
EXERCISE 1 FROM SECTION ON PROJECTIVE SPACES

RANKEYA DATTA

Exercise 1: Prove that an axiomatic projective plane has the same number of points as
lines.

Proof : Apart from the two axioms of an axiomatic projective plane given in the section
on projective planes in the wiki, we will assume the following additional axioms:

(3) A projective plane has at least 3 non-collinear points.
(4) Any line in the projective plane passes through at least 3 distinct points.

We will denote our projective plane by P, and define
L := {lines in P}
Γ := {points in P}

We divide the proof into 2 cases:

Case 1: L, Γ are both infinite sets.

Proof of case 1: Let ∆L, ∆Γ denote the diagonals of L×L, Γ × Γ respectively. We need
to show that L and Γ have the same cardinality.

It is easy to see that
|L| = |L × L| = |L × L− ∆L|; |Γ | = |Γ × Γ | = |Γ × Γ − ∆Γ |.

By axioms (1), (2) of the axiomatic projective plane we have natural maps
π1 : L × L− ∆L → Γ given by π1(l1, l2) = l1 ∩ l2;
π2 : Γ × Γ −∆Γ → L given by π2(p, q) = pq, where pq is the unique line passing through

p and q.

We will show that π1,π2 are surjective.
If p ∈ Γ , then by axiome (3), and the fact that Γ is infinite, ∃ distinct points q and r

such that p, q, r are not collinear. Then clearly, pq 6= pr and π1(pq, pr) = p. This shows
that π1 is surjective.

Let l ∈ L. Then by axiom (4), l has at least 2 distinct points p, q on it. Again, clearly
π2(p, q) = pq = l. So, π2 is surjective.

Now, π1 surjective⇒ |Γ | ≤ |L×L−∆L| = |L|; π2 surjective⇒ |L| ≤ |Γ × Γ −∆Γ | = |Γ |.
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Thus, |L| = |Γ |.

Note that if L is infinite then by axioms (1) and (4), Γ must be infinite and we reduce to
case 1. Here axiom (4) is used in the sense that it guarantees that every line has a point on it.

If Γ is infinite, suppose L is finite. By axioms (3) and (1), every point lies on some line.
So, ∃ l ∈ L such that l has infinitely many points on it. By axioms (3) again, ∃ p ∈ Γ such
that p /∈ l. But then for any q ∈ Γ such that q ∈ l, we have a line pq which is distinct
from l, and by axiom (2), if q, q ′ ∈ Γ such that q 6= q ′ and q, q ′ ∈ l, then pq = pq ′. So,
this gives us infinitely many distinct lines through p intersecting l. Thus, L is infinite, a
contradiction. So, L must have been infinite to begin with, and we again reduce to case 1.

Case 2: L, Γ are both finite sets.

We will do this proof in parts.

Claim 1: Let p ∈ Γ . If Lp denotes the set of all lines passing through p, then |Lp| is
independent of our choice of p.

Proof of Claim 1: Let p, q ∈ Γ be two distinct points. It suffices to show that |Lp| =
|Lq|. By axiom (1), ∃! line pq passing through p, and q. Now, by axiom (4), ∃ a point r
on pq distinct from p and q. Let l ∈ Lp− {pq}, m ∈ Lr− {pq}. By axiom (2), l and m are
distinct. By axiom (2), l∩m is a single point which is clearly not on pq. Let ΓP−pq denote
the set of points of P not on pq. Then, we get a map
ϕ : (Lp − {pq})× (Lr − {pq}) −→ ΓP−pq given by ϕ(l,m) = l ∩m.

Note that ΓP−pq 6= ∅ by axiom (3). The map ϕ is a bijection with inverse ϕ−1 : ΓP−pq −→
(Lp − {pq})× (Lr − {pq}), ϕ−1(s) = (ps, rs).

Thus, (|Lp| − 1)(|Lr| − 1) = |ΓP−pq|. One can similarly show that (|Lq| − 1)(|Lr| − 1) =
|ΓP−pq|. This proves that |Lp| = |Lq|.

Let us denote the number of lines through any point, which is a constant, by c.

Claim 2: Let l ∈ L. Let Γl denote the set of points in P passing through l. Then |Γl| is
independent of l, and |Γl| = c for all l ∈ L.

Proof of claim 2: Let p be a point not on l. Again, such a p exists by axiom (3). In
particular l /∈ Lp. Define a map χ : Lp −→ Γl, where χ(m) = l ∩m.

Then χ has inverse χ−1 : Γl −→ Lp, where χ−1(s) = ps. So, |Γl| = |Lp| = c by claim 1.
Since l was arbitrary, this proves claim 2.
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We are not in a position to prove Case 2. We will basically count the number of points
and the number of lines and show that these two numbers agree.

Let p, q ∈ Γ be two distinct points. Note that Γ = ΓP−pq ∪ Γpq, where ΓP−pq ∩ Γpq = ∅.
Now by claim 1, |ΓP−pq| = (c−1)(c−1) and by claim 2, |Γpq| = c. So, |Γ | = (c−1)(c−1)+c =
c(c− 1) + 1.

On the other hand, let l ∈ L. Then L =
(∐

q∈Γl(Lq − {l})
)∐

{l} (I use the disjoint
union symbol just to emphasize that the sets are mutually disjoint). By claim 2, |Γl| = c
and by claim 1, |Lq − {l}| = c− 1, for all q ∈ Γl. Thus, |L| = c(c− 1) + 1.


