BILINEAR PAIRINGS

RANKEYA DATTA

Let R be a domain, K = Frac(R), E, F finitely generated free R modules of the same rank, say n, and $S = R - \{0\}$. Throughout these notes we will work in this setup, even if the definitions that follow can be given in greater generality.

Definition 1: An R- bilinear pairing $H : E \times F \rightarrow R$ is an R- bilinear map.

Note that for all $e \in E$, we get an R- linear map $H_e : F \to R$, where $H_e = H(e, \cdot)$. So, H_e is an element of the dual module $Hom_R(F, R)$. By bilinearity of H, we actually get a homomorphism of R modules $\overline{H} : E \to Hom_R(F, R)$.

Definition 2: A bilinear pairing $H : E \times F \to R$ is **perfect** if $\overline{H} : E \to Hom_R(F, R)$ is an isomorphism of R modules.

Definition 3: A bilinear pairing $H : E \times F \to R$ is **nondegenerate** if $\overline{H} : E \to Hom_R(F, R)$ is injective.

In particular, a perfect pairing is nondegenerate.

Definiton 4: Let $e_1, ..., e_n, f_1, ..., f_n$ be bases for E, F respectively. Then, given a bilinear pairing $H : E \times F \to R$, the **matrix** of H, denoted M_H is defined as $M_H = (H(e_i, f_j))$ for $1 \le i, j \le n$.

Result 5: If $f_1^*, ..., f_n^*$ denotes the dual basis of $Hom_R(F, R)$, dual to $f_1, ..., f_n$, then M_H is the matrix of the linear map of free modules $\overline{H} : E \to Hom_R(F, R)$.

Proof: Omitted. \Box

Result 6: Let $S = R - \{0\}$. Then any bilinear pairing $H : E \times F \to R$ gives a bilinear pairing $S^{-1}H : S^{-1}E \times S^{-1}F \to K$ of K vector spaces.

Proof: For $(\frac{e}{s}, \frac{f}{t}) \in S^{-1}E \times S^{-1}F$, define $S^{-1}H(\frac{e}{s}, \frac{f}{t}) = \frac{H(e, f)}{st}$. Then it is easily verified that $S^{-1}H$ is a bilinear map. \Box

Note that $\frac{e_1}{1}, ..., \frac{e_n}{1}$ is a K basis for $S^{-1}E$, and similarly $\frac{f_1}{1}, ..., \frac{f_n}{1}$ is a K basis for $S^{-1}F$. Since R is domain, R can be naturally identified as a subring of K. Under this identification,

RANKEYA DATTA

it easily seen that $M_H = M_{S^{-1}H}$. Since S^-H is a bilinear pairing of vector spaces, hence a perfect pairing is the same thing as a nondegenerate pairing, because any injective map of finite dimensional vector spaces of the same dimension is surjective.

Result 7: If $S^{-1}H$ is perfect/ nondegenerate, then M_H has maximal rank n and H is nondegenerate.

Proof: If $S^{-1}H$ is nondegenerate, then $\overline{S^{-1}H} : S^{-1}E \to \text{Hom}_{K}(S^{-1}F, K)$ is an isomorphism. By Result 5, $M_{S^{-1}H}$ has maximal rank. Since $M_H = M_{S^{-1}H}$, it follows that M_H must have maximal rank over R. Note that $\overline{S^{-1}H} : S^{-1}E \to \text{Hom}_{K}(S^{-1}F, K)$ is just the localization of $\overline{H} : E \to \text{Hom}_{R}(F, R)$. If the latter map were not injective, then $\overline{S^{-1}H} : S^{-1}E \to \text{Hom}_{K}(S^{-1}F, K)$ would also not be injective, contradicting the fact that this map is an isomorphism. So, $\overline{H} : E \to \text{Hom}_{R}(F, R)$ is injective, and H is nondegenerate.

Result 8: If H is nondegenerate, then $S^{-1}H$ is perfect/ nondegenerate.

So, we obtain the following result:

H is nondegenerate if and only if $S^{-1}H$ is perfect/ nondegenerate.