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Let R = F2[S, T ]. Let X be the Fermat hypersurface. Let G0, ..., G5 be homogeneous
polynomials of degree d such that gcd(G0, ..., G5) = 1, and G50 + ... + G55 = 0. Let
ϕ = (G0, ..., G5) : P1 −→ P5.

We define,
ΩX(ϕ) := ker(R

⊕6(−d)
G0,...,G5−−−−−→ R). As a module, ker(R⊕6(−d) G0,...,G5−−−−−→ R) = ker(R⊕6

G0,...,G5−−−−−→
R(6d)).We will work with this latter module.

EX(ϕ) := ker(R⊕6(d)
G4

0,...,G
4
5−−−−−→ R(5d). As a module, ker(R⊕6(d)

G4
0,...,G

4
5−−−−−→ R(5d) =

ker(R⊕6
G4

0,...,G
4
5−−−−−→ R(−d)). We will work with this latter module.

We know that both ΩX(ϕ) and EX(ϕ) are free R modules of rank 5.

Because we are working over F2, if (A0, ..., A5) ∈ ΩX(ϕ), then A0G0 + ... + A5G5 = 0.
so A40G

4
0 + ... + A

4
5G

4
5 = 0. Hence, (A0, ..., A5) ∈ ΩX(ϕ) ⇒ (A40, ..., A

4
5) ∈ EX(ϕ). Let

I = {(A40, ..., A
4
5) : (A0, ..., A5) ∈ ker(R⊕6

G0,...,G5−−−−−→ R(6d))}.

Claim: If (B0, ..., B5) ∈ EX(ϕ) is homogeneous, then (B0, ..., B5) can be written as a
finite sum of elements of I with coefficients in R.

Proof of Claim: First note that if G ∈ R is homogeneous, then the power of S, T
in each term of G4 is a multiple of 4. This is one of the perks of working over F2.
Suppose deg((B0, ..., B5)) = D( this means that deg(Bi) = D, for i = {0, ..., 5}). Then
D ≡ 0, 1, 2, 3(mod4).

Case 1: d ≡ 0(mod4) In this case D = 4k. We have,
S4k = (Sk)4

S4k−1T = (Sk−1)4S3T
S4k−2T 2 = (Sk−1)4S2T 2

S4k−3T 3 = (Sk−1)4ST 3

S4(k−1)T 4 = (Sk−1T)4

S4(k−1)−1T 5 = (Sk−2T)4S3T
....
....
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It is then easy to see that every degree D element of R is of the form a4 + b4S3T +
c4S2T 2 + d4ST 3, for homogeneous a, b, c, d ∈ R.

So, for all i ∈ {0, ...5}, Bi = a4i +b
4
iS
3T +c4iS

2T 2+d4iST
3. Since, B0G40+ ...+B5G

4
5 = 0, we

have
∑
0≤i≤5(aiGi)

4+(biGi)
4S3T+(ciGi)

4S2T 2+(diGi)
4ST 3 = (

∑
i aiGi)

4+(
∑
i biGi)

4S3T+

(
∑
i ciGi)

4S2T 2 + (
∑
i diGi)

4ST 3 = 0.

It suffices to show that
∑
i aiGi =

∑
i biGi =

∑
i ciGi =

∑
i diGi = 0. Note that aiGi

are all homogeneous of the same degree, so that
∑
i aiGi is homogenous. Similarly,

∑
i biGi,∑

i ciGi,
∑
i diGi are homogeneous. So, to prove that these sums are 0, it suffices to prove

that if for homogeneous α,β, γ, δ ∈ R, we have α4 + β4S3T + γ4S2T 2 + δ4ST 3 = 0, then
α = β = γ = δ = 0. But, by an earlier remark, the degree of T in every term of α4 is a
multiple of 4, the degree of T in every term of β4S3T is congruent to 1 mod 4, the degree of
T in every term of γ4S2T 2 is congruent to 2 mod 4, the degree of T in every term of δ4ST 3
is congruent to 3 mod 4. Hence, no polynomial of the form α4 + β4S3T + γ4S2T 2 + δ4ST 3

can possibly equal 0, unless α,β, γ, δ are 0.

So,
∑
i aiGi =

∑
i biGi =

∑
i ciGi =

∑
i diGi = 0⇒ (a0, ..., a5), (b0, ..., b5), (c0, ..., c5), (d0, ..., d5) ∈

ker(R⊕6
G0,...,G5−−−−−→ R(6d)) ⇒ (a40, ..., a

4
5), (b

4
0, ..., b

4
5), (c

4
0, ..., c

4
5), (d

4
0, ..., d

4
5) ∈ I. Now, (B0, ..., B5) =

(a40, ..., a
4
5 + S

3T(b40, ..., b
4
5) + S

2T 2(c40, ..., c
4
5) + ST

3(d40, ..., d
4
5), so we are done.

Case 2: D ≡ 1(mod4) In this case D = 4k + 1 for some k. By a method similar to
the one above one can show that every degree D homogeneous polynomial is of the form
a4S+b4T+c4S3T 2+d4S2T 3. Again, α4S+β4T+γ4S3T 2+δ4S2T 3 = 0⇒ α = β = γ = δ = 0.
So, we get that (B0, ..., B5) ∈ I by a process similar to the one above.

Case 3: D ≡ 2(mod4) In this case D = 4k+ 2 for some k. Every homogenous polyno-
mial of degree D is of the form a4S2 + b4ST + c4T 2 + d4S3T 3, and we imitate the argument
for Case 1.

Case 4: D ≡ 3(mod4) In this case every homogenous polynomial of degree D is of the
form a4S3 + b4S2T + c4ST 2 + d4T 3, and again we imitate argument for Case 1.

So, what we have shown is that every homogeneous element of ker(R⊕6
G4

0,...,G
4
5−−−−−→ R(−d))

is in the R submodule generated by I. Hence, ker(R⊕6
G4

0,...,G
4
5−−−−−→ R(−d)) ⊂ R < I >. But,

R < I >⊂ ker(R⊕6
G4

0,...,G
4
5−−−−−→ R(−d)). So, ker(R⊕6

G4
0,...,G

4
5−−−−−→ R(−d)) = R < I >. But, what

does this means in terms of the generators of ΩX(ϕ) and EX(ϕ). Well, if Qi = (Qi0, ..., Qi5)

(i = {1, 2, 3, 4, 5}) form a free basis of ker(R⊕6 G0,...,G5−−−−−→ R(6d)), then Zi = (Q4i0, ..., Q
4
i5) ∈ I,

and moreover every element of I is an R-linear combination of the element Zi. Since,

ker(R⊕6
G4

0,...,G
4
5−−−−−→ R(−d)) = R < I >, it follows that every element of ker(R⊕6

G4
0,...,G

4
5−−−−−→
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R(−d)) is an R linear combination of the element of I, and hence of the Zi. So, Z1, ...., Z5

generate ker(R⊕6
G4

0,...,G
4
5−−−−−→ R(−d)). Now, we know that ker(R⊕6

G4
0,...,G

4
5−−−−−→ R(−d)) ∼= R⊕5.

So, localizing we get (R− 0)−1(ker(R⊕6
G4

0,...,G
4
5−−−−−→ R(−d))) ∼= (R− 0)−1(R⊕5). The latter is a

vector space over Frac(R) of dimension 5. Hence, (R− 0)−1(ker(R⊕6
G4

0,...,G
4
5−−−−−→ R(−d))) is a

vector space over Frac(R) of dimension 5. Since, Zi
1 in (R− 0)−1(ker(R⊕6

G4
0,...,G

4
5−−−−−→ R(−d)))

generate (R − 0)−1(ker(R⊕6
G4

0,...,G
4
5−−−−−→ R(−d))), it follows that Zi

1 are linearly independent
over Frac(R). As R is a domain, R ⊂ Frac(R). So, Zi

1 are linearly independent over R.
Clearly then the Zi are linearly independent over R, completing the proof.


