EXERCISE 1 FROM SECTION ON PROJECTIVE SPACES

RANKEYA DATTA

Exercise 1: Prove that an axiomatic projective plane has the same number of points as lines.

Proof: Apart from the two axioms of an axiomatic projective plane given in the section on projective planes in the wiki, we will assume the following additional axioms:

(3) A projective plane has at least 3 non-collinear points.

(4) Any line in the projective plane passes through at least 3 distinct points.

We will denote our projective plane by \mathbb{P} , and define

 $\mathcal{L} := \{ \text{lines in } \mathbb{P} \}$ $\Gamma := \{ \text{points in } \mathbb{P} \}$

We divide the proof into 2 cases:

Case 1: \mathcal{L} , Γ are both infinite sets.

Proof of case 1: Let $\Delta_{\mathcal{L}}$, Δ_{Γ} denote the diagonals of $\mathcal{L} \times \mathcal{L}$, $\Gamma \times \Gamma$ respectively. We need to show that \mathcal{L} and Γ have the same cardinality.

It is easy to see that $|\mathcal{L}| = |\mathcal{L} \times \mathcal{L}| = |\mathcal{L} \times \mathcal{L} - \Delta_{\mathcal{L}}|; \ |\Gamma| = |\Gamma \times \Gamma| = |\Gamma \times \Gamma - \Delta_{\Gamma}|.$

By axioms (1), (2) of the axiomatic projective plane we have natural maps

 $\pi_1: \mathcal{L} \times \mathcal{L} - \Delta_{\mathcal{L}} \to \Gamma$ given by $\pi_1(\mathfrak{l}_1, \mathfrak{l}_2) = \mathfrak{l}_1 \cap \mathfrak{l}_2;$

 $\pi_2: \Gamma \times \Gamma - \Delta_{\Gamma} \to \mathcal{L}$ given by $\pi_2(p,q) = \overline{pq}$, where \overline{pq} is the unique line passing through p and q.

We will show that π_1, π_2 are surjective.

If $p \in \Gamma$, then by axiome (3), and the fact that Γ is infinite, \exists distinct points q and r such that p, q, r are not collinear. Then clearly, $\overline{pq} \neq \overline{pr}$ and $\pi_1(\overline{pq}, \overline{pr}) = p$. This shows that π_1 is surjective.

Let $l \in \mathcal{L}$. Then by axiom (4), l has at least 2 distinct points p, q on it. Again, clearly $\pi_2(p,q) = \overline{pq} = l$. So, π_2 is surjective.

Now, π_1 surjective $\Rightarrow |\Gamma| \le |\mathcal{L} \times \mathcal{L} - \Delta_{\mathcal{L}}| = |\mathcal{L}|; \pi_2$ surjective $\Rightarrow |\mathcal{L}| \le |\Gamma \times \Gamma - \Delta_{\Gamma}| = |\Gamma|.$

RANKEYA DATTA

Thus, $|\mathcal{L}| = |\Gamma|$.

Note that if \mathcal{L} is infinite then by axioms (1) and (4), Γ must be infinite and we reduce to case 1. Here axiom (4) is used in the sense that it guarantees that every line has a point on it.

If Γ is infinite, suppose \mathcal{L} is finite. By axioms (3) and (1), every point lies on some line. So, $\exists l \in \mathcal{L}$ such that l has infinitely many points on it. By axioms (3) again, $\exists p \in \Gamma$ such that $p \notin l$. But then for any $q \in \Gamma$ such that $q \in l$, we have a line \overline{pq} which is distinct from l, and by axiom (2), if $q, q' \in \Gamma$ such that $q \neq q'$ and $q, q' \in l$, then $\overline{pq} = \overline{pq'}$. So, this gives us infinitely many distinct lines through p intersecting l. Thus, \mathcal{L} is infinite, a contradiction. So, \mathcal{L} must have been infinite to begin with, and we again reduce to case 1.

Case 2: \mathcal{L} , Γ are both finite sets.

We will do this proof in parts.

Claim 1: Let $p \in \Gamma$. If \mathcal{L}_p denotes the set of all lines passing through p, then $|\mathcal{L}_p|$ is independent of our choice of **p**.

Proof of Claim 1: Let $\mathbf{p}, \mathbf{q} \in \Gamma$ be two distinct points. It suffices to show that $|\mathcal{L}_{\mathbf{p}}| =$ $|\mathcal{L}_q|$. By axiom (1), $\exists!$ line \overline{pq} passing through p, and q. Now, by axiom (4), \exists a point r on \overline{pq} distinct from p and q. Let $l \in \mathcal{L}_p - \{\overline{pq}\}, m \in \mathcal{L}_r - \{\overline{pq}\}$. By axiom (2), l and m are distinct. By axiom (2), $l \cap m$ is a single point which is clearly not on \overline{pq} . Let $\Gamma_{\mathbb{P}-\overline{pq}}$ denote the set of points of \mathbb{P} not on \overline{pq} . Then, we get a map

 $\varphi: (\mathcal{L}_p - \{\overline{pq}\}) \times (\mathcal{L}_r - \{\overline{pq}\}) \longrightarrow \Gamma_{\mathbb{P} - \overline{pq}}$ given by $\varphi(\mathfrak{l}, \mathfrak{m}) = \mathfrak{l} \cap \mathfrak{m}$.

Note that $\Gamma_{\mathbb{P}-\overline{pq}} \neq \emptyset$ by axiom (3). The map φ is a bijection with inverse $\varphi^{-1} : \Gamma_{\mathbb{P}-\overline{pq}} \longrightarrow$ $(\mathcal{L}_{p} - \{\overline{pq}\}) \times (\mathcal{L}_{r} - \{\overline{pq}\}), \ \varphi^{-1}(s) = (\overline{ps}, \overline{rs}).$

 $\mathrm{Thus},\ (|\mathcal{L}_p|-1)(|\mathcal{L}_r|-1)=|\Gamma_{\mathbb{P}-\overline{pq}}|. \ \mathrm{One\ can\ similarly\ show\ that}\ (|\mathcal{L}_q|-1)(|\mathcal{L}_r|-1)=|\Gamma_{\mathbb{P}-\overline{pq}}|.$ $|\Gamma_{\mathbb{P}-\overline{pq}}|$. This proves that $|\mathcal{L}_p| = |\mathcal{L}_q|$.

Let us denote the number of lines through any point, which is a constant, by c.

Claim 2: Let $l \in \mathcal{L}$. Let Γ_l denote the set of points in \mathbb{P} passing through l. Then $|\Gamma_l|$ is independent of l, and $|\Gamma_l| = c$ for all $l \in \mathcal{L}$.

Proof of claim 2: Let p be a point not on l. Again, such a p exists by axiom (3). In $\begin{array}{l} \mathrm{particular} \ l \notin \mathcal{L}_p. \ \mathrm{Define} \ \mathrm{a} \ \mathrm{map} \ \chi: \mathcal{L}_p \longrightarrow \Gamma_l, \ \mathrm{where} \ \chi(\mathfrak{m}) = l \cap \mathfrak{m}. \\ \mathrm{Then} \ \chi \ \mathrm{has} \ \mathrm{inverse} \ \chi^{-1}: \Gamma_l \longrightarrow \mathcal{L}_p, \ \mathrm{where} \ \chi^{-1}(s) = \overline{\mathrm{ps}}. \ \mathrm{So}, \ |\Gamma_l| = |\mathcal{L}_p| = c \ \mathrm{by} \ \mathrm{claim} \ 1. \end{array}$

Since l was arbitrary, this proves claim 2.

We are not in a position to prove Case 2. We will basically count the number of points and the number of lines and show that these two numbers agree.

Let $p, q \in \Gamma$ be two distinct points. Note that $\Gamma = \Gamma_{\mathbb{P}-\overline{pq}} \cup \Gamma_{\overline{pq}}$, where $\Gamma_{\mathbb{P}-\overline{pq}} \cap \Gamma_{\overline{pq}} = \emptyset$. Now by claim 1, $|\Gamma_{\mathbb{P}-\overline{pq}}| = (c-1)(c-1)$ and by claim 2, $|\Gamma_{\overline{pq}}| = c$. So, $|\Gamma| = (c-1)(c-1)+c = c(c-1)+1$.

On the other hand, let $l \in \mathcal{L}$. Then $\mathcal{L} = \left(\coprod_{q \in \Gamma_l} (\mathcal{L}_q - \{l\}) \right) \coprod \{l\}$ (I use the disjoint union symbol just to emphasize that the sets are mutually disjoint). By claim 2, $|\Gamma_l| = c$ and by claim 1, $|\mathcal{L}_q - \{l\}| = c - 1$, for all $q \in \Gamma_l$. Thus, $|\mathcal{L}| = c(c - 1) + 1$.