- PART I. Integration.

1. Compute the following integrals.
(a) $\int(\ln x)^{2} d x$

Integrate by parts twice, the first time choose:

$$
f=(\ln x)^{2}, \quad g=1
$$

and the second time choose:

$$
f=\ln x, \quad g=1 .
$$

Then

$$
\begin{gathered}
\int(\ln x)^{2} d x=x(\ln x)^{2}-2 \int x \frac{\ln x}{x} d x= \\
x(\ln x)^{2}-2\left\{x \ln x-\int x \frac{1}{x} d x\right\}= \\
x(\ln x)^{2}-2 x \ln x+2 x+C .
\end{gathered}
$$

(b) $\int \frac{d x}{x^{2} \sqrt{4 x^{2}+1}}$

Perform the trig substitution $x=\frac{1}{2} \tan \theta, d x=\frac{1}{2} \sec ^{2} \theta d \theta$, then

$$
\begin{gathered}
\int \frac{d x}{x^{2} \sqrt{4 x^{2}+1}}= \\
=\int \frac{2 \sec \theta}{\tan ^{2} \theta}=2 \int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=
\end{gathered}
$$

(use substitution $t=\sin \theta$) $=-2 \frac{1}{\sin \theta}+C=-\frac{\sqrt{4 x^{2}+1}}{x}+C$ where the last equality holds because

$$
x^{2}=\frac{\tan ^{2} \theta}{4}=\frac{\sin ^{2} \theta}{4 \cos ^{2} \theta}=\frac{\sin ^{2} \theta}{4\left(1-\sin ^{2} \theta\right)} .
$$

Thus

$$
4 x^{2}=4 x^{2} \sin ^{2} \theta+\sin ^{2} \theta
$$

and

$$
\sin ^{2} \theta=\frac{4 x^{2}}{4 x^{2}+1} .
$$

This last part is not necessary. You can just substitute

$$
\theta=\tan ^{-1}(2 x)
$$

(c) Compute $\int \frac{x^{2}-2 x-1}{(x-1)^{2}\left(x^{2}+1\right)} d x$

Apply partial fractions:

$$
\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C x+D}{x^{2}+1}=\frac{x^{2}-2 x-1}{(x-1)^{2}\left(x^{2}+1\right)}
$$

and find

$$
A=1, B=C=D=-1
$$

Hence,

$$
\begin{gathered}
\int \frac{x^{2}-2 x-1}{(x-1)^{2}\left(x^{2}+1\right)} d x= \\
=\ln |x-1|-\frac{1}{x-1}-\frac{1}{2} \ln \left(x^{2}+1\right)-\arctan x+c
\end{gathered}
$$

2. Determine whether the following integrals are converging or diverging.
(a) $\int_{1}^{+\infty} \frac{\arctan x}{x^{2}+7} d x$

Since

$$
\frac{\arctan x}{x^{2}+7} \leq \frac{\pi}{2} \frac{1}{x^{2}}
$$

our integral converges by the comparison test with a p-integral with $p>1$.
(b) $\int_{-\infty}^{+\infty} x^{3} e^{-x^{4}} d x$

$$
\begin{gathered}
\int_{-\infty}^{+\infty} x^{3} e^{-x^{4}} d x= \\
=\int_{-\infty}^{0} x^{3} e^{-x^{4}} d x+\int_{0}^{+\infty} x^{3} e^{-x^{4}} d x= \\
=2 \int_{0}^{+\infty} x^{3} e^{-x^{4}} d x=2 \lim _{t \rightarrow+\infty} \int_{0}^{t} x^{3} e^{-x^{4}} d x
\end{gathered}
$$

But,

$$
\int_{0}^{t} x^{3} e^{-x^{4}} d x=-\frac{1}{4} e^{-t^{4}}+\frac{1}{4} \rightarrow \frac{1}{4}
$$

as t goes to infinity. Hence our integral converges.

- Part II. Sequences and Numerical series.

1. Determine whether the sequence converges or diverges. If it converges, find the limit.
(a) $a_{n}=n \sin (2 / n)$

It converges to 2, using L'Hopital $\left(\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=2\right.$.)
(b) $a_{n}=2^{n} / n$!

$$
0<a_{n} \leq 4 / n \rightarrow 0,
$$

hence a_{n} converges to 0 by the squeeze theorem.
2. Determine whether the series is convergent or divergent.
(a) $\sum_{n=1}^{\infty} \frac{n+4^{n}}{n+6^{n}}$.

It converges by comparison with the geometric series with $r=4 / 6$. Indeed,

$$
\frac{n+4^{n}}{n+6^{n}} \leq 2 \frac{4^{n}}{6^{n}}
$$

(b) $\sum_{n=1}^{\infty}(-1)^{n} \cos (\pi / n)$

It diverges by the divergence test.
3. Determine whether the series is convergent or divergent.
(a) $\sum_{n=1}^{\infty} \frac{n+5}{\sqrt[3]{n^{7}+n^{2}}}$

Apply the limit comparison test with

$$
a_{n}=\frac{n+5}{\sqrt[3]{n^{7}+n^{2}}} \quad b_{n}=\frac{n}{n^{7 / 3}}=\frac{1}{n^{4 / 3}} .
$$

Then,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1>0
$$

and our series converges because $\sum_{n} b_{n}$ is a p-series with $p=$ $4 / 3>1$.
(b) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$

Set $f(x)=\frac{\ln x}{x^{3}}$ and check that

$$
f^{\prime}=-3 x^{-4} \ln x+x^{-4}<0
$$

if $-3 \ln x+1<0$ that is for $\ln x>1 / 3$ which is true if $x>e^{1 / 3}$. Then compute,

$$
\int_{1}^{\infty} \frac{\ln x}{x^{3}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{\ln x}{x^{3}} d x
$$

Since,

$$
\begin{aligned}
\int \frac{\ln x}{x^{3}} d x & =-\frac{1}{2 x^{2}} \ln x+\frac{1}{2} \int \frac{1}{x^{3}} d x= \\
& -\frac{1}{2 x^{2}} \ln x-\frac{1}{4 x^{2}}
\end{aligned}
$$

then

$$
\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{\ln x}{x^{3}} d x=\lim _{t \rightarrow \infty}-\frac{1}{2 t^{2}} \ln t-\frac{1}{4 t^{2}}+\frac{1}{4}=\frac{1}{4} .
$$

Thus our series converges by the integral test.
4. Determine whether the series is conditionally convergent, absolutely convergent or divergent.
(a) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}$

By the root test, the series is diverging. Indeed,

$$
\sqrt[n]{\left|a_{n}\right|}=\left(1+\frac{1}{n}\right)^{n} \rightarrow e>1
$$

(b) $\sum_{n=2}^{\infty}(-1)^{n} \frac{10^{n}}{(n+1) 4^{2 n+1}}$

By the ratio test, the series converges absolutely. Indeed,

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \rightarrow 10 / 16<1 .
$$

- Part III. Power series.

1. Find the radius of convergence and interval of convergence of the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n^{2} 5^{n}}
$$

By the ratio test,

$$
\left|a_{n+1}\right| /\left|a_{n}\right| \rightarrow|x| / 5<1,
$$

hence $R=5$. The interval of convergence is $[-5,5]$, extrema included because

$$
x=5 \Rightarrow \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}}
$$

which converges by the alternating series test ($b_{n}=1 / n^{2}$ converges to 0 and it is decreasing), while

$$
x=-5 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

which is a p-series with $p=2>1$ and hence it converges.
2. Use the definition to find the Taylor series of $f(x)=1 / \sqrt{x}$ centered at $a=9$. Also find the associated radius of convergence.

Compute

$$
f^{\prime}(x)=-1 / 2 x^{-3 / 2}, \quad f^{\prime \prime}(x)=3 / 2^{2} x^{-5 / 2}, \quad f^{\prime \prime \prime}(x)=-3 \cdot 5 / 2^{3} x^{-7 / 2}
$$

Hence

$$
f(9)=1 / 3, f^{\prime}(9)=-1 /\left(2 \cdot 3^{-3}\right), f^{\prime \prime}(9)=3 /\left(2^{2} 3^{-5}\right), f^{\prime \prime \prime}(x)=-(3 \cdot 5) /\left(2^{3} 3^{-7}\right)
$$

Thus,

$$
f^{(n)}(9)=\frac{(-1)^{n} 1 \cdot 3 \cdot 5 \cdot(2 n-1)}{2^{n} 3^{2 n+1}}
$$

The desired Taylor series is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 1 \cdot 3 \cdot 5 \cdot(2 n-1)}{2^{n} 3^{2 n+1} n!}(x-9)^{n}
$$

Using the ratio test one finds that the associated radius of convergence is $R=9$.

