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ABSTRACT. The goal of this short paper is to give a slightly different perspective on the comparison between crystalline co-
homology and de Rham cohomology. Most notably, we reprove Berthelot’s comparison result without using pd-stratifications,
linearisations, and pd-differential operators.

Crystalline cohomology is a p-adic cohomology theory for varieties in characteristic p created by Berthelot [Ber74].
It was designed to fill the gap at p left by the discovery [SGA73] of `-adic cohomology for ` 6= p. The construction
of crystalline cohomology relies on the crystalline site, which is a better behaved positive characteristic analogue of
Grothendieck’s infinitesimal site [Gro68]. The motivation comes from Grothendieck’s theorem [Gro66] identifying
infinitesimal cohomology of a complex algebraic variety with its singular cohomology (with C-coefficients); in par-
ticular, infinitesimal cohomology gives a purely algebraic definition of the “true” cohomology groups for complex
algebraic varieties. In fact, the fundamental structural result of Berthelot [Ber74, Theorem V.2.3.2] is a direct p-adic
analogue of this reconstruction result: the crystalline cohomology of a smooth variety X over Z/p is canonically
identified with the de Rham cohomology of a lift of X to Zp, provided one exists. In particular, crystalline cohomol-
ogy produces the “correct” Betti numbers, at least for liftable smooth projective varieties (and, in fact, even without
liftability by [KM74]). We defer to [Ill94] for a detailed introduction, and connections with p-adic Hodge theory.

Our goal in this note is to give a different perspective on the relationship between de Rham and crystalline coho-
mology. In particular, we give a short proof of the aforementioned comparison result [Ber74, Theorem V.2.3.2]; see
Theorem 3.6. Our approach replaces Berthelot’s differential methods (involving stratifications and linearisations) with
a resolutely Čech-theoretic approach. It seems that Theorem 3.2 is new, although it may have been known to experts
in the field. This theorem also appears in forthcoming work by Beilinson [Bei].

Conventions. Throughout this note, p is a fixed prime number. Our base scheme will be typically be Σ = Spec(Zp),
though occasionally we discuss the theory over Σe = Spec(Zp/p

e) as well (for some e ≥ 1). All divided powers will
be compatible with the divided powers on pZp. Modules of differentials on divided power algebras are compatible
with the divided power structure. A general reference for divided powers and the crystalline site is [Ber74].

1. REVIEW OF MODULES ON THE CRYSTALLINE SITE

Let S be a Σ-scheme such that p is locally nilpotent on S. The (small) crystalline site of S is denoted (S/Σ)cris. Its
objects are triples (U, T, δ) where U ⊂ S is an open subset, U ⊂ T is a nilpotent thickening of Σ-schemes, and δ is a
divided power structure on the ideal of U in T ; the morphisms are the obvious ones, while coverings of (U, T, δ) are
induced by Zariski covers of T . The structure sheaf OS/Σ of (S/Σ)cris is defined by OS/Σ((U, T, δ)) = Γ(T,OT ).

Given a Zp/pe-algebra B and an ideal J ⊂ B endowed with divided powers δ, the module of differentials compatible
with divided powers is the quotient of the module of Σ-linear differentials by the relations dδn(x) = δn−1(x)d(x), for
x ∈ J and n ≥ 1. We simply write Ω1

B for this module as confusion is unlikely. The formation of Ω1
B commutes with

localisation on B, so the formula Ω1
S/Σ((U, T, δ)) = Γ(T,Ω1

T ) defines a sheaf Ω1
S/Σ on (S/Σ)cris. Like its classical

analogue, the sheaf Ω1
S/Σ can also be described via the diagonal as follows. Given an object (U, T, δ) of (S/Σ)cris,

let (U, T (1), δ(1)) be the product of (U, T, δ) with itself in (S/Σ)cris: the scheme T (1) is simply the divided power
envelope of U ⊂ T ×Σ T , with δ(1) being the induced divided power structure. The diagonal map ∆ : T → T (1) is
a closed immersion corresponding to an ideal sheaf I with divided powers, and we have

Ω1
S/Σ((U, T, δ)) = Γ(T, I/I [2]),

where I [2] denotes the second divided power of I. For i ≥ 0 we define ΩiS/Σ as the i-th exterior power of Ω1
S/Σ.

An OS/Σ-module F on (S/Σ)cris is called quasi-coherent if for every object (U, T, δ), the restriction FT of F to the
Zariski site of T is a quasi-coherent OT -module. Examples include OS/Σ and ΩiS/Σ for all i > 0.
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An OS/Σ-module F on (S/Σ)cris is called a crystal in quasi-coherent modules if it is quasi-coherent and for every
morphism f : (U, T, δ)→ (U ′, T ′, δ′) the comparison map

cf : f∗FT ′ → FT
is an isomorphism. For example, the sheaf OS/Σ is a crystal (by fiat), but the sheaves ΩiS/Σ, i > 0 are not crystals.

Given a crystal F in quasi-coherent modules and an object (U, T, δ), the projections define canonical isomorphisms

pr∗1FT
c1−→ FT (1)

c2←− pr∗2FT .
These comparison maps are functorial in the objects of the crystalline site. Hence we obtain a canonical map

(1.0.1) ∇ : F −→ F ⊗OS/Σ
Ω1
S/Σ

such that for any object (U, T, δ) and any section s ∈ Γ(T,FT ) we have

c1(s⊗ 1)− c2(1⊗ s) = ∇(s) ∈ I/I [2] ⊗OS/Σ
FT (1).

Transitivity of the comparison maps implies this connection is integrable, hence defines a de Rham complex

F → F ⊗OS/Σ
Ω1
S/Σ → F ⊗OS/Σ

Ω2
S/Σ → · · · .

We remark that this complex does not terminate in general.

2. THE DE RHAM-CRYSTALLINE COMPARISON FOR AFFINES

In this section, we discuss the relationship between de Rham and crystalline cohomology (with coefficients) when S
is affine. First, we establish some notation that will be used throughout this section.

Notation 2.1. Assume S = Spec(A) for a Z/pN -algebra A (and some N > 0). Choose a polynomial algebra P over
Zp and a surjection P → A with kernel J . Let D = DJ(P )∧ be the p-adically completed divided power envelope of
P → A. We set Ω1

D := Ω1
P ⊗∧P D, so Ω1

D/p
e ' Ω1

D/peD. We also set D(0) = D and let

D(n) = DJ(n)(P ⊗Zp
· · · ⊗Zp

P )∧

where J(n) = Ker(P ⊗ · · · ⊗ P → A) and where the tensor product has (n + 1)-factors. For each e ≥ N and any
n ≥ 0, we have a natural object (S, Spec(D(n)/pe(n)), δ(n)) of (S/Σ)cris. Using this, for an abelian sheaf F on
(S/Σ)cris, we define

F(n) := lim
e≥N
F((S,Spec(D(n)/pe(n)), δ(n))).

Each (S, Spec(D(n)/pe(n)), δ(n)) is simply the (n+1)-fold self-product of (S,Spec(D/pe), δ) in (S/Σ)cris. Letting
n vary, we obtain a natural cosimplicial abelian group (or a cochain complex)

F(•) :=
(
F(0)→ F(1)→ F(2) · · ·

)
,

that we call the Čech-Alexander complex of F associated to D.

2.2. Some generalities on crystalline cohomology. This subsection collects certain basic tools necessary for work-
ing with crystalline cohomomology; these will be used consistently in the sequel. We begin with a brief review of the
construction of homotopy-limits in the only context where they appear in this paper.

Construction 2.3. Let C be a topos. Fix a sequence T1 ⊂ T2 ⊂ · · ·Tn ⊂ · · · of monomorphisms in C. We will
construct the functor R limiRΓ(Ti,−); here we follow the convention that G(U) = Γ(U,G) = HomC(U,G) for any
pair of objects U,G ∈ C. Let AbN denote the category of projective systems of abelian groups indexed by the natural
numbers. The functor F 7→ limi F(Ti) can be viewed as the composite

Ab(C) {Γ(Ti,−)}i→ AbN limi→ Ab.

Each of these functors is a left exact functor between abelian categories with enough injectives, so we obtain a com-
posite of (triangulated) derived functors

D+(Ab(C)) {RΓ(Ti,−)}i→ D+(AbN)
R limi→ D+(Ab).

We use R limiRΓ(Ti,−) to denote the composite functor. To identify this functor, observe that if we set T =
colimi Ti, then F(T ) = limi F(Ti) by adjunction. Moreover, for any injective object I of Ab(C), the projective
system i 7→ I(Ti) has surjective transition maps I(Ti+1) → I(Ti): the maps Ti → Ti+1 are injective, and I is an
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injective object. Since projective systems in AbN with surjective transition maps are acyclic for the functor limi (by
the Mittag-Leffler condition), there is an identification of triangulated functors

RΓ(T,−) ' R lim
i
RΓ(Ti,−).

Thus, the value R limiRΓ(Ti,F) is computed by I•(T ) = limi I
•(Ti), where F → I• is an injective resolution.

An observation that will be useful in the sequel is the following: if each RΓ(Ti,F) is concentrated in degree 0, then
R limiRΓ(Ti,F) coincides with R limi F(Ti), and thus has only two non-zero cohomology groups (as Rj limiAi =
0 for j > 1 and any N-indexed projective system {Ai}i of abelian groups).

We use Construction 2.3 to show that the Čech-Alexander complex often computes crystalline cohomology (compare
with [Ber74, Theorem V.1.2.5]).

Lemma 2.4. Let F be a quasi-coherent OS/Σ-module. Assume that for each n > 0, the group R1 lime≥N vanishes
for the projective system e 7→ F((S,Spec(D(n)/peD(n)), δ(n))). Then the complex F(•) computes RΓ(S/Σ,F).

Proof. As representable functors are sheaves on (S/Σ)cris (by Zariski descent), we freely identify objects of (S/Σ)cris

with the corresponding sheaf on (S/Σ)cris. One can easily check that the map colime≥N

(
(S, Spec(D/pe), δ)

)
→ ∗

is an effective epimorphism is the topos of sheaves on (S/Σ)cris. Since filtered colimits and the Yoneda embed-
ding both commute with finite products, the (n + 1)-fold self-product of colime≥N

(
(S, Spec(D/pe), δ)

)
is simply

colime≥N

(
(S,Spec(D(n)/pe(n)), δ(n))

)
. General topos theory (see Remark 2.5) shows that RΓ(S/Σ,F) is com-

puted by

RΓ(colim
e≥N

(
(S, Spec(D(0)/pe(0)), δ(0))

)
,F)→ RΓ(colim

e≥N

(
(S,Spec(D(1)/pe(1)), δ(1))

)
,F)→ · · · .

The discussion in Construction 2.3 and the vanishing of quasi-coherent sheaf cohomology on affine schemes then
identify the above bicomplex with the bicomplex

R lim
e≥N

(
F((S,Spec(D(0)/peD(0)), δ(0)))

)
→ R lim

e≥N

(
F((S, Spec(D(1)/peD(1)), δ(1)))

)
→ · · · .

The R1 lime vanishing hypothesis ensures that the bicomplex above collapses to F(•) proving the claim. �

Remark 2.5. The following fact was used in the proof of Lemma 2.4: if C is a topos, and X → ∗ is an effective
epimorphism in C, then for any abelian sheaf F in C, the object RΓ(∗,F) is computed by a bicomplex

RΓ(X,F)→ RΓ(X ×X,F)→ RΓ(X ×X ×X,F)→ · · · ,
i.e., the choice of an injective resolution F → I• defines a bicomplex I•(X•) whose totalisation computes RΓ(∗,F);
this follows from cohomological descent since the augmented simplicial object X• → ∗ is a hypercover. In particular,
there is a spectral sequence with E1-term given by Hq(Xp,F) that converges to Hp+q(∗,F).

Remark 2.6. The R1 lime≥N vanishing assumption of Lemma 2.4 will hold for all sheaves appearing in this paper.
For quasi-coherent crystals F , this assumption clearly holds as

F((S,Spec(D(n)/pe(n)), δ(n)))→ F((S, Spec(D(n)/pe−1(n)), δ(n)))

is surjective for all e > N and all n ≥ 0. By direct computation, the same is also true for the sheaves ΩiS/Σ.

Next, we formulate and prove a purely algebraic lemma comparing p-adically complete Zp-modules with compatible
systems of Z/pe-modules; the result is elementary and well-known, but recorded here for convenience. We remind the
reader that a Zp-module M is said to be p-adically complete if the natural map M → limeM/pe is an isomorphism.

Lemma 2.7. The functor M 7→ (M/pe, cane :
(
M/pe+1)/pe 'M/pe) defines an equivalence between the category

of p-adically complete Zp-modules M and the category of projective systems (Me, φe) (indexed by e ∈ N) with Me a
Z/pe-module, and φe : Me+1/p

e 'Me an isomorphism.

Proof. A left-inverse functor is given by (Me, φe) 7→ M := limeMe, the limit being taken along the maps φe. To
check that this is also a right inverse, it suffices to show that (limeMe)/p

n ' Mn for any system (Me, φe) as in the
lemma. Projection defines a natural map (limeMe)/p

n → Mn which is surjective as the φe’s are all surjective. For
injectivity, it suffices to show that any element m = (me) ∈ limeMe with mn = 0 is divisible by pn in limeMe. The
hypothesis implies that there exists an m′ ∈ limeMe such that m− pnm′ maps to 0 in Mn+1: we can simply take m′
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to be an arbitrary lift of an element inMn+1 which givesmn+1 on multiplication by pn (which exists since φe+1 maps
Mn+1/p

n isomorphically onto Mn). Continuing this process, for each i > 0, we can find an element mi ∈ limeMe

such that m− pnmi maps to 0 in Mn+i. Taking the limit i→∞ proves the desired claim. �

The next lemma is a standard result in crystalline cohomology (see [Ber74, Chapter IV] and [BO78, Theorem 6.6]).
We sketch the proof to convince the reader that this result is elementary.

Lemma 2.8. The category of crystals in quasi-coherent OS/Σ-modules is equivalent to the category of pairs (M,∇)

where M is a p-adically complete D-module and ∇ : M → M ⊗∧D Ω1
D is a topologically quasi-nilpotent integrable

connection.

Proof. Given a crystal in quasi-coherent modules F we set

M = F(0) := lim
e≥N
F((S, Spec(D/peD), δ))

and ∇ is as in (1.0.1). Conversely, suppose that (M,∇) is a module with connection as in the statement of the
lemma. Then, given an affine object (S ↪→ T, δ) of the crystalline site corresponding to the divided power thickening
(B → A, δ), we set

F((S, T, δ)) = M ⊗D B

where D → B is any divided power map lifting idA : A → A. Note that pmB = 0 for some m ≥ 0 by the
definition of the crystalline site, so completion isn’t needed in the formula. To see that this is well defined suppose
that ϕ1, ϕ2 : D → B are two maps lifting idA. Then we have an isomorphism

Mφ1,φ2
: M ⊗D,ϕ1

B −→M ⊗D,ϕ2
B

which is B-linear and characterized by the (Taylor) formula

m⊗ 1 7−→
∑

E=(ei)

(∏
(∇ϑi)

ei
)

(m)⊗
∏

δei(hi)

where the sum is over all multi-indices E with finite support. The notation here is: P = Zp[{xi}i∈I ], ϑi = ∂/∂xi
and hi = ϕ2(xi) − ϕ1(xi). Since hi ∈ Ker(B → A) it makes sense to apply the divided powers δe to hi. The sum
converges precisely because the connection is topologically quasi-nilpotent (this can be taken as the definition). For
three maps ϕ1, ϕ2, ϕ3 : D → B lifting idA, the resulting isomorphisms satisfy the cocycle condition

Mφ2,φ3 ◦Mφ1,φ2 = Mφ1,φ3

by the flatness of∇. Hence, the above recipe defines a sheaf on (S/Σ)cris. �

Remark 2.9. Lemma 2.8 remains valid if we replace the polynomial algebra P appearing in Notation 2.1 with any
smooth Zp-algebra P equipped with a surjection to A (and D with the corresponding p-adically completed divided
power envelope). The only non-obvious point is to find a replacement for the Taylor series appearing in the formula
for Mφ1,φ2 in the proof of Lemma 2.8. However, note first that the Taylor series makes sense as soon as there is
a polynomial algebra F and an étale map F → P . Moreover, a “change of variables” computation shows that the
resulting map is independent of choice of étale chart F → P . The general case then follows by Zariski glueing.

We use Lemma 2.8 to show that crystals on (S/Σ)cris are determined by their restriction to the special fibre.

Corollary 2.10. Reduction modulo p gives an equivalence between categories of crystals of quasi-coherent modules
over the structure sheaves of (S/Σ)cris and (S ⊗Σ Spec(Fp)/Σ)cris

Proof. This follows from Lemma 2.8 by identifying, for any e ≥ N , the divided power envelopes of P/pe → A and
P/pe → A→ A/p (by [Ber74, Proposition I.2.8.2]). �

2.11. The main theorem in the affine case. The goal of this section is to prove the following theorem.

Theorem 2.12. Suppose that F corresponds to a pair (M,∇) as in Lemma 2.8. Then there is a natural quasi-
isomorphism

RΓ(S/Σ,F) ' (M →M ⊗∧D Ω1
D →M ⊗∧D Ω2

D → · · · ).
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For F and M as in Theorem 2.12, we use M(n) and M(•) instead of F(n) and F(•) from Notation 2.1. Each M(n)
is a D(n)-module with integrable connection as in (1.0.1), so it defines a de Rham complex

M(n)→M(n)⊗∧D(n) Ω1
D(n) →M(n)⊗∧D(n) Ω2

D(n) → · · · .

As n varies, these complexes fit together to define a bicomplex, which we call the de Rham complex of M(•). Our
proof of Theorem 2.12 hinges on the observation that both sides of the quasi-isomorphism occurring in the statement
of Theorem 2.12 appear as the 0-th rows and columns of the de Rham complex of M(•). Thus, the proof of Theorem
2.12 is reduced to certain acyclicity results for the de Rham complex of M(•), which we show next. The following
lemma shows that the “columns” of this bicomplex are all quasi-isomorphic.

Lemma 2.13. The map of complexes

M ⊗∧D Ω∗D →M(n)⊗∧D(n) Ω∗D(n)

induced by any of the maps D → D(n) is a quasi-isomorphism.

Proof. This is the “naive” poincare lemma. More precisely, each natural map D → D(n) defines an isomorphism of
D(n)-modules M(n) ' M ⊗∧D D(n) compatible with ∇ by the crystalline nature of F . Thus, there is a filtration of
M(n)⊗∧D(n) Ω∗D(n) whose graded pieces are M ⊗∧D ΩiD ⊗∧D Ω∗D(n)/D. Thus it suffices to show the natural map

D →
(
D(n)→ Ω1

D(n)/D → Ω2
D(n)/D → · · ·

)
is a quasi-isomorphism. This can be checked explicitly as D(n) is a divided power polynomial algebra over D (see
[Ber74, Lemma V.2.1.2]). �

Next, we identify the “rows” of the de Rham complex of M(•).

Lemma 2.14. The complex

M ⊗∧D ΩiD →M(1)⊗∧D(1) ΩiD(1) →M(2)⊗∧D(2) ΩiD(2) · · ·

computes RΓ(S/Σ,F ⊗OS/Σ
ΩiS/Σ).

Proof. By Lemma 2.7, we have

M ⊗∧D ΩiD ' lim
e≥N

(
M/pe ⊗D/peD ΩiD/peD

)
' lim
e≥N

((
F ⊗OS/Σ

ΩiS/Σ
)
((S,Spec(D/pe), δ))

)
,

and similarly for the terms over D(n). The claim now follows from Lemma 2.4, the fact that ΩiS/Σ is quasi-coherent,
and the fact that the transition mapsM/pe+1M⊗D/pe+1DΩiD/pe+1D →M/peM⊗D/peDΩiD/peD are surjective. �

To finish the proof of Theorem 2.12, we need an acyclicity result about the “rows” of the de Rham complex of M(•).
First, we handle the case M = D, i.e., when F = OS/Σ.

Lemma 2.15. The complex
Ω1
D → Ω1

D(1) → Ω1
D(2) → · · ·

is homotopic to zero as a D(•)-cosimplicial module.

Proof. This complex is equal to the base change of the cosimplicial module

M∗ =
(
Ω1
P → Ω1

P⊗P → Ω1
P⊗P⊗P → · · ·

)
via the cosimplicial ring map P⊗n+1 → D(n). Hence it suffices to show that the cosimplicial module M∗ is homo-
topic to zero. Let P = Zp[{xi}i∈I ]. Then P⊗n+1 is the polynomial algebra on the elements

xi(e) = 1⊗ · · · ⊗ xi ⊗ · · · ⊗ 1

with xi in the eth slot. The modules of the complex are free on the generators dxi(e). Note that if f : [n] → [m] is a
map then we see that

M∗(f)(dxi(e)) = dxi(f(e))

Hence we see that M∗ is a direct sum of copies of Example 2.16 indexed by I , and we win. �
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Example 2.16. Suppose that A∗ is any cosimplicial ring. Consider the cosimplicial module M∗ defined by the rule

Mn =
⊕

i=0,...,n
Anei

For a map f : [n] → [m] define M∗(f) : Mn → Mm to be the unique A∗(f)-linear map which maps ei to ef(i). We
claim the identity on M∗ is homotopic to 0. Namely, a homotopy is given by a map of cosimplicial modules

h : M∗ −→ Hom(∆[1],M∗)

where ∆[1] denote the simplicial set whose set of n-simplices is Mor([n], [1]), see [Mey90]. Let αnj : [n] → [1] be
defined by αnj (i) = 0⇔ i < j. Then we define h in degree n by the rule

hn(ei)(α
n
j ) =

{
ei if i < j
0 else

We first check h is a morphism of cosimplicial modules. Namely, for f : [n]→ [m] we will show that

(2.16.1) hm ◦M∗(f) = Hom(∆[1],M∗)(f) ◦ hn
This is equivalent to saying that the left hand side of (2.16.1) evaluted at ei is given by

h(ef(i))(α
m
j ) =

{
ef(i) if f(i) < j

0 else

Note that αnj ◦ f = αmj′ where 0 ≤ j′ ≤ n is such that f(a) < j if and only if a < j′. Thus the right hand side of
(2.16.1) evaluted at ei is given by

M∗(f)(h(ei)(α
m
j ◦ f) = M∗(f)(h(ei)(α

n
j′)) =

{
ef(i) if i < j′

0 else

It follows from our description of j′ that the two answers are equal. Hence h is a map of cosimplicial modules. Let
0 : ∆[0] → ∆[1] and 1 : ∆[0] → ∆[1] be the obvious maps, and denote ev0, ev1 : Hom(∆[1],M∗) → M∗ the
corresponding evaluation maps. The reader verifies readily that the the compositions

ev0 ◦ h, ev1 ◦ h : M∗ −→M∗

are 0 and 1 respectively, whence h is the desired homotopy between 0 and 1.

We now extend Lemma 2.15 to allow non-trivial coefficients.

Lemma 2.17. For all i > 0 cosimplicial module

M ⊗∧D ΩiD →M(1)⊗∧D(1) ΩiD(1) →M(2)⊗∧D(2) ΩiD(2) · · ·
is homotopy equivalent to zero.

Proof. The cosimplicial D(•)-module above is a (termwise) completed tensor product of the cosimplicial D(•)-
modules M(•) and ΩiD(•). Lemma 2.15 shows that Ω1

D(•) is homotopy equivalent to zero as a cosimplicial D(•)-
module. The claim now follows as the following three operations preserve the property of being homotopy equivalent
to 0 for cosimplicial D(•)-modules: termwise application of ∧i, tensoring with another cosimplicial D(•)-module,
and termwise p-adic completion. �

The material above gives a rather pleasing proof that crystalline cohomology is computed by the de Rham complex:

Proof of Theorem 2.12. We look at the first quadrant double complex M•,• with terms

Mn,m = M(n)⊗∧D(n) ΩmD(n).

The horizontal differentials are given determined by the Čech-Alexander complex, while the vertical ones are given
by the de Rham complex. By Lemma 2.13, each column complex Mn,• is quasi-isomorphic to de Rham complex
M ⊗∧D Ω•D. Hence Hm(Mn,•) is independent of n and the differentials are

Hm(M0,•)
0−→ Hm(M1,•)

1−→ Hm(M2,•)
0−→ Hm(M3,•)

1−→ · · ·
We conclude that Tot(M•,•) computes the cohomology of the de Rham complex M ⊗∧D Ω∗D by the first spectral
sequence associated to the double complex. On the other hand, Lemma 2.4 shows that the “row” complex M•,0

computes the cohomology of F . Hence if we can show that each M•,m for m > 0 is acyclic, then we’re done by the
second spectral sequence. The desired vanishing now follows from Lemma 2.17. �
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Remark 2.18. Lemma 2.8 and Theorem 2.12 remain valid when D is taken to be the p-adic completion of the divided
power envelope of a surjection P → A with P any smooth Zp-algebra. For Lemma 2.8, this was discussed in Remark
2.9. Thus, the only non-obvious point now is whether an analogue of Lemma 2.15 is valid. However, at least Zariski
locally on Spec(P ), there is an étale map F → P with F a polynomial Zp-algebra. Thus, the cotangent bundle of
P (and hence that of D) is obtained by base change from that of F , so the required claim follows from the proof of
Lemma 2.15. This shows that the assertion of Theorem 2.12 is true Zariski locally on S, and hence globally by the
Čech spectral sequence for a suitable affine cover.

Remark 2.19. Let Σe = Spec(Z/pe), and let S be an affine Σe-scheme. One can define the crystalline site (S/Σe)cris
and crystals in the obvious way. The arguments given in this section work mutatis mutandis to show that the cohomol-
ogy RΓ(S/Σe,F) of a crystal F of quasi-coherent OS/Σe

-modules is computed by the de Rham complex

Me →Me ⊗D/pe Ω1
D/pe →Me ⊗D/pe Ω2

D/pe · · · ,

where D/pe is as in Notation 2.1, and Me = F((S,Spec(D/pe), δ)) is the D/pe-module that is the value of the
crystal F on Spec(D/pe), equipped with the integrable connection as in (1.0.1).

3. GLOBAL ANALOGUES

Our goal in this section is to prove a global analogue (Theorem 3.6) of the results of §2, and deduce some geometric
consequences (Corollaries 3.8 and 3.10). In order to do so, we first conceptualize the work done in §2 as a vanishing
result on arbitrary schemes in Theorem 3.2; this formulation gives us direct access to certain globally defined maps,
which are then used to effortlessly reduce global statements to local ones.

3.1. A vanishing statement. Our vanishing result is formulated terms of the “change of topology” map relating the
crystalline site to the Zariski site, whose construction we recall first. Let f : S → Σ be a map with p locally nilpotent
on S. There is a morphism of ringed topoi

uS/Σ :
(

Shv((S/Σ)cris),OS/Σ
)
→
(

Shv(Szar), f
−1OΣ

)
characterised by the formula

u∗S/Σ(F )((U, T, δ)) = F (U)

for any sheaf F ∈ Shv(Szar) and object (U, T, δ) ∈ (S/Σ)cris (see [Ber74, §III.3.2]). The associated pushforward
RuS/Σ : D(OS/Σ)→ D(f−1OΣ) is a localised version of crystalline cohomology, i.e., for any U ∈ Szar, we have

RΓ(U,RuS/Σ(F )) ' RΓ(U/Σ, F );

see [Ber74, Corollary III.3.2.4] for the corresponding statement at the level of cohomology groups. With this language,
our main result is the following somewhat surprising theorem.

Theorem 3.2. Let S be a scheme over Σ such that p is locally nilpotent on S. Let F be a crystal in quasi-coherent
OS/Σ-modules. The truncation map of complexes

(F → F ⊗OS/Σ
Ω1
S/Σ → F ⊗OS/Σ

Ω2
S/Σ → · · · ) −→ F [0],

while not a quasi-isomorphism, becomes a quasi-isomorphism after applying RuS/Σ. In fact, for any i > 0, we have

RuS/Σ(F ⊗OS/Σ
ΩiS/Σ) = 0.

Proof. This follows from the vanishing of the cohomology of the sheaves F ⊗OS/Σ
ΩiS/Σ over affines for i > 0, see

Lemmas 2.14 and 2.17. �

Remark 3.3. The proof of Theorem 3.2 shows that the conclusion RuS/Σ(F ⊗OS
ΩiS/Σ) = 0 for i > 0 is true for

any quasi-coherent OS/Σ-module which, locally on S, satisfies the R1 lime≥N vanishing condition of Lemma 2.4.
This applies to the following non-crystals: ΩiS/Σ for all i, and any OS/Σ-module of the form u∗S/ΣF , where F is an
OS-module on Szar. In particular, it applies to the sheaf OS on (S/Σ)cris defined by OS((U, T, δ)) = Γ(U,OU ).
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3.4. Global results. We now explain how to deduce global consequences from Theorem 3.2, such as the identification
of crystalline cohomology with de Rham cohomology. First, we establish notation used in this section.

Notation 3.5. Let S be a Σ-scheme such that pN = 0 on S. Assume there is a closed immersion i : S → X of Σ-
schemes withX finitely presented and smooth over Σ. For each e ≥ N , setDe to be the divided power hull of the map
OX/pe → OS . EachDe is supported on S, and letting e vary defines a p-adic formal scheme T with underlying space
S and structure sheaf lime≥N De; there is an equivalence between the category of quasi-coherentOT -modules and the
category of compatible systems of De-modules on S (with compatibilities as in Lemma 2.7), and we only use T as
a tool for talking about such compatible systems. The sheaves De define (honest) subschemes Te = Spec(De) ⊂ T
containing S. The quasi-compactness of S then gives objects (S, Te, δ) of (S/Σ)cris. Following our conventions, let
ΩiTe

be the pullback of the corresponding sheaf on X , and set ΩiT to be the result of glueing the ΩiTe
.

Let S, Te, and T be as in Notation 3.5, and let F be a crystal in quasi-coherent OS/Σ-modules. Restricting F
to (S, Te, δ) defines quasi-coherent OTe -modules FTe for e ≥ N , and hence a quasi-coherent OT -module M by
glueing. The integrable connections FTe

→ FTe
⊗OTe

Ω1
Te

coming from (1.0.1) glue to give an integrable connection

∇ :M−→M⊗OT
Ω1
T ,

which then defines a de Rham complex on T .

Theorem 3.6. Let S → X , T , F , andM be as in Notation 3.5 and the following discussion. The hypercohomology
on T of the complex

M→M⊗OT
Ω1
T →M⊗OT

Ω2
T → · · ·

computes RΓ(S/Σ,F).

Proof. First, we construct the map. By basic formal scheme theory, we have a formula

R lim
e≥N

RΓ((S, Te, δ),F ⊗OS/Σ
ΩiS/Σ) = R lim

e≥N
RΓ(Te,FTe ⊗OTe

ΩiTe
)

= RΓ(T,R lim
e≥N

(
FTe
⊗OTe

ΩiTe

)
)

= RΓ(T,M⊗OT
ΩiT )

for each i ≥ 0. Here the first equality follows from the definition of cohomology in the crystalline site; the second
equality follows from the identification of the (derived functors of the) composite functors

Ab(C)N Γ(T,−)→ AbN lim→ Ab and Ab(C)N lim→ Ab(C) Γ(T,−)→ Ab;

the last equality follows from the vanishing of

Rj lim
e

(
Fe ⊗OTe

ΩiTe

)
for all j > 0, which follows from the vanishing of higher quasi-coherent sheaf cohomology for affines. Using this
formula, and applying

RΓ(∗,−) −→ R lim
e≥N

RΓ((S, Te, δ),−)

to the morphism in Theorem 3.2, gives the desired map

RΓ(S/Σ,F)→ RΓ(T,M→M⊗OT
Ω1
T →M⊗OT

Ω2
T → · · · ).

Moreover, this map is an isomorphism for affine S by Theorem 2.12 (see Remark 2.18) and functorial in S. The Čech
spectral sequence for an affine open cover then immediately implies the claim for X is quasi-compact and separated
(as the E2 terms involve cohomology of affines). For an X only assumed to be quasi-compact compact and quasi-
separated, another application of the spectral sequence for an affine open cover finishes the proof (as the E2 terms
involve cohomology on quasi-compact and separated schemes). �

Remark 3.7. The arguments that go into proving Theorem 3.6 also apply mutatis mutandis to reprove Grothendieck’s
theorem from [Gro68]: if S is a variety over C, and S ⊂ X is a closed immersion into a smooth variety, and T
denotes the formal completion of X along S, then the cohomology of the structure sheaf on the infinitesimal site
(S/Spec(C))inf is computed by the hypercohomology on S of the de Rham complex of T (defined suitably). The
only essential change is that the proof of Lemma 2.13, which relies on the vanishing of the higher de Rham cohomology
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of a divided power polynomial algebra, must be replaced by its formal analogue, i.e., the vanishing of the higher de
Rham cohomology of a formal power series ring in characteristic 0.

In certain situations, Theorem 3.6 can be algebraised to get a statement about classical schemes. For example:

Corollary 3.8. Let f : X → Σ be a proper smooth morphism, and set S = X ×Σ Spec(Fp). Then the hypercoho-
mology of the de Rham complex

OX → Ω1
X/Σ → Ω2

X/Σ → · · · ,
computes RΓ(S/Σ,OS/Σ). In particular, the de Rham cohomology of X → Σ is determined functorially by the fibre
S ↪→ X of f , and thus admits a Frobenius action.

Proof. This follows from Theorem 3.6 and the formal functions theorem as T is just the p-adic completion of X: the
ideal ker(OX → OS) = (p) ⊂ OX already has specified divided powers, so OX/pe = De for any e. �

Remark 3.9. One can upgrade Corollary 3.8 to a statement that incorporates coefficients as follows. There is an equiv-
alence of categories between crystals in quasi-coherent sheaves on (S/Σ) and quasi-coherent sheaves on X equipped
with a flat connection relative to Σ (see Lemma 2.8 and Corollary 2.10). This equivalence respects cohomology, i.e.,
the crystalline cohomology of a crystal in quasi-coherent sheaves on S/Σ is computed by the de Rham cohomology
of the corresponding quasi-coherent sheaf with flat connection on X .

We conclude with a brief discussion of the base change behaviour. For an Z/pN -scheme S as above, a natural question
is whether crystalline cohomology relative to Σe = Spec(Z/pe) (for e ≥ N ) can be recovered from crystalline
cohomology relative to Σ via (derived) base change along Zp → Z/pe. In general, the answer is “no,” see Example
3.11. However, under suitable flatness conditions, the answer is “yes”:

Corollary 3.10. Let S → X,T and F be as in Notation 3.5 and the following discussion. Assume that for each
e ≥ N , the OTe -module FTe is flat over Z/pe. Then for each e ≥ N , we have a base change isomorphism

Z/pe ⊗LZ RΓ(S/Σ,F) ' RΓ(S/Σe,F|S/Σe
),

where F|S/Σe
denotes the restriction of F along (S/Σe)cris ⊂ (S/Σ)cris.

Proof. By Theorem 3.6, we have

RΓ(S/Σ,F) ' RΓ(T,M→M⊗OT
Ω1
T →M⊗OT

Ω2
T → · · · ).

Note that since each ΩiT is flat over OT , the tensor productsM⊗OT
ΩiT appearing in the de Rham complex above

are automatically derived tensor products. Applying Z/pe ⊗LZ − (and observing that this operation commutes with
applyingRΓ(T,−)) then shows that Z/pe⊗LZRΓ(S/Σ,F) is computed as the hypercohomology on T of the complex

K :=
(
Z/pe ⊗LZM→ Z/pe ⊗LZM⊗OT

Ω1
T → Z/pe ⊗LZM⊗OT

Ω2
T → · · ·

)
.

The flatness assumption on F implies thatM is flat over Zp. Lemma 2.7 then shows that

Z/pe ⊗LZM' Z/pe ⊗ZM' FTe
,

and so
Z/pe ⊗LZM⊗OT

ΩiT ' FTe
⊗OTe

ΩiTe
.

In other words, the complex K of sheaves appearing above is identified with the de Rham complex of theOTe
-module

FTe
. The claim now follows from the modulo pe version of Theorem 3.6 (see also Remark 2.19). �

The hypotheses of Corollary 3.10 are satisfied, for example, when S is a flat local complete intersection over Z/pN ,
and F is a crystal in locally free quasi-coherent OS/Σ-modules; the smooth case is discussed in [Ber74, §V.3.5].
Moreover, there are extremely simple examples illustrating the sharpness of the lci assumption:

Example 3.11. Let S = Fp[x, y]/(x2, xy, y2). In [BO83, Appendix (A.2)], Berthelot-Ogus exhibit a non-zero p-
torsion class τ ∈ H0(S/Σ,OS/Σ) by constructing a non-zero p-torsion ∇-horizontal element of the p-adically com-
pleted divided power envelope of the natural surjection Zp[x, y]→ Fp[x, y]/(x2, xy, y2). Via the exact triangle

RΓ(S/Σ,OS/Σ)
p→ RΓ(S/Σ,OS/Σ)→ RΓ(S/Σ,OS/Σ)⊗LZ Z/p,

τ defines a non-zero class inH−1
(
RΓ(S/Σ,OS/Σ)⊗LZZ/p

)
. In particular,RΓ(S/Σ,OS/Σ)⊗LZZ/p has cohomology

in negative degrees, so it cannot be equivalent to RΓ(S/Σ1,OS/Σ1
) (or the cohomology of any sheaf on any site).
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