Update

Since the last update we have added the following material:

  1. universal property of blowing up (schemes) Tag 0806
  2. admissible blowups (schemes) Tag 080J
  3. strict transform (schemes) Tag 080C
  4. a section on fitting ideals (algebra) Tag 07Z6
  5. flattening by blowing up (schemes) Tag 080X
  6. proper modifications can be dominated by blowups (schemes) Tag 081T
  7. relative spectrum (spaces) Tag 03WD
  8. scheme theoretic closure (spaces) Tag 0831
  9. effective Cartier divisors (spaces) Tag 083A
  10. relative Proj (spaces) Tag 0848
  11. blowing up (spaces) Tag 085P
  12. strict transforms (spaces) Tag 0861
  13. admissible blowups (spaces) Tag 086A
  14. generalities on limits (spaces) Tag 07SB
  15. flattening by blowups (spaces) Tag 087A
  16. David Rydh’s result that a decent space has a dense open subscheme Tag 086U
  17. QCoh is Grothendieck (spaces and stacks) Tag 077V Tag 0781
  18. proper modifications can be dominated by blowups (spaces) Tag 087G
  19. multiple versions of Chow’s lemma (spaces) Tag 089J Tag 088U Tag 089L Tag 089M
  20. David Rydh’s result that a locally separated algebraic space is decent Tag 088J
  21. Grothendieck existence theorem (schemes) Tag 087V Tag 0886
  22. Grothendieck algebraization theorem (schemes) Tag 089A
  23. proper pushforward preserves coherence (spaces) Tag 08AP
  24. theorem on formal functions (spaces) Tag 08AU
  25. Grothendieck existence theorem (spaces) Tag 08BE Tag 08BF
  26. a little bit about m-regularity Tag 08A2
  27. connected spaces are nonempty (thanks to Burt) Tag 004S
  28. decent group space over field is separated Tag 08BH
  29. derived Mayer-Vietoris (ringed spaces) Tag 08BR
  30. derived categories of modules (schemes) Tag 08CV
  31. D(QCoh(O_X) = D_{QCoh}(O_X) for X quasi-compact with affine diagonal (schemes) Tag 08DB
  32. Lipman and Neeman’s result on approximation by perfect complexes (schemes) Tag 08ES
  33. derived categories of modules (spaces), Tag 08EZ
  34. Induction principle for quasi-compact and quasi-separated algebraic spaces using distinguished squares (this is really fun!) Tag 08GL
  35. derived Mayer-Vietoris using distinguished squares Tag 08GS
  36. D(QCoh(O_X) = D_{QCoh}(O_X) for X quasi-compact with affine diagonal (spaces) Tag 08H1
  37. approximation by perfect complexes (spaces) Tag 08HP
  38. bunch of improvements to the bibliography bibliography
  39. being projective is not local on the base Tag 08J0
  40. descent data for schemes need not be effective, even for a projective morphism Tag 08KE
  41. base change for Rf_*RHom(E, G) (schemes) Tag 08IC
  42. base change for Rf_*RHom(E, G) (spaces) Tag 08JM
  43. the Hom functor Tag 08JS
  44. the stack of coherent sheaves Tag 08WC
  45. deformation theory: rings, modules, ringed spaces, sheaves of modules on ringed spaces, ringed topoi, sheaves of modules on ringed topoi Tag 08KX
  46. subtopoi Tag 08LT
  47. standard simplicial resolutions Tag 08N8
  48. cotangent complex Tag 08P6
  49. snake lemma now has a proof without picking elements Tag 010H
  50. constructing polynomial resolutions Tag 08PX
  51. (trivial) Kan fibrations Tag 08NK Tag 08NT
  52. Quillen’s spectral sequence Tag 08RF
  53. cotangent complex and obstructions (algebra) Tag 08SP
  54. cotangent complex and obstructions (ringed spaces) Tag 08UZ
  55. cotangent complex and obstructions (ringed topoi) Tag 08V5
  56. fixed an error in Artin’s axioms point out by David Rydh 2ccbbe3087e4dc2b1df2193c81ede7486931424c
  57. skeleton chapter on dualizing complexes (algebra) Tag 08XH
  58. descent for universally injective morphisms (thanks to Kiran Kedlaya) Tag 08WE

This brings us up to May 1 of this year. At that point I started to work on a chapter on pro-\’etale cohomology, in order to advertise work by Bhargav Bhatt and Peter Scholze in some lectures in Stockholm (KTH). The authors graciously send me a copy of their (for the moment) unfinished manuscript. The chapter covers only a small part of their material, leading up to the definition of constructible complexes and the proper base change theorem. All mistakes are mine. I’ve tried to put most of the background material in other chapters. As is usual for the Stacks project, whenever you try to add something new you are forced to add a lot of background material to go along with it. Here is a list of some of the things we added.

  1. pro-\’etale cohomology (schemes) Tag 0966
  2. Gleason’s theorem on extremally disconnected spaces (I strongly recommend the original paper) Tag 08YH
  3. Hochster’s spectral spaces (I strongly recommend the original paper) Tag 08YF
  4. Stone Cech compactification Tag 0908
  5. Olivier’s theorem on absolutely flat extensions of strictly henselian rings (I strongly recommend the original paper) Tag 092Z
  6. weakly \’etale morphisms (schemes) Tag 094N
  7. derived completion (algebra; I’ve tried to give some references but I’d love to know more about the history of this topic) Tag 091N
  8. constructible sheaves (etale) Tag 05BE Tag 095M
  9. derived completion (ringed topoi) Tag 0995 Tag 099L Tag 099P
  10. derived category D_c (etale) Tag 095V

Enjoy!