EXERCISE 37

RANKEYA DATTA

Let $R = \mathbb{F}_2[S,T]$. Let X be the Fermat hypersurface. Let $G_0, ..., G_5$ be homogeneous polynomials of degree d such that $gcd(G_0, ..., G_5) = 1$, and $G_0^5 + ... + G_5^5 = 0$. Let $\varphi = (G_0, ..., G_5) : \mathbb{P}^1 \longrightarrow \mathbb{P}^5$.

We define,

 $\Omega_X(\phi) := \ker(\mathbb{R}^{\oplus 6}(-d) \xrightarrow{G_0, \dots, G_5} \mathbb{R}). \text{ As a module, } \ker(\mathbb{R}^{\oplus 6}(-d) \xrightarrow{G_0, \dots, G_5} \mathbb{R}) = \ker(\mathbb{R}^{\oplus 6} \xrightarrow{G_0, \dots, G_5} \mathbb{R})$

$$\begin{split} \mathsf{E}_X(\phi) &:= \ker(\mathsf{R}^{\oplus 6}(d) \xrightarrow{G_0^4, \dots, G_5^4} \mathsf{R}(5d). \quad \mathrm{As \ a \ module, \ } \ker(\mathsf{R}^{\oplus 6}(d) \xrightarrow{G_0^4, \dots, G_5^4} \mathsf{R}(5d) = \\ \ker(\mathsf{R}^{\oplus 6} \xrightarrow{G_0^4, \dots, G_5^4} \mathsf{R}(-d)). \ \mathrm{We \ will \ work \ with \ this \ latter \ module.} \end{split}$$

We know that both $\Omega_X(\varphi)$ and $E_X(\varphi)$ are free R modules of rank 5.

Because we are working over \mathbb{F}_2 , if $(A_0, ..., A_5) \in \Omega_X(\phi)$, then $A_0G_0 + ... + A_5G_5 = 0$. so $A_0^4G_0^4 + ... + A_5^4G_5^4 = 0$. Hence, $(A_0, ..., A_5) \in \Omega_X(\phi) \Rightarrow (A_0^4, ..., A_5^4) \in E_X(\phi)$. Let $\mathfrak{I} = \{(A_0^4, ..., A_5^4) : (A_0, ..., A_5) \in \ker(\mathbb{R}^{\oplus 6} \xrightarrow{G_0, ..., G_5} \mathbb{R}(6d))\}.$

Claim: If $(B_0, ..., B_5) \in E_X(\varphi)$ is homogeneous, then $(B_0, ..., B_5)$ can be written as a finite sum of elements of \Im with coefficients in R.

Proof of Claim: First note that if $G \in R$ is homogeneous, then the power of S, T in each term of G^4 is a multiple of 4. This is one of the perks of working over \mathbb{F}_2 . Suppose $deg((B_0, ..., B_5)) = D($ this means that $deg(B_i) = D$, for $i = \{0, ..., 5\}$). Then $D \equiv 0, 1, 2, 3 \pmod{4}$.

Case 1: $d \equiv 0 \pmod{4}$ In this case D = 4k. We have, $S^{4k} = (S^k)^4$ $S^{4k-1}T = (S^{k-1})^4 S^3 T$ $S^{4k-2}T^2 = (S^{k-1})^4 S^2 T^2$ $S^{4k-3}T^3 = (S^{k-1})^4 S^T^3$ $S^{4(k-1)}T^4 = (S^{k-1}T)^4$ $S^{4(k-1)-1}T^5 = (S^{k-2}T)^4 S^3 T$

1

RANKEYA DATTA

It is then easy to see that every degree D element of R is of the form $a^4 + b^4 S^3 T + c^4 S^2 T^2 + d^4 S T^3$, for homogeneous $a, b, c, d \in R$.

So, for all $i \in \{0, ...5\}$, $B_i = a_i^4 + b_i^4 S^3 T + c_i^4 S^2 T^2 + d_i^4 S T^3$. Since, $B_0 G_0^4 + ... + B_5 G_5^4 = 0$, we have $\sum_{0 \le i \le 5} (a_i G_i)^4 + (b_i G_i)^4 S^3 T + (c_i G_i)^4 S^2 T^2 + (d_i G_i)^4 S T^3 = (\sum_i a_i G_i)^4 + (\sum_i b_i G_i)^4 S^3 T + (\sum_i c_i G_i)^4 S^2 T^2 + (\sum_i d_i G_i)^4 S T^3 = 0$.

It suffices to show that $\sum_i a_i G_i = \sum_i b_i G_i = \sum_i c_i G_i = \sum_i d_i G_i = 0$. Note that $a_i G_i$ are all homogeneous of the same degree, so that $\sum_i a_i G_i$ is homogeneous. Similarly, $\sum_i b_i G_i$, $\sum_i c_i G_i$, $\sum_i d_i G_i$ are homogeneous. So, to prove that these sums are 0, it suffices to prove that if for homogeneous $\alpha, \beta, \gamma, \delta \in \mathbb{R}$, we have $\alpha^4 + \beta^4 S^3 T + \gamma^4 S^2 T^2 + \delta^4 S T^3 = 0$, then $\alpha = \beta = \gamma = \delta = 0$. But, by an earlier remark, the degree of T in every term of α^4 is a multiple of 4, the degree of T in every term of $\beta^4 S^3 T$ is congruent to 1 mod 4, the degree of T in every term of $\gamma^4 S^2 T^2$ is congruent to 2 mod 4, the degree of T in every term of $\delta^4 S T^3$ is congruent to 3 mod 4. Hence, no polynomial of the form $\alpha^4 + \beta^4 S^3 T + \gamma^4 S^2 T^2 + \delta^4 S T^3$ can possibly equal 0, unless $\alpha, \beta, \gamma, \delta$ are 0.

$$\begin{split} & \mathrm{So}, \sum_i a_i G_i = \sum_i b_i G_i = \sum_i c_i G_i = \sum_i d_i G_i = 0 \Rightarrow (a_0,...,a_5), (b_0,...,b_5), (c_0,...,c_5), (d_0,...,d_5) \in \mathbf{Ker}(\mathbb{R}^{\oplus 6} \xrightarrow{G_0,...,G_5} \mathbb{R}(6d)) \Rightarrow (a_0^4,...,a_5^4), (b_0^4,...,b_5^4), (c_0^4,...,c_5^4), (d_0^4,...,d_5^4) \in \mathfrak{I}. \ \mathrm{Now}, (B_0,...,B_5) = (a_0^4,...,a_5^4 + S^3T(b_0^4,...,b_5^4) + S^2T^2(c_0^4,...,c_5^4) + ST^3(d_0^4,...,d_5^4), \ \mathrm{so} \ \mathrm{we} \ \mathrm{are} \ \mathrm{done}. \end{split}$$

Case 2: $D \equiv 1 \pmod{4}$ In this case D = 4k + 1 for some k. By a method similar to the one above one can show that every degree D homogeneous polynomial is of the form $a^4S+b^4T+c^4S^3T^2+d^4S^2T^3$. Again, $\alpha^4S+\beta^4T+\gamma^4S^3T^2+\delta^4S^2T^3=0 \Rightarrow \alpha = \beta = \gamma = \delta = 0$. So, we get that $(B_0, ..., B_5) \in \mathfrak{I}$ by a process similar to the one above.

Case 3: $D \equiv 2 \pmod{4}$ In this case D = 4k + 2 for some k. Every homogenous polynomial of degree D is of the form $a^4S^2 + b^4ST + c^4T^2 + d^4S^3T^3$, and we imitate the argument for Case 1.

Case 4: $D \equiv 3 \pmod{4}$ In this case every homogenous polynomial of degree D is of the form $a^4S^3 + b^4S^2T + c^4ST^2 + d^4T^3$, and again we imitate argument for Case 1.

So, what we have shown is that every homogeneous element of $\ker(\mathbb{R}^{\oplus 6} \xrightarrow{G_0^4,...,G_5^4} \mathbb{R}(-d))$ is in the R submodule generated by \mathfrak{I} . Hence, $\ker(\mathbb{R}^{\oplus 6} \xrightarrow{G_0^4,...,G_5^4} \mathbb{R}(-d)) \subset \mathbb{R} < \mathfrak{I} >$. But, $\mathbb{R} < \mathfrak{I} > \subset \ker(\mathbb{R}^{\oplus 6} \xrightarrow{G_0^4,...,G_5^4} \mathbb{R}(-d))$. So, $\ker(\mathbb{R}^{\oplus 6} \xrightarrow{G_0^4,...,G_5^4} \mathbb{R}(-d)) = \mathbb{R} < \mathfrak{I} >$. But, what does this means in terms of the generators of $\Omega_X(\phi)$ and $\mathbb{E}_X(\phi)$. Well, if $Q_i = (Q_{i0},...,Q_{i5})$ $(\mathfrak{i} = \{1, 2, 3, 4, 5\})$ form a free basis of $\ker(\mathbb{R}^{\oplus 6} \xrightarrow{G_0,...,G_5} \mathbb{R}(6d))$, then $Z_i = (Q_{i0}^4,...,Q_{i5}^4) \in \mathfrak{I}$, and moreover every element of \mathfrak{I} is an R-linear combination of the element Z_i . Since, $\ker(\mathbb{R}^{\oplus 6} \xrightarrow{G_0^4,...,G_5^4} \mathbb{R}(-d)) = \mathbb{R} < \mathfrak{I} >$, it follows that every element of $\ker(\mathbb{R}^{\oplus 6} \xrightarrow{G_0^4,...,G_5^4} \mathbb{R}(-d)) = \mathbb{R} < \mathfrak{I} >$.

EXERCISE 37

$$\begin{split} & \mathsf{R}(-d)) \text{ is an } \mathsf{R} \text{ linear combination of the element of } \mathfrak{I}, \text{ and hence of the } \mathsf{Z}_i. \text{ So, } \mathsf{Z}_1, ..., \mathsf{Z}_5 \\ & \text{generate } \mathsf{ker}(\mathsf{R}^{\oplus 6} \xrightarrow{G_0^4, ..., G_5^4} \mathsf{R}(-d)). \text{ Now, we know that } \mathsf{ker}(\mathsf{R}^{\oplus 6} \xrightarrow{G_0^4, ..., G_5^4} \mathsf{R}(-d))) \cong \mathsf{R}^{\oplus 5}. \\ & \text{So, localizing we get } (\mathsf{R}-0)^{-1}(\mathsf{ker}(\mathsf{R}^{\oplus 6} \xrightarrow{G_0^4, ..., G_5^4} \mathsf{R}(-d))) \cong (\mathsf{R}-0)^{-1}(\mathsf{R}^{\oplus 5}). \text{ The latter is a vector space over } \mathsf{Frac}(\mathsf{R}) \text{ of dimension } 5. \text{ Hence, } (\mathsf{R}-0)^{-1}(\mathsf{ker}(\mathsf{R}^{\oplus 6} \xrightarrow{G_0^4, ..., G_5^4} \mathsf{R}(-d))) \text{ is a vector space over } \mathsf{Frac}(\mathsf{R}) \text{ of dimension } 5. \text{ Since, } \frac{Z_i}{1} \text{ in } (\mathsf{R}-0)^{-1}(\mathsf{ker}(\mathsf{R}^{\oplus 6} \xrightarrow{G_0^4, ..., G_5^4} \mathsf{R}(-d))) \\ & \text{generate } (\mathsf{R}-0)^{-1}(\mathsf{ker}(\mathsf{R}^{\oplus 6} \xrightarrow{G_0^4, ..., G_5^4} \mathsf{R}(-d))), \text{ it follows that } \frac{Z_i}{1} \text{ are linearly independent over } \mathsf{R}. \\ & \text{Clearly then the } \mathsf{Z}_i \text{ are linearly independent over } \mathsf{R}, \text{ completing the proof.} \end{split}$$