
BOUNDS ON COMPLEXES

Contents

1. Introduction 1
2. Preliminaries on triangulated categories 1
3. Bounding quasi-coherent complexes 2
4. Conclusion for compact objects 5
5. Bounding quasi-coherent complexes, II 7
6. Neeman: sequences of subcategories 10
7. Sequences in perf of a scheme 10
8. Neeman: metrics on triangulated categories 13
9. Translation between the two notions 14
10. Recovering DbCoh from Dperf 15
11. Neeman: dual canonical metric 18
12. Recovering Dperf from DbCoh 19

1. Introduction

We try to understand Neeman’s paper “The categories T c and T bc determine each
other” in the case of derived category of quasi-coherent modules on quasi-compact
and quasi-separated schemes and on Noetherian schemes.

2. Preliminaries on triangulated categories

Let D be an additive category. A strictly full subcategory A ⊂ D is closed under
taking summands if given an isomorphism A ∼= B ⊕ C with A in A, then B and C
are in A.

Let D be a triangulated category. A strictly full subcategory A ⊂ D is closed under
extensions if given a distinguished triangle A → B → C → A[1] in D with A and
C in A, then B is in A.

Let D be a triangulated category. Let E be an object of D. Then for −∞ ≤ a ≤
b ≤ ∞ we denote

〈E〉[a,b]

the smallest strictly full additive subcategory of D which is closed under taking
summands, closed under extensions, and contains E[−i] for a ≤ i ≤ b. Please note
the minus sign.

LetD be an additive category with arbitrary direct sums. A strictly full subcategory
A ⊂ D is closed under arbitrary direct sums if given a set I and objects Ai, i ∈ I
of A the direct sum

⊕
i∈I Ai is in A.
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2 BOUNDS ON COMPLEXES

Let D be a triangulated category with arbitrary direct sums. Let E be an object
of D Then for −∞ ≤ a ≤ b ≤ ∞ we denote

〈E〉[a,b],big

the smallest additive subcategory of D which is closed under arbitrary direct sums,
closed under taking summands, closed under extensions, and contains E[−i] for
a ≤ i ≤ b.

Lemma 2.1. Let D be a triangulated category. Let E and M be objects of D. For
−∞ ≤ a ≤ b ≤ ∞ if Hom(E[−i],M) = 0 for i ∈ [a, b], then Hom(P,M) = 0 for all
P ∈ 〈E〉[a,b].

Proof. Assume Hom(E[−i],M) = 0 for i ∈ [a, b]. The full subcategory D′ consisting
of objects X of D such that Hom(X,M) = 0 is a strictly full additive subcategory
of D which is closed under taking summands, closed under extensions, and contains
E[−i] for a ≤ i ≤ b. Hence D′ contains 〈E〉[a,b] as desired. �

Lemma 2.2. Let D be a triangulated category with arbitrary direct sums. Let E
and M be objects of D. For −∞ ≤ a ≤ b ≤ ∞ if Hom(E[−i],M) = 0 for i ∈ [a, b],
then Hom(P,M) = 0 for all P ∈ 〈E〉[a,b],big.

Proof. Assume Hom(E[−i],M) = 0 for i ∈ [a, b]. The full subcategory D′ consisting
of objects X of D such that Hom(X,M) = 0 is a strictly full additive subcategory
of D which is closed under arbitrary direct sums, closed under taking summands,
closed under extensions, and contains E[−i] for a ≤ i ≤ b. Hence D′ contains
〈E〉[a,b],big as desired. �

3. Bounding quasi-coherent complexes

Let U be an affine scheme. Let Z ⊂ U be a closed subset. The phrase “a
Koszul complex K(U, f1, . . . , fr) for Z” means that f1, . . . , fr ∈ Γ(U,OU ), that
Z = V (f1, . . . , fr) (set theoretically), and that K(U, f1, . . . , fr) is the object of
D(OU ) corresponding to the complex

∧r(O⊕rU )→ ∧r−1(O⊕rU )→ ∧r−2(O⊕rU )→ . . .→ O⊕rU
f1,...,fr−−−−−→ OU

with the last term sitting in degree 0. See Tag 062J. In particular, we have

H0(K(U, f1, . . . , fr)) = OU/(f1, . . . , fr) and Hi(K(U, f1, . . . , fr)) = 0, i > 0

Lemma 3.1. Let X be a quasi-compact and quasi-separated scheme and X = U∪V
where U is affine open and V is quasi-compact open. Denote Z = X \ V . Then

(1) there exists a perfect object K of D(OX) which restricts to a Koszul complex
K(U, f1, . . . , fr) for Z on U and vanishes outside of U ,

(2) the category 〈K〉[0,0] contains objects Kn which restrict to the Koszul com-
plexes K(U, fn1 , . . . , f

n
r ) on U , and

(3) any M in D≤0QCoh(OX) supported on Z is contained in 〈K〉[−∞,0],big.

Proof. Proof of (1). Observe that Z is contained in U . Since V is quasi-compact
open and X is quasi-separated, we see that U ∩ V is quasi-compact. Hence we can
find f1, . . . , fr ∈ Γ(U,OU ) such that that Z = V (f1, . . . , fr) set theoretically, see
Tag 00F6. Consider the corresponding Koszul complex K(U, f1, . . . , fr). Exactly
as in the proof of Tag 08EP we find a perfect object K of X whose restriction to
U is K(U, f1, . . . , fr).

https://stacks.math.columbia.edu/tag/062J
https://stacks.math.columbia.edu/tag/00F6
https://stacks.math.columbia.edu/tag/08EP
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Proof of (2). Observe that for objects F , G of D(OX) whose cohomology sheaves
are supported on Z we have Hom(F,G) = Hom(F |U , G|U ). Hence using the distin-
guished triangles

K(U, fe11 , . . . , ferr )→ K(U, fe11 , . . . , f
ei+e

′
i

i , . . . , ferr )→ K(U, fe11 , . . . , f
e′i
i , . . . , f

er
r )→

(see proof of Tag 09IR) and an obvious induction we conclude that for every
e1, . . . , er ≥ 1 there is a perfect object of D(OX) contained in 〈K〉[0,0] and re-
stricting to K(U, fe11 , . . . , ferr ).

Proof of (3). As above observe that H0(X,M) = H0(U,M |U ) and that H0(M) is
generated by global sections (small detail omitted). For any element s ∈ H0(M)
there is an n > 0 and a map Kn →M sending the canonical element in H0(X,Kn)
to s, see Tag 08E3. Thus we can find a set J , integers nj ≥ 1, and a map

L =
⊕

j∈J
Knj

−→M

in DQCoh(OX) which gives a surjection on cohomology sheaves in degree 0. Take

the cone M1 of this map. Observe that M1 is in D≤−1QCoh(OX) and is supported on
Z. Thus we can continue finding distinguished triangles

Li →Mi →Mi+1 → Li[1]

where Li is a direct sum of complexes of the form Kn[i]. Note the shifts by non-
negative integers. For notational convenience we set M0 = M and L0 = L. Then
working inductively (this is a completely standard argument):

(1) for the base case we fit the composition L1 → M1 → L0[1] into a dis-
tinguished triangle L0 → N1 → L1 → L0[1] and we choose a map of
distinguished triangles

L0
//

��

N1
//

��

L1
//

��

L0[1]

��
L0

// M0
// M1

// L0[1]

showing that M2 is the cone of N1 →M ,
(2) continue inductively we fit the composition Ln → Mn → Nn−1[1] into a

distinguished triangle Nn−1 → Nn → Ln → Nn−1[1] and we choose a map
of distinguished triangles

Nn−1 //

��

Nn //

��

Ln //

��

Nn−1[1]

��
Nn−1 // M // Mn

// Nn−1[1]

showing that Mn+1 is the cone of Nn →M .

Observe that Nn is in 〈K〉[−n,0],big for all n. Moreover, looking at cohomology
sheaves we see that hocolimNn = M . This means we have a distinguished triangle⊕

Nn →
⊕

Nn →M →
⊕

Nn[1]

and this finishes the proof. �

https://stacks.math.columbia.edu/tag/09IR
https://stacks.math.columbia.edu/tag/08E3
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Lemma 3.2. Let X be a quasi-compact and quasi-separated scheme and X = U∪V
where U is affine open and V is quasi-compact open. If Theorem 3.3 holds for U
and V and U ∩ V , then it holds for X.

Proof. Let T ⊂ X be a closed subset whose complement is quasi-compact. By
Tag 0A9A the categories DQCoh,T (OX) has a perfect generator E. The result is
independent of the choice of our generator, because if E and E′ are generators, then
E ∈ 〈E′〉[a,b] for some integers a ≤ b (because E is compact and hence is contained
in 〈E′〉 by Tag 09SR) and hence

〈E〉[−∞,i],big ⊂ 〈E′〉[−∞,i−a],big

Thus if we prove the result for E, then it follows for E′ and vice versa by symmetry.

Set Z = X \V . Note that the complement V ′ of T ′ = T ∩Z in X is quasi-compact
as well. Denote K a perfect object of D(OX) which restricts Koszul complex for
T ′ on U and vanishes outside U as in Lemma 3.1 (but with V replaced by V ′).
By the remarks above we may assume E contains K as a direct summand (after
replacing E by E ⊕K if necessary). Denote j : V → X the given open immersion.
Observe that Rj∗ has finite cohomological dimension, say q. Consider the canonical
distinguished triangle

E → Rj∗(E|V )→ Q→ E[1]

Observe that Q ∈ DQCoh,T ′(X) (because Rj∗E restricts to E|V on V and because
Rj∗E vanishes outside T ). Thus Q is in

〈K〉[−∞,b+q+1],big ⊂ 〈E〉[−∞,b+q+1],big

by Lemma 3.1 where b is an integer such that Hi(E) = 0 for i > b. We conclude
that Rj∗(E|V [i]) is in 〈E〉[−∞,b+q+1−i],big for all i ∈ Z.

Let i(V ) be the integer found for E|V and T ∩ V in V by hypothesis. Let M be an

object of D≤0QCoh,T (OX). Then

M |V ∈ 〈E|V 〉[−∞,i(V )],big

Hence we obtain

Rj∗(M |V ) ∈ 〈Rj∗E|V 〉[−∞,i(V )],big ⊂ 〈E〉[−∞,b+q+1+i(V )],big

Again since the cone of M → Rj∗M |V is in 〈E〉[−∞,q+1],big we conclude. �

Theorem 3.3. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset whose complement is quasi-compact. Let E be a perfect generator
for DQCoh,T (OX). Then there exists an integer i such that

D≤0QCoh,T (OX) ⊂ 〈E〉[−∞,i],big

Proof. By Tag 0A9A the categories DQCoh,T (OX) always have perfect generators,
thus the statement makes sense. We use the induction principle of Tag 08DR. The
case of affine scheme is Lemma 3.1. The induction step is Lemma 3.2. This finishes
the proof. �

https://stacks.math.columbia.edu/tag/0A9A
https://stacks.math.columbia.edu/tag/09SR
https://stacks.math.columbia.edu/tag/0A9A
https://stacks.math.columbia.edu/tag/08DR
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4. Conclusion for compact objects

We are going to explain what Theorem 3.3 means for compact objects.

Lemma 4.1. Let (A, d) be a differential graded algebra. The category 〈A〉[−∞,0],big
is the full subcategory of D(A, d) consisting of objects which can be represented by
a differential graded A-module P which has a filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ P
by differential graded submodules such that P =

⋃
FpP and the quotients Fi+1P/FiP

are isomorphic as differential graded A-modules to a direct sum of A[n] with n ≥ 0.

Proof. If P is a differential graded A-module with a filtration as in the lemma, then
we see that Fi+1P/FiP is contained in 〈A〉[−∞,0],big and hence FiP is contained in
〈A〉[−∞,0],big and hence P = hocolimFiP is contained in 〈A〉[−∞,0],big.
To prove the converse, let D′ be the full subcategory whose objects are represented
by modules P as in the lemma. It is easy to show that D′ contains A[n] for n ≥ 0
and is closed under arbitrary direct sums. Suppose that we have a distinguished
triangle

X → X ′ → X ′′ → X[1]

with X and X ′′ in D′. Then choose modules P and P ′′ as in the statement of the
lemma. The assumption means we can choose a basis ei,λ, i ≥ 0, λ ∈ Λi for P
and a basis fj,µ, j ≥ 0, µ ∈ Mj for P ′′ as graded A-modules with the following
properties

(1) deg(ei,λ) ≤ 0,
(2) deg(fj,µ) ≤ 0,
(3) d(ei,λ) =

∑
ai,λ,i′,λ′ei′,λ′ with ai,λ,i′,λ′ 6= 0⇒ i′ < i,

(4) d(fj,µ) =
∑
bj,µ,j′,µ′fj′,µ′ with bj,µ,j′,µ′ 6= 0⇒ j′ < j

Since P ′′ has property (P), see Tag 09KK, we conclude that X ′ is reprented by
a differential graded A-module P ′ which is an extension of P ′′ by P (small detail

omitted). If f̃j,µ is a lift of fj,µ to a homogeneous element of P ′, then we see that

ei,λ, f̃j,µ forms a basis for P ′. Thus we may write

d(f̃j,µ) =
∑

bj,µ,j′,µ′ f̃j′,µ′ +
∑

cj,µ,i,λei,λ

for some cj,µ,i,λ ∈ A. Working inductively on j = 0, 1, 2, . . ., we find that there
exist functions

nj(−) : Mj −→ Z≥0

such that

cj,µ,i,λ 6= 0⇒ nj(µ) > i and bj,µ,j′,µ′ 6= 0⇒ nj(µ) > nj′(µ
′)

(To prove existence use that the sums are always finite sums, so that the maximums
we are taking are finite.) Then we can define the required filtration on P ′ by setting

FkP
′ = 〈ei,λ, i ≤ k; f̃j,µ, nj(µ) ≤ k〉

The reader easily verifies the desired properties.

Finally, we have to show that D′ is closed under taking direct summands. Let X
be an object of D′ and let p : X → X be a projector. Then the image of p is

Y = hocolim(X
p−→ X

p−→ X → . . .)

https://stacks.math.columbia.edu/tag/09KK
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(Recall that any triangulated category with countable direct sums is Karoubian, see
Tag 05QW. This formula is the proof of that lemma.) Thus we have a distinguished
triangle ⊕

X →
⊕

X → Y →
⊕

X[1]

Since X[1] is in D′ and since D′ is closed under direct sums (see above) we conclude
because D′ is closed under extensions (see above). �

Remark 4.2. Let D be a triangulated category with direct sums. Let E be a
compact object. It may very well be the case that in this generality the category
〈E〉[−∞,0],big is the full subcategory consisting of objects which can be written as

X = hocolimXn

where X1 is a direct sum of shifts E[n], n ≥ 0 and each transition morphism fits
into a distinguished triangle Yn → Xn → Xn+1 → Yn[1] where Yn is a direct sum
of shifts E[n], n ≥ −1. This would be the natural analogue of the result of Lemma
4.1.

Lemma 4.3. Let (A, d) be a differential graded algebra. Given F in D(A, d) the
following are equivalent

(1) F is compact and contained in 〈A〉[−∞,0],big,
(2) F is in 〈A〉[−∞,0],
(3) F is a direct summand (in the derived category) of an object represented by

a differential graded A-module P which has a finite filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ FdP = P

by differential graded submodules such that the quotients Fi+1P/FiP are
isomorphic as differential graded A-modules to a finite direct sum of A[n]
with n ≥ 0.

Proof. Observe that (3) implies (2) because P is an d-fold extension of objects
which are clearly in 〈A〉[−∞,0].

Observe that every object of 〈A〉[−∞,0] is compact (because we start with a compact
object and then take finite direct sums, direct summands, extensions, and repeat).
Thus (2) implies (1).

Finally, assume (1). Then F is as in (3) by Lemma 4.1 and exactly the same
arguments as those given in the proof of Tag 09R3. �

Lemma 4.4. Let D be a triangulated category with direct sums. Let E, F be
compact objects. If F is contained in 〈E〉[−∞,i],big then F is contained in 〈E〉[−∞,i].

Proof. Consider the strictly full subcategory D′ of D consisting of objects X such
that for any compact object G and any morphism G → X there is a factorization
G→ G′ → X where G′ is compact and contained in 〈E〉[−∞,i]. Clearly D′ contains
E[n] for all n ≥ −i (this is where we use that E is compact). Equally clearly D′ is
closed under direct sums and under taking direct summands. Suppose

X → X ′ → X ′′ → X[1]

is a distinguished triangle with X and X ′′ contained in D′. Let G → X ′ be a
morphism withG compact. By assumption we can choose a factorizationG→ G′ →

https://stacks.math.columbia.edu/tag/05QW
https://stacks.math.columbia.edu/tag/09R3
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X ′′ with G′ in 〈E〉[−∞,i]. Choose a distinguished triangle Q → G → G′ → Q[1]
and a map of distinguished triangles

Q //

��

G //

��

G′ //

��

Q[1]

��
X // X ′ // X ′′ // X[1]

Choose a factorization Q → G′′ → X with G′′ in 〈E〉[−∞,i]. This produces a map
G′ → G′′[1] and hence we may choose a distinguished triangle G′′ → G′′′ → G′ →
G′′[1]. Thus G′′′ is in 〈E〉[−∞,i]. Using the axioms of a triangulated category we
may choose maps of triangles

Q //

��

G //

��

G′ //

��

Q[1]

��
G′′ //

��

G′′′ //

��

G′ //

��

G′′[1]

��
X // X ′ // X ′′ // X[1]

Then the composition G→ G′′′ → X ′ may not be equal to the given map G→ X,
but the maps agree after composining with X ′ → X ′′. Hence these maps differ by
a map which is a composition G → X → X ′. Since we can fact the map G → X
through an object of 〈E〉[−∞,i] this finishes the proof of the fact that D′ is closed
under extensions.

We conclude that 〈E〉[−∞,i],big is contained in D′. Hence id : F → F factors
through a (compact) object of 〈E〉[−∞,i] (here we use that F is compact). Thus F
is in 〈E〉[−∞,i] and the proof is done. �

Lemma 4.5. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset whose complement is quasi-compact. Let E be a perfect generator
for DQCoh,T (OX). Then there exists an integer i such that

D≤0QCoh,T,perfect(OX) ⊂ 〈E〉[−∞,i]

First proof. Combine Theorem 3.3 and Lemma 4.4. �

Second proof. Choose a K-injective complex I• representing E and denote (A,d)
the differential graded algebra

(A,d) = Γ(X,HomOX
(I•, I•))

Then we get an (explicit) equivalence of D≤0QCoh,T (OX) with the derived category

of D(A,d), see Tag 0DJL. Under this equivalence E corresponds to A. Thus we
obtain the result from Lemma 4.3. �

5. Bounding quasi-coherent complexes, II

In this section we prove dual versions of the material in Section 3.

https://stacks.math.columbia.edu/tag/0DJL
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Theorem 5.1. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset whose complement is quasi-compact. Let E be a perfect generator
for DQCoh,T (OX). Then there exists an integer i such that for any perfect M in
DQCoh,T (OX) if

Hom(E[j],M) = 0 for all j ≤ 0

then M ∈ D≤iQCoh,T (OX).

Proof. Perfect generators for DQCoh,T (OX) exist, see Tag 0A9A, and thus the state-
ment of the theorem makes sense. Before we start the proof we note that the result
is independent of the choice of E (but the value of i does depend on the choice of
E).

First assume X is affine. Choose a Koszul complex K for T on X as in Lemma
3.1. Then K is a perfect generator for DQCoh,T (OX), see Tag 09IR and the proof

of Tag 0A9A. Moreover, the higher Koszul complexes Kn are contained in 〈K〉[0,0],
see Lemma 3.1. Thus the vanishing of Hom(K[j],M) implies the vanishing of
Hom(Kn[j],M) for all n, see Lemma 2.1. Then it follows from Tag 08E3. that M
has vanishing cohomology in degrees ≥ 0 and this proves the result in this case.

To finish the proof we apply the induction principle of Tag 08DR. To see the
induction step is true, suppose that X = U ∪ V where U is affine open and V
is quasi-compact open. Choose a perfect object K in D(OX) which restricts to a
Koszul complex for the closed subset Z = U \ V on U , see Lemma 3.1. We will
use below that the higher Koszul complexes Kn are in 〈K〉[0,0], see Lemma 3.1. We
also choose a perfect object K ′ in D(OX) which restricts to a Koszul complex for
the closed subset T ′ = T ∩Z on U , see Lemma 3.1. Choose distinguished triangles

In → OX → Kn → In[1]

This produces distinguished triangles

E ⊗L
OX

In → E → E ⊗L
OX

Kn → E ⊗L
OX

In[1]

and we conclude that

E ⊗L
OX

In ∈ 〈E ⊕ E ⊗L
OX

K〉[−1,0] ⊂ 〈E′〉[−1,0]

for all n where

E′ = E ⊕ E ⊗L
OX

K ⊕K ′

is another perfect generator for DQCoh,T (OX).

To finish the proof, assume that M is in DQCoh,T (OX) such that Hom(E′[j],M) = 0
for j ≤ 0. Then we conclude that M satisfies

Hom(E ⊗L
OX

In[j],M)

for all j ≤ 0 and all n ≥ 1, see Lemma 2.1. Observe that we have

colim Hom(E ⊗L
OX

In[j],M) = colim Hom(In[j], RHom(E[j],M))

= Γ(V,RHom(E[j],M))

= Hom(E[j]|V ,M |V )

The second equality follows from the Mayer-Vietoris sequence for X = U ∪ V
and RHom(E[j],M) and the equality in Tag 08DD. We conclude by induction
hypothesis that there exists an i(V ) such that Hi(M)|V = Hi(M |V ) = 0 for i >

https://stacks.math.columbia.edu/tag/0A9A
https://stacks.math.columbia.edu/tag/09IR
https://stacks.math.columbia.edu/tag/0A9A
https://stacks.math.columbia.edu/tag/08E3
https://stacks.math.columbia.edu/tag/08DR
https://stacks.math.columbia.edu/tag/08DD
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i(V ). In other words, the cohomology sheaves Hi(M) for i > i(V ) are supported
on T ′.

To conclude we use that K ′ is a summand of E′. (This part of the argument is
the same as the affine case.) Namely, if we denote the higher Koszul complexes
K ′n then K ′n ∈ 〈K ′〉[0,0] as before. The vanishing of Hom(K ′n,M) implies that that
Hi(M) is zero for i > i(V ) + r′ where r′ is the number of generators used in the
construction of the Koszul complex K ′, see Tag 08E3. Some details omitted; in
particular one needs to use the Mayer-Vietoris sequence and use that we already
have that Hi(M) is supported on T ′ for i ≥ i(V ). �

Lemma 5.2. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X be
a closed subset whose complement is quasi-compact. Then there exists an integer i
such that for any perfect M in DQCoh,T (OX) with

Hom(P,M) = 0 for all P ∈ D≥0QCoh,T,perf (OX)

we have M ∈ D≤iQCoh,T (OX).

Proof. This is a corollary of the stronger Theorem 5.1. �

Here is the result in the Noetherian case when you let the shifts go the opposite
direction from what happens in Theorem 5.1.

Lemma 5.3. Let X be a Noetherian scheme. Let E ∈ Dperf (OX) be a classical
generator. Then there exists an integer i such that for M ∈ DCoh(OX) with

Hom(E[j],M) = 0 for all j ≥ 0

we have M ∈ D≥−iCoh (OX).

Proof. Recall that there exists an integer k such that

D≤−kperf (OX) ⊂ 〈E〉[−∞,0]

see Lemma 4.5. Hence we know that Hom(Q,M) = 0 for every Q in D≥−kperf (OX).
Consider the map

τ≤−k−1M −→M

This is a map of pseudo-coherent complexes because X is Noetherian. We have to
show τ≤−k−1M has vanishing cohomology. If not, then there exists an m ≤ −k− 1
such that Hm(M) = Hm(τ≤−k−1M) is nonzero. By Tag 08ES we can choose an
approximation

Q −→ τ≤−k−1M

for the triple (X, τ≤−k−1M,m). This means thatQ is inDperf (X) and the displayed
map induces isomorphisms Hq(Q)→ Hq(τ≤−k−1M) on cohomology sheaves for q >
m and a surjection Hm(Q) → Hm(τ≤−k−1M) for q = m. This is a contradiction

because it would mean that Q is in D≤−kperf (OX) and Hm(Q) → Hm(M) would be
surjective and hence nonzero and hence Q→M would be nonzero. �

https://stacks.math.columbia.edu/tag/08E3
https://stacks.math.columbia.edu/tag/08ES
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6. Neeman: sequences of subcategories

Let D be a triangulated category. We are going to consider sequences

P1 ⊂ P2 ⊂ P3 ⊂ . . .

of strictly full additive subcategories such that for each i ≥ 1 we have

Pi[1] ∪ Pi ∪ Pi[−1] ⊂ Pi+1

We will say the sequences {Pi} and {Qj} are equivalent if and only if

(1) for each i there is a j such that Pi ⊂ Qj , and
(2) for each j there is a i such that Qj ⊂ Pi.

In this situation we say that a sequence

E1 → E2 → E3 → . . .

of morphisms of D is a Cauchy sequence if and only if for every i there is a N such
that for n ≥ N the maps

Hom(P,En)→ Hom(P,En+1)

are isomorphisms for all P in Pi.

Let D be an additive category. Denote C(D) the category of contravariant additive
functors D → Ab. As in Neeman’s paper we denote

Y : D −→ C(D), F 7−→ Hom(−, F )

the Yoneda embedding. Next, assume D is triangulated and {Pi} is a sequence of
subcategories as above. We say A in C(D) is compactly supported with respect to
{Pi} if there exists and i > 0 such that

Hom(Y (Q), A) = 0 for all Q ∈ P⊥i
Here we recall that P⊥i is the full subcategory of D consisting of objects Q such
that Hom(P,Q) = 0 for all P ∈ Pi.

Example 6.1. Let D be a triangulated category which has a classical generator.
If we choose a classical generator G, then we can consider the sequence

Pi = 〈G〉[−i,∞]

This sequence up to equivalence does not depend on the choice of the generator
(details omitted).

7. Sequences in perf of a scheme

Let’s see what we get from the definitions in Section 6 in the setting of schemes.

Lemma 7.1. Let X be a Noetherian scheme of finite dimension. Then Dperf (OX)
has a classical generator and the equivalence class of the sequence

D≥−iperf (OX)

is the same as the canonical one constructed in Example 6.1.
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Proof. We know that there exists a perfect object E of D(OX) which is a generator
for DQCoh(OX), see Tag 09IS. Next, we know E is compact and Dperf (OX) =
Dcompact(OX) by Tag 09M1. Then finally E is a classical generator for Dperf (OX)
by Tag 09SR.

Let E be a classical generator of Dperf (OX). Then E is bounded. Say Hi(E) = 0
for i < a. Then it is clear that

〈E〉[−i,∞] ⊂ D≥−i−bperf (OX)

This proves one inclusion.

For the other inclusion, it will suffice to show that

D≥0perf (OX) ⊂ 〈E〉[−i,∞]

for some i. By Auslander-Buchsbaum, see Tag 090V we have that objects F of
D≥0perf (OX) locally have bounded projective dimension, in fact bounded by −d
where d = dim(X). Hence the dual perfect object F∨ = RHom(F,OX) will be in

D≤dperf (OX). Since taking duals is a anti-equivalence we find that E∨ is a classical

generator of Dperf (OX) as well. By Lemma 4.5 we conclude that there exists an i,
independent of F , such that

F∨ ∈ 〈E∨〉[−∞,i+d]

Dualizing back we find

F ∈ 〈E〉[−i−d,∞]

as desired. �

Lemma 7.2. Let X be a quasi-compact and quasi-separated scheme. A Cauchy
sequence

E1 → E2 → E3 → . . .

of Dperf (OX) with respect to the canonical sequence of Example 6.1 is the same
thing as a sequence of perfect complexes such that for all i ≥ 0 there is a N such
that for n ≥ N the maps

En → En+1

are isomorphisms on cohomology sheaves in degrees ≥ −i.

Proof. Let E be a perfect generator for Dperf (OX). Choose integers a ≤ b such
that Hom(E,L) = 0 if L ∈ DQCoh(OX) with Hi(L) = 0 for i ∈ [a, b], see Tag
09M4. Suppose that En → En+1 is an isomorphism on cohomology sheaves in
degrees ≥ −i. Choose a distinguished triangle En → En+1 → Cn → En[1]. Then
Hq(Cn) = 0 for q ≥ −i. Hence

Hom(E[j], Cn) = Hom(E,Cn[−j])
is zero if j ≤ a + i. By Lemma 2.1 we conclude that the condition in the lemma
produces a Cauchy sequence.

For the converse take cones of the maps En → En+1 and apply Theorem 5.1. �

Lemma 7.3. Let X be a quasi-compact and quasi-separated scheme. The pseudo-
coherent objects in D(OX) are exactly the homotopy colimits of Cauchy sequences
of Dperf (OX) with respect to the canonical sequence of Example 6.1.

Proof. Immediate from Lemma 7.2 and Tag 0DJN. �

https://stacks.math.columbia.edu/tag/09IS
https://stacks.math.columbia.edu/tag/09M1
https://stacks.math.columbia.edu/tag/09SR
https://stacks.math.columbia.edu/tag/090V
https://stacks.math.columbia.edu/tag/09M4
https://stacks.math.columbia.edu/tag/09M4
https://stacks.math.columbia.edu/tag/0DJN
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Lemma 7.4. Let X be a quasi-compact and quasi-separated scheme. Given a
Cauchy sequence

E1 → E2 → E3 → . . .

of Dperf (OX) with respect to the canonical sequence of Example 6.1 with homotopy
colimit E we have

Hom(−, E) = colim Hom(−, En)

as functors on Dperf (OX).

Proof. This is true because perfect objects of D(OX) are compact and hence
Hom(P,E) = colim Hom(P,En) for all P in Dperf (OX). �

Lemma 7.5. Let X be a Noetherian scheme. Let F be a pseudo-coherent object
of D(OX). Denote A : Dperf (OX) → Ab the functor M 7→ Hom(M,F ). The
following are equivalent

(1) A is compactly supported with respect to the canonical sequence of Example
6.1 as defined in Section 6, and

(2) F has bounded cohomology, i.e., F ∈ Db
Coh(OX).

Proof. Choose a perfect generator E for DQCoh(OX), see Tag 0A9A. Then we

have Pi = 〈E〉[−i,∞] as subcategories of Dperf (OX), Recall that P⊥i is the full
subcategory of Q in Dperf (OX) with Hom(P,Q) = 0 for all P ∈ Pi. By the Yoneda
lemma we have

HomC(D)(Y (Q), A) = A(Q) = Hom(Q,F )

Thus we have to show the following two are equivalent

(1) there exists an i such that Hom(Q,F ) = 0 for all Q in P⊥i , and
(2) F ∈ Db

Coh(OX).

By Theorem 5.1 the sequence of subcategories P⊥i is equivalent to the sequence of

subcategories D≤−iperf (OX). Thus we have to show the following two are equivalent

(a) there exists an i such that Hom(Q,F ) = 0 for all Q in D≤−iperf (OX), and

(b) F ∈ Db
Coh(OX).

The implication from (b) to (a) is immediate by taking i large enough. Suppose
that (a) holds for some i. Consider the map

τ≤−i−1F −→ F

This is a map of pseudo-coherent complexes because X is Noetherian1. We have to
show τ≤−i−1F has vanishing cohomology. If not, then there exists an m ≤ −i− 1
such that Hm(F ) = Hm(τ≤−i−1F ) is nonzero. By Tag 08ES we can choose an
approximation

Q −→ τ≤−i−1F

for the triple (X, τ≤−i−1F,m). This means that Q is in Dperf (X) and the displayed
map induces isomorphisms Hq(Q) → Hq(τ≤−i−1F ) on cohomology sheaves for
q > m and a surjection Hm(Q)→ Hm(τ≤−i−1F ) for q = m. This is a contradiction

because it would mean that Q is in D≤−iperf (OX) and Hm(Q) → Hm(F ) would be
surjective and hence nonzero and hence Q→ F would be nonzero. �

1This is the only step where we need to use that X is Noetherian and it might well be that
the lemma holds for X quasi-compact and quasi-separated.

https://stacks.math.columbia.edu/tag/0A9A
https://stacks.math.columbia.edu/tag/08ES
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8. Neeman: metrics on triangulated categories

Let D be a triangulated category. A metric on D is given by a sequence of additive
subcategories

M1 ⊃M2 ⊃M3 ⊃ . . .
each closed under extensions. The metric {Mi} is finer than the metric {Nj} if for
every j there is an i such that Mi ⊂ Nj . If you think of the subcategories Mi as
the “ball of radius 1/i around 0”, then this means the “topology” defined by the
sequence {Mi} is finer than the topology defined by the sequence {Nj}.

A Cauchy sequence in D with respect the metric {Mi} is a sequence

E1 → E2 → E3 → . . .

such that for any i > 0 and j ∈ Z there is an N such that for n′ > n ≥ N we have

Cn,n′ [j] ∈Mi

where Cn,n′ is the cone of En → En′ , i.e., it sits in a distinguished triangle

En → En′ → Cn,n′ → En[1]

of D. A trivial remark is that it suffices to check ∀i > 0 ∀j ∈ Z ∃N such that
for n > N we have Cn,n+1[j] ∈ Mi. This is true because we have distinguished
triangles

Cn,n′−1 → Cn,n′ → Cn′−1,n′ → Cn,n′−1[1]

by the octahedral axiom of triangulated categories. Hence if Cn,n′−1[j] and Cn′−1,n′ [j]
are inMi, then so is Cn,n′ becauseMi is closed under extensions. Thus Cn,n+1[j] ∈
Mi for all n > N implies Cn,n′ [j] ∈Mi for all n′ > n > N .

Recall the Yoneda embedding Y : D → C(D) into the category of contravariant
additve functors to Ab discussed in Section 6. We say an object A of of C(D) is
compactly supported with respect to the metric {Mi} if for all j ∈ Z there exists an
i > 0 such that

Hom(Y (M [j]), A) = 0

for all M in Mi.

Now we have all the notation required to formulate Neeman’s theorem.

Theorem 8.1. Let D be a triangulated category. Let {Mi} be a metric on D.
Consider the strictly full subcategory

S ⊂ C(D)

consisting of objects A which have the following two properties:

(1) there is a Cauchy sequence E1 → E2 → E3 → . . . with respect to the metric
and A = colimY (En) where Y : D → C(D) is the Yoneda embedding, and

(2) A is compactly supported with respect to the metric {Mi}.
Then S is a triangulated category with shift functor given by A 7→ A[1] = A ◦ [−1]
and distinguished triangles given by those triangles

A→ B → C → A[1]

such that there exist a system of distinguished triangles

En → Fn → Gn → En[1]
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such that {En}, {Fn}, {Gn} are Cauchy sequences and such that A = colimY (En),
B = colimY (Bn), C = colimY (Gn) compatible with the maps.

Proof. The rather terrible proof can be found in Neeman’s paper. �

9. Translation between the two notions

This section does the trivial translation between the notions introduced in Sections
6 and 8. In particular, it follows that Theorem 8.1 applies to the notions of Cauchy
sequences and compactly supported objects introduced in Section 6.

Lemma 9.1. Let D be a triangulated category. Let

P1 ⊂ P2 ⊂ P3 ⊂ . . .

be a sequence of subcategories as in Section 6. Set

Mi = P⊥i = {M ∈ D | Hom(P,M) = 0 for all P ∈ Pi}

Then {Mi} is a metric on D.

Proof. Since Pi ⊂ Pi+1 we see that Mi ⊃Mi+1. Moreover, we have Mi is closed
under extensions: if

X → X ′ → X ′′ → X[1]

is a distinguished triangle and X and X ′′ are in Mi, then for P ∈ Pi the exact
sequence

Hom(P,X)→ Hom(P,X ′)→ Hom(P,X ′′)

shows that Hom(P,X ′) = 0 and hence X ′ is in Mi. �

Lemma 9.2. Let D be a triangulated category. Let

P1 ⊂ P2 ⊂ P3 ⊂ . . .

be a sequence of subcategories as in Section 6. Set Mi = P⊥i as in Lemma 9.1. In
this case the following are true

(1) for every j ∈ Z, there exists an N such that for i > N we have

Mi[j] ⊂Mi−|j|

(2) a Cauchy sequence with respect to the metric {Mi} is the same as a Cauchy
sequence with respect to the sequence {Pi} in the sense of Section 6,

(3) an object A of C(D) is compactly supported with respect to the metric {Mi}
if and only if it is compactly supported with respect to the sequence {Pi} in
the sense of Section 6.

Proof. Proof of (1). By our definition in Section 6 and a simple induction argument
we have for i > a > 0 that

Pi ⊃
⋃
−a≤j≤a

Pi−a[j]

Hence Pi[j] ⊃ Pi−|j| by taking a = |j| and shifting. The inclusion in (1) follows by

taking perpendiculars and using that Mi[j] = (Pi[j])⊥ as [j] is an equivalence of
categories.

Proof of (2). By part (1) we see that a sequence

E1 → E2 → E3 → . . .
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is a Cauchy sequence with respect to the metric if and only if for every i we can
find an N such that the cones Cn,n+1 are in Mi for n > N . This is equivalent to
asking for all P ∈ Pi the map Hom(P,En) → Hom(P,En+1) to be surjective and
the map Hom(P,En[1])→ Hom(P,En+1[1]) to be injective for all n > N . Since Pi
contains Pi−1[−1] we conclude that Hom(P,En) → Hom(P,En+1) is bijective for
P in Pi−1 and n > N . This means that we have a Cauchy sequence with respect
to the sequence {Pi}. The converse argument is exactly the same and we omit it.

Proof of (3). This is trivial if you know (1). �

Example 9.3. Let (A,d) be a differential graded algebra. Denote D(A,d) the
derived category of A and denote Dc(A,d) the full subcategory of compact objects.
Then A is a generator of Dc(A,d) and the sequence in Example 6.1 is given by

Pi = 〈A〉[−i,∞]

for i ≥ 1. Since Hom(A[−i], E) = Hi(E) we see that a sequence

E1 → E2 → E3 → . . .

of morphisms of Dc(A,d) is a Cauchy sequence if and only if for all i ≥ 1 there
exists an N such that for n > N the maps Hj(En)→ Hj(En+1) are isomorphisms
for all j ≥ −i. Set

F (−) = colim Hom(−, En)

in C(Dc(A,d)). Next, Q in Dc(A,d) is in P⊥i if and only if Hq(Q) = 0 for all
q ≥ −i. Thus F is compactly supported with respect to {Pi} if and only if there
exists an i such that

colim Hom(Q,En)

is zero for every Q in Dc(A,d) such that Hq(Q) = 0 for q ≥ −i.
If Ht(A) = 0 for t � 0, then two things happen: first we see that every object
of Dc(A,d) has cohomology bounded above and hence for a Cauchy sequence the
homotopy colimit E = hocolimEn equally has cohomology bounded above, second
we see that A[q] will be contained in P⊥i for q large enough and hence we see E
has cohomology bounded below. Thus the objects of the triangulated category
constructed in Theorem 8.1 have “bounded cohomology” in this case.

Suppose At = 0 for t 6= 0. Then the homotopy colimits E of “compactly supported
Cauchy sequences” are those E in Db(A,d) such that for every n � 0 there is an
En ∈ Dc(A,d) and a map En → E which induces an isomorphism on cohomology
in degrees ≥ −n. If A0 is a (possibly noncommutative) Noetherian ring, this is just
Db

Coh(A0). If A0 is any commutative ring (not necessarily Noetherian) this gives
the pseudo-coherent complexes with bounded cohomology.

10. Recovering DbCoh from Dperf

This is Neeman’s first result (if you are only interested in derived categories of
schemes). Recall that for an additive category D we denote C(D) the category of
contravariant additive functors D → Ab.

Lemma 10.1. Let X be a Noetherian scheme. Then the functor

Y ′ : Db
Coh(OX) −→ C(Dperf (OX)), F 7−→ (M 7→ Hom(M,F ))

is fully faithful.
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Proof. Duppose we have F and G in Db
Coh(OX). Let α : F → G be a map with

Y ′(α) = 0. We want to show that α is zero. Write F = hocolimFn as in Tag 0DJN.
We obtain an exact sequence

R1 lim Hom(Fn[1], G)→ Hom(F,G)→ lim Hom(Fn, G)

(details omitted). However, since the cone Cn,n+1 on Fn → Fn+1 has nonva-
nishing cohomology sheaves only in degrees < n (by construction) we see that
Hom(Cn,n+1[i], G) = 0 for i = −1, 0, 1, 2 and n� 0 (because G is bounded). This
implies that the inverse system {Hom(Fn[1], G)} is eventually constant and hence
has vanishing R1 lim. Thus the term on the left is zero. But if Y ′(α) = 0, then α
maps to zero on the right and hence is zero.

Fullyness follows in exactly the same manner. �

Theorem 10.2. Let X be a Noetherian scheme. Consider the canonical sequence
of subcategories of Dperf (X) as in Example 6.1. Then the functor

Y ′ : Db
Coh(OX) −→ C(Dperf (OX)), F 7−→ (M 7→ Hom(M,F ))

identifies Db
Coh(OX) with the full subcategory of functors which are both colimits of

Cauchy sequences and compactly supported with respect to the canonical sequence.
Moreover, the triangulated structure given in Theorem 8.1 on the essential image
of the functor is equal to the triangulated structure on the source of the functor.

Proof. The functor is fully faithful by Lemma 10.1. The description of the essential
image follows immediately from Lemmas 7.2, 7.3, 7.4, and 7.5.

To show that the distinguished triangles agree we have to show two things

(1) given a system of distinguished triangles En → Fn → Gn → En[1] in
Dperf (OX) such that {En}, {Fn}, {Gn} are Cauchy sequences with colimY (En),
colimY (Fn), and colimY (Gn) compactly supported we can get a distin-
guished triangle in Db

Coh(OX) by “taking homotopy colimits”, and
(2) given a distinguished triangle E → F → G → E[1] in Db

Coh(OX) we can
write it as a “homotopy colimit” of a sequence of distinguished triangles as
in (1).

The quotes indicate we only need to verify equality after applying the functor Y ′,
which makes this doable.

Proof of (1). Set E = hocolimEn, F = hocolimFn, and G = hocolimGn. The
assumption means that E,F,G ∈ Db

Coh(OX) and that the maps En → E, Fn → F ,
and Gn → G are isomorphisms on cohomology sheaves in degrees ≥ −i for n� 0.
Thus we can pick n � m � 0 such that the maps En → E, Fn → F , Gn → G
factor through isomorphisms

τ≥−mEn → E, τ≥−mFn → F, τ≥−mGn → G

Then we get the desired distinguished triangle in Db
Coh(OX) by using

τ≥−mEn → τ≥−mFn → τ≥−mGn → τ≥−mEn[1]

this works because we have the distinghuished triangle En → Fn → Gn → En[1]
and truncating it as shown gives a distinghuished triangle because En will have
vanishing cohomology sheaves in degrees −m − 1,−m,−m + 1 if n,m are large
enough.

https://stacks.math.columbia.edu/tag/0DJN
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Proof of (2). Choose E = hocolimEn and F = hocolimFn as in Tag 0DJN. Choose
an m1 ≥ 1 and a map E1 → Fm1 such that the diagram

E1

��

// E

��
Fm1

// F

commutes. This is possible as F = hocolimFn and E1 is compact, see Tag 094A.
We inductively choose for n > 1 an integer mn ≥ mn−1 and a map En → Fmn

such
that the diagram

En //

��

En−1

��

// E

��
Fmn

// Fmn−1
// F

commutes. (Use the same lemma two times.) Choose distinguished triangles

En → Fmn
→ Gn → En[1]

and choose maps of distinguished triangles

En

��

// Fmn
//

��

Gn //

��

En[1]

��
En+1

// Fmn+1
// Gn+1

// En+1[1]

Since the cohomology sheaves of the sequences {En} and {Fn} stabilize in de-
grees ≥ −i the same is true for the sequence of cohomology sheaves of Gn. Thus
hocolimGn is in Db

Coh(OX). (Warning: we do not yet know this is G; at this point
we do not even have a map from this to G or vice versa.) Thus we have produced
a system of distinguished triangles as in (1). We still have to show that our orig-
inal distinguished triangle agrees with the “homotopy colimit” of this system of
triangles, at least after applying Y .

Now we can also choose maps of distinguished triangles

En

��

// Fmn
//

��

Gn //

��

En[1]

��
E // F // G // E[1]

using the axioms of triangulated categories but the problem is that we don’t know
we can do this compatibly in n for the maps Gn → G. Howeover, we can do the
same thing as before and use that for n� m� 0 the vertical maps in the previous
diagram factor through the truncations to give a commutative diagram

τ≥−mEn

��

// τ≥−mFmn
//

��

τ≥−mGn //

��

τ≥−mEn[1]

��
E // F // G // E[1]

https://stacks.math.columbia.edu/tag/0DJN
https://stacks.math.columbia.edu/tag/094A
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whose vertical arrows are isomorphisms. (Some details omitted.) Then we fix one
n� m > 0 like this and for n′ > n we use the composition

Gn′ → τ≥mGn′ ← τ≥−mGn → G

which is possible because the middle left arrow can be inverted. With these maps
it is clear that G = hocolimGn (look at cohomology sheaves). Then the reader may
check that we have enough commutativity to show that

Y ′(E)→ Y ′(F )→ Y ′(G)→ Y ′(E)[1]

is the colimit of the triangles

Y (En)→ Y (Fn)→ Y (Gn)→ Y (En)[1]

as desired. �

11. Neeman: dual canonical metric

Let D be a triangulated category. Given subcategories P and Q we say P is smaller
that Q if P[n] ⊂ Q for some n ∈ Z. This defines a partial ordering on the set of
subcategories.

Let G be an object of D. Consider the subcategory

Q(G) = (〈G〉[−∞,0])⊥

Observe that M is an object of Q(G) if and only if

Hom(G[j],M) = 0 for all j ≥ 0

Thus we clearly have Q(G) ⊃ Q(G)[−1] ⊃ Q(G)[−2] ⊃ . . ..

If there exists an object G0 such that Q(G0) is minimal with respect to the ordering
defined above, then we say “Q(D) is defined” and we set Q(D) = Q(G0). This is
only well defined up to equality in the partial order above.

If Q(D) is defined, then we consider the sequence

Pi = Q(D)[i], i ≥ 1

which is a sequence of subcategories as in Section 6. Moreover, it is immediate that
this sequence is well defined up to equivalence. Let us call this the dual canonical
sequence of subcategories.

Let D be a triangulated category. Let {Pi} be a sequence of subcategories as in
Section 6 (for example the dual canonical sequence above). We say that an inverse
sequence

E1 ← E2 ← E3 ← . . .

of morphisms of D is an inverse Cauchy sequence if and only if for every i there is
a N such that for n ≥ N the maps

Hom(En, P )→ Hom(En+1, P )

are isomorphisms for all P in Pi.

Let D be an additive category. Denote C(Dopp) the category of covariant additive
functors D → Ab. Denote

U : Dopp −→ C(Dopp), F 7−→ Hom(F,−)
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the Yoneda embedding. Next, assume D is triangulated and {Pi} is a sequence of
subcategories as above. We say B in C(Dopp) is compactly supported with respect
to {Pi} if there exists and i > 0 such that

Hom(B,U(Q)) = 0 for all Q ∈ ⊥Pi
Here we recall that ⊥Pi is the full subcategory of D consisting of objects Q such
that Hom(Q,P ) = 0 for all P ∈ Pi.

12. Recovering Dperf from DbCoh

This is Neeman’s second result (if you are only interested in derived categories of
schemes). Recall that for an additive category D we denote C(D) the category of
contravariant additive functors D → Ab.

Lemma 12.1. Let X be a Noetherian scheme. Then Q(Db
Coh(OX)) exists (see

Section 11) and is equal to Db,≥0
Coh (OX) up to equivalence.

Proof. First choose E ∈ D(OX) a perfect generator for DQCoh(OX), see Tag 0A9A.

Then Lemma 5.3 tells us that Q(E) is contained in Db,≥−i
Coh (OX) for some i. On the

other hand, for G in Db
Coh(OX) we see that Q(G) contains Db,≥−j

Coh (OX) for some
j = j(G) ∈ Z by looking at cohomology sheaves. These two assertions combined
imply the lemma. �

Lemma 12.2. Let X be a Noetherian scheme. Let

E1 ← E2 ← E3 ← . . .

be an inverse sequence in Q(Db
Coh(OX)). The following are equivalent

(1) {En} is an inverse Cauchy sequence with respect to the dual canonical se-
quence of subcategories,

(2) for every i ∈ Z there is an N such that for n > N the maps En+1 → En
induce isomorphisms on cohomology sheaves in degrees ≥ −i.

Proof. By Lemma 12.1 the assertion makes sense and the sequence of subcategories
we are looking at are

Db,≥−1
Coh (OX) ⊂ Db,≥−2

Coh (OX) ⊂ Db,≥−3
Coh (OX) ⊂ . . .

Then it is trivial to conclude by taking truncations for example. �

Lemma 12.3. Let X be a Noetherian scheme. The pseudo-coherent objects of
D(OX) are exactly the derived limits of inverse Cauchy sequences of Db

Coh(OX)
with respect to the dual canonical sequence.

Proof. It is clear from Lemma 12.2 and Tag 0A0J that the derived limit of an
inverse Cauchy sequence is pseudo-coherent. Conversely, if E is pseudo-coherent,
then we can write E = R lim τ≥−nE, see Tag 08D3. �

Lemma 12.4. Let X be a Noetherian scheme. Given an inverse Cauchy sequence

E1 ← E2 ← E3 ← . . .

of Db
Coh(OX) with respect to the dual canonical sequence with derived limit E we

have
Hom(E,−) = colim Hom(En,−)

as functors on Db
Coh(OX).

https://stacks.math.columbia.edu/tag/0A9A
https://stacks.math.columbia.edu/tag/0A0J
https://stacks.math.columbia.edu/tag/08D3
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Proof. Say M is in Db
Coh(OX). If Cn is the cone of E → En, then Cn has vanishing

cohomology in degrees ≥ −i for n � 0. Hence Hom(Cn[i],M) = 0 for n � 0 and
i = −1, 0, 1. From this the reader easily concludes that the colimit is essentially
constant with the correct value. �

Lemma 12.5. Let X be a Noetherian scheme. Let F be a pseudo-coherent object
of D(OX). Denote B = U(F ) : Db

Coh(OX) → Ab the functor M 7→ Hom(F,M).
The following are equivalent

(1) B is compactly supported with respect to the dual canonical sequence as
defined in Section 11, and

(2) F is perfect.

Proof. By Lemma 12.1 we may choose our sequence to be the sequence Pi =

Db,≥−i
Coh (OX). Using the canonical truncations it follows immedately that ⊥Pi =

Db,≤−i−1
Coh (OX). Thus we have to show the following two are equivalent

(1) there exists an i such that Hom(F,Q) = 0 for all Q in Db,≤−i−1
Coh (OX), and

(2) F is perfect.

The implication (2) ⇒ (1) follows from Tag 09M4.

Conversely assume (1) is true for some i. Let x ∈ X be a closed point. Let κ be
the residue field at x. If we apply (1) to κ viewed as a coherent sheaf on X, then
we see that

RHom(F, κ) = RΓ(X,RHom(F, κ))

= RHomOX,x
(Fx, κ)

= RHomκ(F ⊗L
OX

κ, κ)

has vanishing cohomology in degrees ≥ i + 1. (The second equality holds because
x is a closed point.) Thus F ⊗L

OX
κ only has vanishing cohomology in degrees

≤ −i − 1. Hence we see that F is perfect in a neighbourhood of x for example
by Tag 0BCC. This finishes the proof (as any closed subset of X contains a closed
point and being perfect is local on X). �

Theorem 12.6. Let X be a Noetherian scheme. Consider the dual canonical se-
quence of subcategories of Db

Coh(X). Then the functor

U ′ : Dperf (OX)opp −→ C(Db
Coh(OX)opp), F 7−→ (M 7→ Hom(F,M))

identifies Dperf (OX) with the full subcategory of functors which are both colimits of
inverse Cauchy sequences and compactly supported with respect to the dual canonical
sequence. Moreover, the triangulated structure given in Theorem 8.1 on the essential
image of the functor is equal to the triangulated structure on the source of the
functor.

Proof. The fully faithfulness of U ′ is clear from the fact thatDperf (OX) ⊂ Db
Coh(OX).

The essential image of the functor is as given in the statement by Lemmas 12.1, 12.2,
12.3, 12.4, and 12.5. We omit the proof that the distinguished triangles agree. �

https://stacks.math.columbia.edu/tag/09M4
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