varepsilon\right)
$$

is an irreducible representation of A_{n}.
Finally, every irreducible representation of A_{n} arises in this way.
Example 5.6. We consider the case $n=5$. There are two 1-dimensional representations of $S_{5}, S^{(5)} \cong \mathbb{C}$ and $S^{(1,1,1,1,1)} \cong \mathbb{C}(\varepsilon)$. There are two 4dimensional representations, the standard representation $V=S^{(4,1)}$ and $V \otimes \varepsilon=S^{(2,1,1,1)}$, where we have used the fact that $(4,1)^{T}=(2,1,1,1)$ and Proposition 5.4. Next, $S^{(3,2)}$ is an irreducible representation of dimension 5 , and since $(3,2)^{T}=(2,2,1)$, we have $S^{(2,2,1)} \cong S^{(3,2)} \otimes \varepsilon$, also of dimension 5. Finally, $\bigwedge^{2} V \cong S^{(3,1,1)}$ is irreducible of dimension 6. Since $(3,1,1)^{T}=$ $(3,1,1), \bigwedge^{2} V \cong \bigwedge^{2} V \otimes \varepsilon$, and this is the only irreducible representation up to isomorphism with this property.

As a check, we add up the sums of the squares of the irreducible representations constructed above:

$$
1^{2}+1^{2}+4^{2}+4^{2}+5^{2}+5^{2}+6^{2}=120=\#\left(S_{5}\right),
$$

as expected.
We turn now to A_{5}. The representations \mathbb{C} and $\mathbb{C}(\varepsilon)$ both restrict to the trivial representation of A_{5}. The representations V and $V \otimes \varepsilon$ both restrict to an irreducible representation of dimension 4, the restriction of the standard irreducible representation V to A_{4}. The representations $S^{(3,2)}$ and $S^{(2,2,1)} \cong S^{(3,2)} \otimes \varepsilon$ both restrict to an irreducible representation of dimension 5. Finally, the 6 -dimensional representation $\bigwedge^{2} V \cong S^{(3,1,1)}$ restricts
on A_{5} to $W \oplus W^{\prime}$, where W and W^{\prime} are two non-isomorphic irreducible representations of A_{5}. Finally, every irreducible representation of A_{5} is one of these. As a check,

$$
1^{2}+4^{2}+5^{2}+3^{2}+3^{2}=60=\#\left(A_{5}\right) .
$$

With a little more effort, we can work out the character table for A_{5}. There are 5 conjugacy classes: all 3 -cycles and products of two disjoint 2 cycles are conjugate in A_{5}, but there are two different conjugacy classes of 5 -cycles (any two 5 -cycles are conjugate in S_{5}, but not necessarily in A_{5}).

	1	$C((1,2,3))$	$C((12)(34))$	$C((12345))$	$C((21345))$
$\chi_{\mathbb{C}}$	1	1	1	1	1
χ_{V}	4	1	0	-1	-1
$\chi_{S^{3,2}}$	5	-1	1	0	0
χ_{W}	3	0	-1	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$
$\chi_{W^{\prime}}$	3	0	-1	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$

Note: The images of the 3-dimensional representations W and W^{\prime} can be realized as a subgroup of $S O(3)$, the icosahedral group. It is the group of symmetries of a regular dodecahedron, or equivalently of a regular icosahedron.

5.5 Further directions

There are many other questions one might ask about representations of S_{n}. Here are two:

Branching rules: The group S_{n} naturally contains S_{n-1} as a subgroup and in turn is naturally a subgroup of S_{n+1}. Given $\lambda \vdash n$ and the irreducible representation S^{λ} of S_{n}, we have the corresponding representation $\operatorname{Res}_{S_{n-1}}^{S_{n}} S^{\lambda}$ of S_{n-1} as well as the representation $\operatorname{Ind}_{S_{n}}^{S_{n+1}} S^{\lambda}$. These can both be described in terms of the Young diagram of λ.

Multiplication rules: Here, given $\lambda, \mu \vdash n$, the problem is to describe the the irreducible summands and their multiplicities of the representation $S^{\lambda} \otimes S^{\mu}$.

For a discussion of these and many other questions related to representations of S_{n}, we refer to the many books on S_{n}.

