EXERCISE 1 FROM SECTION ON PROJECTIVE SPACES

RANKEYA DATTA

Exercise 1: Prove that an axiomatic projective plane has the same number of points as
lines.

Proof: Apart from the two axioms of an axiomatic projective plane given in the section
on projective planes in the wiki, we will assume the following additional axioms:

(3) A projective plane has at least 3 non-collinear points.

(4) Any line in the projective plane passes through at least 3 distinct points.

We will denote our projective plane by P, and define
L := {lines in P}
' := {points in P}

We divide the proof into 2 cases:
Case 1: L, I" are both infinite sets.

Proof of case 1: Let Az, Ar denote the diagonals of £ x £, ' X T' respectively. We need
to show that £ and I' have the same cardinality.

It is easy to see that
L] = [Lx L] = [Lx L—=Ar|; [T| =T xT| = | xT —Ar|.

By axioms (1), (2) of the axiomatic projective plane we have natural maps

L X L—Apr — T given by mi(li, 1) =1 Nly;

1 : ' xI'—Ar — L given by m(p, q) = Pq, where pq is the unique line passing through
p and q.

We will show that 7t1,7; are surjective.

If p € T, then by axiome (3), and the fact that I is infinite, 3 distinct points q and v
such that p, g, are not collinear. Then clearly, pq # pr and m;(pq,pr) = p. This shows
that 717 is surjective.

Let 1 € £. Then by axiom (4), 1 has at least 2 distinct points p, q on it. Again, clearly
m(p,q) =pq = 1. So, m, is surjective.

Now, m; surjective = || < [Lx L—Ap| =|L]; mp surjective = |L| < [T xT'—Ap| =1T.
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Thus, |£] = |T'.

Note that if £ is infinite then by axioms (1) and (4), I’ must be infinite and we reduce to
case 1. Here axiom (4) is used in the sense that it guarantees that every line has a point on it.

If T is infinite, suppose L is finite. By axioms (3) and (1), every point lies on some line.
So, 31 € £ such that 1 has infinitely many points on it. By axioms (3) again, 3 p € I such
that p ¢ L. But then for any q € I" such that q € 1, we have a line pq which is distinct
from 1, and by axiom (2), if q,q’ € T such that q # q’ and q,q’ € 1, then pq = pq’. So,
this gives us infinitely many distinct lines through p intersecting 1. Thus, £ is infinite, a
contradiction. So, £ must have been infinite to begin with, and we again reduce to case 1.

Case 2: L, I" are both finite sets.
We will do this proof in parts.

Claim 1: Let p € . If £, denotes the set of all lines passing through p, then [£,| is
independent of our choice of p.

Proof of Claim 1: Let p,q € T' be two distinct points. It suffices to show that |L£,| =
|Lq|. By axiom (1), 3! line pq passing through p, and q. Now, by axiom (4), 3 a point v
on pq distinct from p and q. Let 1 € £, —{pq}, m € L, —{pq}. By axiom (2), L and m are
distinct. By axiom (2), LNm is a single point which is clearly not on pq. Let I'p_5g denote
the set of points of P not on pq. Then, we get a map

¢ : (Lp —{pq}) x (Lr —{pq}) — Tp—pq given by @(l,m) =1Nm.

Note that Tp_pq # () by axiom (3). The map ¢ is a bijection with inverse @)

(»Cp _{ﬁ}) X (»Cr —{W})a (97](5) = (1975)@)

: Fp,pfq —

Thus, ([£p] —1)(I£:] — 1) = [Tp_pgl. One can similarly show that ([Lq| —1)([£:[ — 1) =
ITp—pql. This proves that [L,| = [Lq].

Let us denote the number of lines through any point, which is a constant, by c.

Claim 2: Let 1 € £. Let I} denote the set of points in P passing through 1. Then || is
independent of 1, and [l =c foralll € L.

Proof of claim 2: Let p be a point not on 1. Again, such a p exists by axiom (3). In
particular 1 ¢ £,,. Define a map x : £, — T, where x(m) =1nm.

Then x has inverse x ' : [} — Ly, where x '(s) =Ps. So, IN| = |Lp| = ¢ by claim 1.
Since 1 was arbitrary, this proves claim 2.
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We are not in a position to prove Case 2. We will basically count the number of points
and the number of lines and show that these two numbers agree.

Let p,q € T be two distinct points. Note that I' = Tp_pgq U I5g, where Tp_pgq N g = 0.
Now by claim 1, [Tp_5gl = (c—1)(c—1) and by claim 2, |lg| = c. So, || = (c—1)(c—1)+c =
clc—1)+1.

On the other hand, let 1 € £. Then £ = (qun(ﬁq —{l})) LI{t (I use the disjoint

union symbol just to emphasize that the sets are mutually disjoint). By claim 2, [I}| = ¢
and by claim 1, [£q —{U}| = c — 1, for all q € I}. Thus, [£] =c(c—1)+1.



