
Resolution of Singularities on Elkies’ Models of

Towers of Modular Curves

David Marcil

Summer 2017



Contents

1 Construction of Modular Curves 3

1.1 Complex Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Modular Curve X(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Modular Curve X0(N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Explicit Modular Curves 11

2.1 The curves X0(ln) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Construction of Modular Curves - Elkies’ Proposition . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Model for X0(2n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Model for X0(3n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Resolution of Singularities 18

3.1 Normalization of Singular Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Example 1 : Nodal Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Example 2 : Quadrifolium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Standard Quadratic Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Example 3 : Lemniscate of Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Tower of Modular Curves X0(3n) 28

4.1 Singularities of Elkies Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Resolution of Singularities on Elkies Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Ramification of π0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Structure of fibers of π0 using Galois theory . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Genus of X0(3n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1



Introduction

This document serves as an introduction to modular curves. Its main goal is to study some explicit modular

curves of the form X0(N). One may skip some of the definitions and focus on the specific examples, coming

back to the theory later if needed. Although, a proper introduction to algebraic geometry is probably nec-

essary to understand some concepts not introduced here.

In 2001, Elkies published a paper (see [E]) giving many explicit models of modular curves, and we aim

to understanding their stucture as much as possible.

In Chapter 1, we first introduce the notion of elliptic curves as algebraic varieties. They are central

objects of modern algebra and we discuss their importance by looking at their behavior over Q. Their classi-

fication naturally leads to new algebraic varieties, called modular curves. The main examples we will consider

are modular curves X0(N), for integers N ≥ 1. This section can easily be omitted for more advanced readers.

In Chapter 2, we take a look at Elkies’ paper in greater detail. Some specific notions on the theory of

modular curve are first introduced to better understand Elkies’ proposition. Then, the construction of the

first two models given in [E] are presented. We discuss a few of their notable properties.

In Chapter 3, the notion of resolution of singularities of an algebraic curve is introduced. Since Elkies’

models reveal themselves to be singular, we familiarize ourselves with the idea of finding the smooth model

of a curve. We consider a few examples to learn various techniques and build up our intuition.

In Chapter 4, we finally attack our main problem. We look exclusively at the modular tower X0(3n)

given by Elkies. We resolve the singularities of the curves in Elkies’ model for this tower. This leads to a

surprising link between modular curves and Fermat curves. Then, we end this document by looking at maps

between curves in this tower to find a general formula for the genus of X0(3n).
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Chapter 1

Construction of Modular Curves

1.1 Complex Elliptic Curves

In algebraic geometry, an elliptic curve is a projective plane curve E : y2 = 4x3 + ax + b in P2(C), some

a, b ∈ C, for which 4a3 + 27b2 6= 0. This is simply the condition for this curve to be nonsingular. Let’s first

study the case when a, b ∈ Q, in which case we say that E is defined over Q. In general, if a, b ∈ K, some

field K, we say that E is defined over K, and write E(K) for the set of all its points defined over K.

Before explaining their relation with complex tori, let us simply show a bit of their behavior over the

rational numbers, to see the interest they generate in algebra. Firstly, observe that by homogenizing the

polynomial for E, one obtains y2z = 4x3 + axz2 + bz3. Then, we see that these curves have only one point

at infinity, i.e. O = [0 : 1 : 0] ∈ E(Q). Furthermore, elliptic curves are given by a polynomial of degree 3,

hence they have genus 1. In fact, one can show that any curve of genus one over C can be described by such

a polynomial equation. Thus, one can equivalently define elliptic curves as any genus one curves over C.

The solution space E(R) of an elliptic curve E over R always looks like one of these two curves. The

important fact here is that one can define a group structure on E.

Remark 1.1.1. The colored lines here demonstrate how to add two points on E.
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Let L : Ax+By = D be a line passing through two distinct rational points Pi = (xi, yi) ∈ E(Q). We can

assume that A,B,D ∈ Q. Using Bézout theorem, we know L and E both intersect at three points, counting

multiplicities.

If P1 and P2 are vertically aligned, we know this third intersection point is P3 = O. In this case, we

define P1 ⊕ P2 = O. Otherwise, we can rewrite L : y = mx+ c, with m, c ∈ Q. Then, we have

4x3 + ax+ b− (mx+ c)2 = 4(x− x1)(x− x2)(x− x3) , some x3 ∈ C

Since E is defined over Q and the coefficient of x2 is −4(x1 + x2 + x3), we must have x3 ∈ Q. Hence,

our third intersection is P3 = (x3, y3), for y3 = mx3 + c, again a rational point. In this case we define

P1 ⊕ P2 = (x3,−y3). In both scenario, we can see P1 ⊕ P2 as the reflection of P3 w.r.t. the x-axis (which

sends O back to itself). Above we assume that P1 and P2 were distinct, but if P1 = P2, one simply picks L

to be the tangent of E at P1.

Then, one readily sees that the identity element is O. For any P = (x, y) ∈ E(Q), the line passing

through P that intersect E at infinity must be vertical. Thus, the third intersection point is (x,−y), and

so P ⊕ O = O ⊕ P = (x, y) = P . This also shows that the inverse of P = (x, y) is −P = (x,−y). As we

have just seen, this operation is closed in E(Q), and the fact that this operation is abelian is trivial. Its

associativity is much more challenging; nonetheless provable.

In the 1920s, Mordell’s Theorem showed that for any elliptic curve E, E(Q) is finitely generated. This

implies that E(Q) is always of the form

E(Q) = T × Zr

where T is a finite group, called the torsion group of E, and r is the rank of E. The torsion group is very

well understood, thanks to Mazur’s theorem. The rank however still has many secrets. The BSD conjecture

attempts to predict the behavior of the rank of E by looking at the L-function attached to E. Despite

remarkable progress towards proving the BSD however, the rank remains very mysterious. It is actually still

considered as one of the most difficult unsolved mathematical problem.

To unravel these mysteries, mathematicians tried to classify these elliptic curves to learn their global

behavior; e.g. When is E(Q) finite? When does E(Q) contain a subgroup of order N? This is where the link

between elliptic curves E ⊂ P2 and complex tori comes in. These two mathematical objects, as we’ll soon

see, are completely equivalent to one another. Their relation lies in terms of their function fields. Firstly,

one needs to know what a complex torus is and see what are the function defined on it.

Definition 1.1.2. The upper half complex plane is a subset of C defined as

H = { z ∈ C : =(z) > 0 }

Definition 1.1.3. A lattice in C is defined by two complex numbers ω1, ω2 ∈ C such that ω1/ω2 ∈ H as

ω1Z⊕ ω2Z = { mω1 + nω2 : m,n ∈ Z2 }

Definition 1.1.4. Given a lattice Λ = ω1Z⊕ ω2Z, we define a complex torus C/Λ as the quotient of C by

Λ, denoted as

C/Λ = { z + Λ : z ∈ C }
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Figure 1.1: Image from [DS]

As the figure above suggests, the points in the rectangle form an appropriate set of representatives for

C/Λ. Then, opposite sides are equivalent (demonstrated by the circle cut in half), hence one can glue two

of them together to obtain a tube, and do the same with the remaining two to obtain a torus.

Analytic functions on a complex torus C/Λ are simply Λ-periodic meromorphic functions, i.e. f : C →
C ∪ {∞}, with f(z + Λ) = f(z) for all z ∈ C. The Weierstrass ℘-function

℘Λ(z) =
1

z2
+

∑
w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
(1.1)

and its derivative

℘′Λ(z) = −2
∑
w∈Λ

1

(z − w)3
(1.2)

are two such functions, and their poles are exactly at z ∈ Λ. The study of these two functions alone is

sufficient since one can prove that the field of meromorphic functions on C/Λ is exactly C(℘Λ, ℘
′
Λ). The

notation ℘Λ serves to emphasize the dependence of the function on the choice of lattice.

Furthermore, for all k > 2 even, define the function Gk : { Lattices on C } → C as

Gk(Λ) =
∑

w∈Λ\{0}

1

wk
, (1.3)

and show that this sum is always absolutely convergent.

Remark 1.1.5. If we restrict our choices to lattices of the form Λτ = τZ⊕Z, where =(τ) > 0, this becomes

Gk : H → C as Gk(τ) =
∑

(c,d)∈Z2

(c,d) 6=(0,0)

1

(cτ + d)k
(1.4)

in which case this is called an Eisenstein series. As more advanced readers certainly know, such functions

are exemples of modular form of weight k and level 1. For more on this subject, see [DS], chapter 1.

Proposition 1.1.6. Let Λ be some lattice, and write ℘ and ℘′ for ℘Λ and ℘′Λ. Then, these two functions

on C satisfy the relation

(℘′)2 = 4℘3 − g2(Λ)℘− g3(Λ)

where g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ) are constants.

5



This shows that for the elliptic curve E : y2 = 4x3 − g2(Λ)x− g3(Λ) (this variety is indeed nonsingular),

we have a well-defined map

(℘Λ, ℘
′
Λ) : C/Λ→ E as z 7→ (℘Λ(z), ℘′Λ(z)) (1.5)

As both ℘Λ, ℘′Λ have a unique pole at the origin, one takes its image as (℘Λ(0), ℘′Λ(0)) = O. Most

importantly, we may show that (℘Λ, ℘
′
Λ) is a bijection between the points of C/Λ and the points of E.

Furthermore, there is a converse to this statement.

Proposition 1.1.7. Given an elliptic curve E : y2 = 4x3 + ax+ b defined over C, then there exists a lattice

Λ on C such that a = −g2(Λ) and b = −g3(Λ).

All these results are proved in [DS], chapter 1. Therefore, one can completely interchange complex tori

and algebraic elliptic curves. Then, to study the general structure of these special curves in P2, it is natural

to classify them as complex tori, accordingly called complex elliptic curves, and construct modular curves,

as we’ll see in the following sections.

1.2 Modular Curve X(1)

Consider the set S(1) of all isomorphism classes of complex elliptic curves. In this section, we see how the

points of S(1) are in canonical bijection with the complex points of a projective curve over C, which we call

X(1). The points at infinity of X(1), called cusps, will not correspond to points of S(1) but are necessary

to properly define X(1) as an algebraic curve.

Let us first study the structure of S(1), that is, describe what makes two complex tori isomorphic. Firstly,

note that for a lattice Λ = ω1Z⊕ ω2Z, different choices of ωi can generate the same lattice, hence the same

complex torus. For instance, picking ω′1 = ω2 and ω′2 = −ω1 obviously generates the same lattice. Similarly,

Λ can also be formed by ω′1 = ω1 + ω2 and ω′2 = ω2. One readily notices that these two change of basis

correspond respectively to the following linear transformations(
ω′1
ω′2

)
=

(
0 1

−1 0

)(
ω1

ω2

)
and

(
ω′1
ω′2

)
=

(
1 1

0 1

)(
ω1

ω2

)
(1.6)

These two matrices S =

(
0 1

−1 0

)
and T =

(
1 1

0 1

)
are generators of the set SL2(Z) of 2 × 2 matrices

over Z with determinant 1. Thus, this next result shows that the two change of basis above are, in some

sense, the only ones.

Lemma 1.2.1. Consider two lattices Λ = ω1Z ⊕ ω2Z and Λ′ = ω′1Z ⊕ ω′2Z, with both ω1/ω2, ω′1/ω
′
2 ∈ H.

Then, Λ′ = Λ if and only if(
ω′1
ω′2

)
=

(
a b

c d

)(
ω1

ω2

)
, for some

(
a b

c d

)
∈ SL2(Z)

Proof. Two lattices are the same if and only if {ω′1, ω′2} ∈ Λ and {ω1, ω2} ∈ Λ′. This is condition is satisfied

exactly when there exists some a, b, c, d ∈ Z such that(
ω′1
ω′2

)
=

(
a b

c d

)(
ω1

ω2

)
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and that

(
a b

c d

)
is invertible over Z. Therefore, it has determinant ±1. But one can easily show that

=(ω′1/ω
′
2) =

(ad− bc) · =(ω1/ω2)

|cω1 + dω2|2

It follows immediately that ω′1/ω
′
2 ∈ H exactly when this determinant is 1, i.e.

(
a b

c d

)
∈ SL2(Z).

This characterizes the equality between two complex tori. Furthermore, skipping through quite a few

definitions (see [DS], Corollary 1.3.3), one can show that two complex tori C/Λ and C/Λ′ are isomorphic if

and only if Λ′ = αΛ, for some α ∈ C.

Considering this, given any Λ = ω1Z⊕ω2Z, one can take τ = ω1/ω2 and α = ω2, to obtain α(τZ⊕Z) = Λ.

This means that, for Λτ := τZ ⊕ Z, every complex tori C/Λ is isomorphic to some C/Λτ . Therefore, to

represent isomorphism classes, one can focus only on lattices generated by some τ ∈ H and 1. However,

it is still possible to choose two different τ, τ ′ ∈ H and obtain C/Λτ ∼= C/Λτ ′ . Using Lemma 1.2.1, this is

possible exactly when

α

(
τ ′

1

)
=

(
a b

c d

)(
τ

1

)
, for some

(
a b

c d

)
∈ SL2(Z) (1.7)

Clearly, it follows that α = cτ + d, hence the following equality holds

τ ′ =
aτ + b

cτ + d
(1.8)

Consequently, let us define the left action of the modular group Γ(1) = SL2(Z)/{±1} on H as(
a b

c d

)
(τ) =

aτ + b

cτ + d
, where

(
a b

c d

)
∈ Γ(1) (1.9)

Remark 1.2.2. Since both matrices γ,−γ ∈ SL2(Z) send τ to the same complex number, it is most natural

to define this as an action of Γ(1) instead of SL2(Z).

Therefore, (1.8) shows that two complex tori C/Λτ and C/Λτ ′ are isomorphic if and only if τ and τ ′ are

on the same Γ(1)-orbit. Understanding isomorphism classes of complex elliptic curves is therefore equivalent

to describing the set of orbits

Y (1) = Γ(1)\H = {Γ(1)τ : τ ∈ H}. (1.10)

This becomes an easy task when one recalls that the two matrices

S =

(
0 −1

1 0

)
and T =

(
1 1

0 1

)
(1.11)

from (1.6), respectively sending τ ∈ H to −1/τ and τ + 1, generate Γ(1). Thus, for any τ ∈ H, one can

find τ ′ in the same orbit with norm ≥ 1, using S, and with <(τ ′) ∈ (−1/2, 1/2], using T . This τ ′ is clearly

unique, except if |τ ′| = 1. There, one restricts <(τ ′) ∈ [0, 1/2] to obtain uniqueness. Then, this region, called

the Fundamental Domain of Γ(1), appropriately represents Y (1) as

Y (1) = { τ ∈ H : |τ | ≥ 1,<(τ) ∈ (−1/2, 1/2] and if |τ | = 1, then <(τ) ∈ [0, 1/2] } (1.12)
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Figure 1.2: Fundamental Domain of Γ(1). Image from [DS]

This action on H gives a canonical bijection between S(1) and Y (1), thus identifies Y (1) as the complete

classification of isomorphism classes of elliptic curves. But one can do more by extending this action to

H∗ = H ∪ P1(Q). For γ =

(
a b

c d

)
∈ Γ(1), it is understood that

γ(∞) = a/c and γ(−d/c) =∞ (1.13)

except if c = 0, in which case ∞ is mapped back to itself. The set of orbits is now denoted by X(1).

Given any fraction a/c ∈ Q with gcd(a, c) = 1, there exists b, d ∈ Z such that ad − bc = 1, hence(
a b

c d

)
∈ SL2(Z) sends ∞ to a/c. Therefore, the Γ(1)-orbit of ∞ is exactly P1(Q). Thus, we simply have

X(1) = Y (1)∪{∞}, where this single point at infinity (which one can see as on top of this grey area) doesn’t

represent an isomorphism class of elliptic curves. It is called a cusp of X(1).

The motivation behind this extension is because it makes X(1) into a compact Riemann surface, see [S].

It is then a known result from complex analysis that any compact Riemann surfaces can be described as

the solution set of polynomial equations. Hence, X(1) is an algebraic variety, and it is actually a curve. We

call X(1) a modular curve. In this case, using the proper tools, it is actually not too difficult to prove that

X(1) is isomorphic to P1(C) (again see [S]). This means that the isomorphism classes of elliptic curves are

actually well-structured enough to again form an algebraic curve.

1.3 Modular Curve X0(N)

We will now construct a different type of modular curves, which classify elliptic curves, together with extra

data, up to isomorphism. Let E = C/Λ be an elliptic curve, for some lattice Λ = ω1Z⊕ ω2Z. Then, for any

integers N ≥ 1, observe that the kernel of the multiplication by N map [N ] : E → E, defined by

z + Λ 7→ Nz + Λ (1.14)

is a subgroup of E isomorphic to Z/NZ×Z/NZ, and generated by ω1/N and ω2/N . It is the set of N-torsion

points of E. The subgroups isomorphic to Z/NZ in this kernel are the cyclic subgroup of order N of E. It

is trivial to see that there are exactly N + 1 of them, all of the 〈aω1+bω2

N + Λ〉, where gcd(a, b,N) = 1.
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One can then classify complex elliptic curves, while still holding cyclic subgroup data. The modular

group Γ(1) is no longer appropriate. One needs to find a restriction of Γ(1) that knows when isomorphisms

of complex tori send cyclic sugroups of order N to one another.

Definition 1.3.1. Given an integer N ≥ 1, consider the congruence subgroup Γ0(N) of Γ(1), defined as

Γ0(N) =

{(
a b

c d

)
∈ Γ(1) :

(
a b

c d

)
≡
(
∗ ∗
0 ∗

)
mod N

}
(1.15)

This set Γ0(N) is easily seen to be a subgroup of Γ(1). By describing explicit orbits of the action defined

in (1.9) with respect to this subgroup, we can likewise find a fundamental domain for Γ0(N), to obtain Y0(N)

(see [DS] - Chapter 3 for images).

Y0(N) = { Γ0(N)τ : τ ∈ H } (1.16)

Definition 1.3.2. An enhanced elliptic curve for Γ0(N) is a pair (E,C) where E is an elliptic curve and

C is a cyclic subgroup of order N of E. One refers to such pairs (E,C) and (E′, C ′) as equivalent if some

isomorphism E → E′ maps C to C ′. The set of equivalence classes is a moduli space for Γ0(N), and one

refers to it as

S0(N) = {Enhanced elliptic curves for Γ0(N)}/ ∼ (1.17)

Theorem 1.3.3. Let N ≥ 1 be an integer. The moduli space S0(N) is given by

S0(N) = {(Eτ , 〈1/N + Λτ 〉) : τ ∈ H}

where Eτ = C/Λτ . Moreover, two pairs (Eτ , 〈1/N +Λτ 〉) and (Eτ ′ , 〈1/N +Λτ ′〉) in S0(N) are equivalent if

and only if τ and τ ′ are in the same Γ0(N)-orbit. Hence, the map S0(N) → Y0(N) defined as follows is a

bijection

(Eτ , 〈1/N + Λτ 〉) 7→ Γ0(N)τ (1.18)

Proof. Let (E,C) ∈ S0(N) be any enhanced elliptic curve for Γ0(N). We can assume E = Eτ , in which case

we have C = 〈 cτ+dN +Λτ 〉, where gcd(c, d,N) = 1. We know ∃ a, b, k ∈ Z such that ad− bc+kN = 1, namely

γ =

(
a b

c d

)
∈ SL2(Z/NZ). One can show that the natural homomorphism from SL2(Z) to SL2(Z/NZ)

is surjective, hence we may assume γ ∈ SL2(Z) by adjusting its entries by multiples of N . Since for all

m1,m2 ∈ Z,〈
(c+m1N)τ + (d+m2N)

N
+ Λτ

〉
=

〈
cτ + d

N
+m1τ +m2 + Λτ

〉
=

〈
cτ + d

N
+ Λτ

〉
= C ,

this slight modification of c, d doesn’t affect C. Then, for τ ′ = γ(τ) and α = cτ + d, we have αΛ′τ = Λτ , as

well as

α〈1/N + Λτ ′〉 =

〈
cτ + d

N
+ Λτ

〉
= C

Thus, (E,C) ≡ (E′τ , 1/N + Λ′τ ), proving the first part of the statement.

Now, take (Eτ , 1/N + Λτ ) ∈ S0(N). If τ ′ = γ(τ), for some γ =

(
a b

c d

)
∈ Γ0(N), then again, for

α = cτ + d, we have αΛτ ′ = Λτ , and

α〈1/N + Λτ ′〉 =

〈
cτ + d

N
+ Λτ

〉
= 〈d/N + Λτ 〉 = 〈1/N + Λτ 〉 ,
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where this last equation holds because 1 = gcd(c, d,N) = gcd(d,N), i.e. d has order N so it is a generator

as well.

Conversely, assume (Eτ , 1/N + Λτ ) ≡ (Eτ ′ , 1/N + Λτ ′) in S0(N). Then, using the same argument as

above, we know τ ′ = γ(τ) for some γ =

(
a b

c d

)
∈ SL2(Z), and for α = cτ + d,

α〈1/N + Λτ ′〉 =

〈
cτ + d

N
+ Λτ

〉
= 〈1/N + Λτ 〉

It follows that c ≡ 0 mod (N), that is, γ ∈ Γ0(N).

In [DS], section 1.5, a proof of a very similar statement is provided, and this is an adapted version. This

result shows that for every enhanced elliptic curves (E,C) for Γ0(N), one can always consider E = Eτ for

some τ ∈ H, and its cyclic subgroup to be C = 〈1/N +Λτ 〉. Moreover, it shows that Γ0(N) brings the same

relation between S0(N) and Y0(N) as Γ(1) does for S(1) and Y (1).

Furthermore, as in the previous section, it is possible to compactify Y0(N), by again considering this

action of Γ0(N) on H∗ = H ∪ P(Q). The new set of orbits is denoted X0(N). Here however, it is not true

that all points in Q are in the same Γ0(N)-orbit as ∞. Hence, distinct cusps will form in X0(N), but there

are still only finitely many. Again, the cusps do not represent isomorphisms classes. The points of X0(N)

that do represent isomorphisms classes of enhanced elliptic curves, i.e. the points in Y0(N) ⊂ X0(N), will

now be refered to as the complex point of X0(N).

Doing all of this again makes X0(N) into a compact Riemann surfaces, thus it is still described by

polynomial equations. One can even show that these polynomials are defined over Q (see [DS], chapter 7).
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Chapter 2

Explicit Modular Curves

2.1 The curves X0(l
n)

Take l ≥ 2 prime. As we concluded in the previous chapter, the complex points of the modular curve X0(ln)

over C are in canonical bijection with isomorphism classes of elliptic curves over C together with a cyclic

subgroup of order ln. Recall that this interpretation of the complex points does not extend to the cusps of

X0(ln), and they will require careful manipulation later on.

Note that in [E], Elkies phrases the moduli interpretation of the complex points of X0(ln) in terms of

the associated isogenies, as follows :

Given a point (C/Λτ , 〈1/ln + Λτ 〉) ∈ Y0(ln) ⊂ X0(ln), take ρ = 1/ln. The lattice Λτ,ρ = τZ + ρZ can

be seen as a superlattice of Λτ , and therefore gives rise to the cyclic quotient map from C/Λτ onto C/Λτ,ρ,
defined by z + Λτ 7→ z + Λτ,ρ.

Figure 2.1: Image from [DS].

The kernel of this map is obviously C = 〈1/ln + Λτ 〉. It follows that from a pair (C/Λτ , C), one can

always construct this cyclic ln-isogeny on Eτ . Conversely, from any cyclic ln-isogeny ϕ on Eτ , one may take

the enhanced elliptic curve (C/Λτ , ker(ϕ)).

Then, to fully identify the points of Y0(ln) as ln-isogeny, we need to define an equivalence relation on

such maps that ensures that two pairs of enhanced elliptic curves (E1, C1), (E2, C2) ∈ Y0(ln) are equivalent

if and only if their corresponding isogenies are equivalent.
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Simply say that two ln-isogenies of elliptic curves ϕi : Ei → E′i are equivalent if it is possible to form a

commutative diagram

E1
ϕ1 //

γ

��

E′1

γ′

��

E2
ϕ2 //

OO

E′2

OO

where both γ : E1 → E2 and γ′ : E′1 → E′2 are isomorphisms. Since E′i is isomorphic to Ei/ ker(ϕi), where

we use the same notation for the subgroup ker(ϕi) and the superlattice it forms, we know this diagram

exists exactly when (E1, ker(ϕ1)) ∼= (E2, ker(ϕ2)). Thus, one can identify the complex points of X0(ln) as

isomorphisms classes of elliptic curves with a cyclic ln-isogeny. As isogenies are simply group homomorphisms

on elliptic curves, one can avoid all this work by simply noting that identifying a cyclic subgroup of E1 is

equivalent as giving a group homomorphism on E with a cyclic subgroup, but our description above simply

aims to give details to the general picture.

Observe that any cyclic ln-isogeny can be decomposed into a sequence of l-isogenies

E0 → E1 → . . .→ En (2.1)

by taking the l-cyclic quotient map n times, where all the composite isogenies Ej−1 → Ej+1 are cyclic

l2-isogenies.

Remark 2.1.1. Since ker(Ej−1 → Ej) = 〈1/l + Λτ 〉, we know the lattice of Ej is Λτ,ρ = τZ ⊕ ρZ, where

ρ = 1/l. Only if we take the quotient of Ej by one of the l cyclic subgroups 〈(aτ + ρ)/l + Λτ,ρ〉, for

a = 0, . . . , l − 1, do we obtain ker(Ej−1 → Ej+1) ∼= Z/l2Z. For any other one, i.e. 〈τ/l + Λτ,ρ〉, one easily

sees that we would get ker(Ej−1 → Ej+1) ∼= Z/lZ× Z/lZ. Thus, the extra condition that all Ej−1 → Ej+1

are cyclic is there to ensure that all sequences such as (2.1) do represent a cyclic ln-isogeny.

Then, as one might have realized, for any 0 < m ≤ n, the maps Ej → Ej+m are cyclic lm-isogenies, where

j = 0, . . . , n−m. Thus, we have n−m+1 natural maps πj : X0(ln)→ X0(lm) extracting the “subisogenies”

Ej → Ej+m. These maps have degree ln−m, and in particular, they give us the sequence of degree l maps

X0(ln)
π0−→ X0(ln−1)

π0−→ · · · π0−→ X0(l2)
π0−→ X0(l) (2.2)

2.2 Construction of Modular Curves - Elkies’ Proposition

To understand Elkies proposition, one needs the Atkin-Lehner involution w
(n)
l : X0(ln) → X0(ln). It maps

a cyclic ln-isogeny E0 → En to its dual isogeny En → E0.

In our case, given any cyclic ln-isogeny ϕ : E0 → En, let C0 = 〈1/ln + Λτ 〉 be its kernel, where

Λτ = τZ ⊕ Z is the lattice of E0. Then, the lattice of En is Λτ,ρ = τZ ⊕ ρZ, where ρ = 1/ln. Now, take

Cn = 〈τ/ln + Λτ,ρ〉, a cyclic subgroup of En. Then, let ϕn : En → E′n be the cyclic quotient map of En

by Cn. Since the lattice of E′n is given by Λρτ,ρ = ρτZ ⊕ ρZ, we can simply rescale it back to E0 with

ϕ′n : E′n → E0 as z + Λρτ,ρ 7→ lnz + lnΛρτ,ρ = lnz + Λτ . The composition ϕdual = ϕ′n ◦ ϕn : En → E0 is

called the dual isogeny of ϕ.

Remark 2.2.1. On H, we can also see the Atkin-Lehner involution as the automorphism w
(n)
l (τ) = −1/lnτ .
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Therefore, we can take the Atkin-Lehner involution w
(1)
l of every l-isogeny in (2.1) to obtain the dual

sequence

En → En−1 → . . .→ E0 (2.3)

Then one readily sees that extracting an lm-isogeny and applying w
(m)
l to it is identical as taking the

Atkin-Lehner involution w
(n)
l of the original ln-isogeny and extracting the appropriate lm-isogeny. That is,

w
(m)
l ◦ πj = πn−m−j ◦ w(n)

l (2.4)

Proposition 2.2.2 (Elkies). For n > 2, the map

π = π0 × π1 × · · · × πn−2 : X0(ln)→ (X0(l2))n−1 (2.5)

gives a one-to-one correspondence between ln-isogenies and the points π(X0(ln)). The image π(X0(ln)) is

the set of points (P1, . . . , Pn−1) ∈ (X0(l2))n−1 such that

π0 ◦ w(2)
l (Pj) = w

(1)
l ◦ π0(Pj+1), for all j = 1, . . . , n− 2 (2.6)

Using this proposition, one can construct the whole tower X0(ln) by only knowing explicit expressions

for π0 and the Atkin-Lehner involutions involved. This proposition is really a statement about the complex

points of X0(ln). The cusps are also represented by solutions of (2.6), but the correspondence might no

longer be one-to-one. In general, this shows that X0(ln) is birationally equivalent to the locus of points

(P1, . . . , Pn−1) in (X0(l2))n−1 satisfying the n− 2 equations described in (2.6).

Remark 2.2.3. The following proof will not discuss the behavior of the cusps under this map π. We will

write Y0(ln) instead of X0(ln) to stress furthermore the fact that we are only working with complex points.

As mentioned above, this correspondence does extends to cusps, but is simply no longer necessarily one-to-

one. A more advanced reader may therefore see X0(ln) where we write Y0(ln) and still see the statements

as true, as Elkies does in his paper.

Proof. For any j = 0, . . . , n− 2, we have πj : Y0(ln)→ Y0(l2) taking a sequence

s := E0 → E1 → . . .→ En ∈ Y0(ln)

to its image Pj+1 := πj(s) = Ej → Ej+1 → Ej+2. Since the sequence s is completely determined by its

l2-subisogenies Ej → Ej+2, it follows that s is uniquely determined by (P1, . . . , Pn−1). This shows that π is

injective. Thus, the points of Y0(ln) are in one-to-one correspondance with the points of π(Y0(ln)).

To describe explicitely this image, take Pj = Ej0 → Ej1 → Ej2 ∈ Y0(l2), for j = 1, . . . , n − 2. For

(P1, . . . , Pn−1) to be in π0(Y0(ln)), all that is required is that we can glue the isogenies that each of these Pi

represent consecutively together, i.e.

Ej1 → Ej2 is the same as Ej+1
0 → Ej+1

2

But these two l-isogenies are simply points in Y0(l), thus using π0, π1 : Y0(l2) → Y0(l), this statement

translates into

π1(Pj) = π0(Pj+1)
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and taking the Atkin-Lehner involution w
(1)
l on both sides and using (2.4) gives us

π0(w
(2)
l (Pj)) = w

(1)
l (π0(Pj+1)) ,∀ j = 1, . . . , n− 2 ,

which is exactly what we wanted. Thus, the map π is an isomorphism between Y0(ln) and the solution space

of the n− 2 equation from (2.6) in (Y0(l2))n−1. Since this maps extends to cusp, it follows that that X0(ln)

is birationally equivalent to the curve defined by this solution space in (X0(ln))n−1.

Remark 2.2.4. Using this new description, it follows that these πj : X0(ln)→ X0(lm) are simply

(P1, . . . , Pn−1) 7→ (Pj+1, . . . , Pj+m−1) (2.7)

The complex points of X0(ln), i.e. sequences as in (2.1), are now described by the n − 1 consecutive

l2-isogenies that composes them. Then, exctracting the lm-isogeny Ej → Ej+m, is exactly the same as

extracting the m− 1 consecutive l2-isogenies Ej → Ej+1 → Ej−1, . . . , Ej+m−2 → Ej+m−1 → Ej+m, as (2.7)

points out. This new description given by Elkies simply makes this diagram commute

X0(ln) (X0(l2))n−1

X0(lm) (X0(l2))m−1

π

πj (old) πj (new)

π

2.3 Model for X0(2
n)

Using Elkies’ proposition, the first requirement is to find equations for X0(2) and X0(4). Then, understanding

π0 : X0(4)→ X0(2), and the Atkin-Lehner involution’s w
(1)
2 , w

(2)
2 reveals the algebraic conditions necessary

to identify (P1, . . . , Pn−1) ⊂ (X0(4))n−1 as a point in X0(2n).

Since both X0(2) and X0(4) have genus 0, they are isomorphic to P1. Thus, one can parametrize them

by giving appropriate coordinates on P1 := P1(C). For X0(4), Elkies uses the identification τ ↔ ξ(τ), where

ξ(τ) = 1 +
1

8

(
η(τ)

η(4τ)

)8

=
1

8
(q−1 + 20q − 62q3 + 216q5 − . . .) (2.8)

Here, q = e2πiτ as usual, with q = 0 for τ =∞. On the other hand, η is a function on H∗ defined as

η(τ) =

∞∏
r=1

(1− qr) (2.9)

Both of these functions have very strong connection to modular curve theory. For more information,

see [DS], section 1.1 and 1.2. This map ξ provides an isomorphism between X0(4) and P1, thus one can

parametrize X0(4) by looking at ξ(τ) as a coordinate for P1, now appropriately refered to as P1
ξ .

To use proposition 2.2.2, one also need to know the effect on w
(2)
2 on P1

ξ . Using the following identity

(proof in [DS]),

η(−1/τ) = (−iτ)1/2η(τ) , (2.10)

it follows that

w
(2)
2 (ξ(τ)) = ξ(−1/4τ) = 1 + 32

(
η(4τ)

η(τ)

)8

= 1 +
4

ξ(τ)− 1
=
ξ(τ) + 3

ξ(τ)− 1
(2.11)
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Thus, w
(2)
2 : P1

ξ → P1
ξ is w

(2)
2 (ξ) =

ξ + 3

ξ − 1
. Now, the same procedure needs to be applied for w

(1)
2 on

coordinates of X0(2). Elkies chooses the Hauptmodul h2 to parametrize X0(2), defined as

h2(τ) =

(
η(τ)

η(2τ)

)24

= q−1 − 24 + 276q − 2048q2 + . . . (2.12)

Again, using (2.10), one can show that w
(1)
2 : P1

h2
→ P1

h2
is w

(1)
2 (h2) = 212/h2. The last requirement now

is to describe π0 : P1
ξ → P1

h2
, i.e. write h2 as a rational function in ξ. By inspecting the q-expension of h2

and ξ, we see that h2 − 8ξ + 24 is a rational function, of degree 1 in ξ, and has a simple zero at ξ =∞.

Remark 2.3.1. Note that π0 lets us see h2 as a function in ξ. Since degξ(h2) = degξ(π0) = 2, we need to

clarify why z = h2 − 8ξ + 24 has degree 1 in ξ. It suffices to demonstrate that z has a unique simple pole.

Clearly, z =∞ implies either h2 =∞ or ξ =∞. One easily sees from the q-expension of z that ξ =∞ (i.e.

q = 0) is not a pole, it is a simple zero.

Then, showing that only one of the two elements in the fiber of h2 = ∞ leads to a pole of z suffices.

From the q-expensions of ξ and h2, we know ξ(τ) =∞⇒ τ =∞⇒ h2(τ) =∞. This doesn’t lead to a pole,

hence h2(τ) = ∞ must have another solution. This one must be a pole since z must have one (because z

has at least one zero), which proves our claim.

Moving on, since h2 − 8ξ + 24 has degree 1, it can be written has (aξ + b)/(cξ + d), some coefficients

a, b, c, d ∈ C. Moreover, one easily sees that a = 0, as ξ = ∞ is a zero. Therefore, 1/(h2 − 8ξ + 24) is a

polynomial of degree 1 in ξ. Thus, Elkies simply solves the system

α(ξ + β) = 2−3α(q−1 + 8β + 20q − 62q3 + . . .)

× h2 − 8ξ + 24 = 256q − 2048q2 + 11264q3 + . . .

1 = 32α+ 256(β − 1)αq + 2048(1− β)αq2 + . . .

to obtain α = 2−5 and β = 1. Then, by solving the following equation for h2, one obtains

1

h2 − 8ξ + 24
=
ξ + 1

32
⇐⇒ h2 = 8

(ξ − 1)2

ξ + 1
(2.13)

Remark 2.3.2. There is a small typo in Elkies paper here, the +/− signs were flipped in this last equation.

This shows that

h2(τ) = π0(ξ(τ)) = 8
(ξ(τ)− 1)2

ξ(τ) + 1
, (2.14)

which means that all the pieces of the puzzle are now available : w
(1)
2 , w

(2)
2 and π0 as explicit rational

maps. One can then use (2.6) for j = 1. That is, pick P1 ∈ X0(4), and find P2 ∈ X0(4) satisfying

π0 ◦ w(2)
2 (P1) = w

(1)
2 ◦ π0(P2) ⇐⇒ π0(P2) = w

(1)
2 ◦ π0 ◦ w

(2)
2 (P1) (2.15)

By taking P1 = ξ(τ), we can use the definition of each of these maps to obtain

π0(P2) = w
(1)
2 ◦ π0(ξ(−1/4τ)) = w

(1)
2 (h2(−1/4τ)) = h2(2τ) (2.16)

Hence, to describe X0(8) as an algebraic curve in (X0(4))2, Elkies simply writes down the algebraic

relation between ξ(τ) and ξ(2τ).
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Firstly, he writes h2(2τ) explicitely from (2.16) as

h2(2τ) = w
(1)
2 ◦ π0(ξ(−1/4τ)) = w

(1)
2 ◦ π0

(
ξ(τ) + 3

ξ(τ)− 1

)
= 64(ξ(τ)2 − 1) (2.17)

Secondly, he simply rewrites h2(τ) by using (2.11) to obtain

h2(τ) =
8(ξ(τ)− 1)2

ξ(τ) + 1
=

8
(

4
ξ(−1/4τ)−1

)2
4

ξ(−1/4τ)−1 + 2
=

64

w
(2)
2 (ξ(τ))2 − 1

(2.18)

Therefore, by replacing τ by 2τ in this last equation, he can equate these last two expressions and obtain

the relation

(ξ(τ)2 − 1)(w
(2)
2 (ξ(2τ))2 − 1) = 1 (2.19)

Conclusion : By taking x1 = ξ(τ) and x2 = ξ(2τ), one can consider the points of X0(8) as the pairs

(x1, x2) ∈ (X0(4))2 = P1 × P1 satisfying

(x21 − 1)(z22 − 1) = 1 , where z2 = w
(2)
2 (x2) =

x2 + 3

x2 − 1
. (2.20)

Similarly, for all n ≥ 2, one can write down explicitely X0(2n) by iterating this procedure n − 2 times.

But then, we consecutively obtain the same relation as in (2.20), but with the pairs (x2, x3) = (ξ(2τ), ξ(4τ))

as well, and then again with (x3, x4) = (ξ(4τ), ξ(8τ)), etc. Therefore, for xi = ξ(2i−1τ), Elkies has shown

that X0(2n) is birationally equivalent to the locus of points (x1, . . . , xn−1) ∈ (P1)n−1 satisfying the n − 2

equations

(x2i − 1)(z2i+1 − 1) = 1 , ∀ i = 1, . . . , n− 2 , (2.21)

where

zi :=
xi + 3

xi − 1
(2.22)

2.4 Model for X0(3
n)

For the tower of modular curves X0(3n), we again have to choose coordinates on X0(3) and X0(9), which is

still easy since they are both isomorphic to P1, and adapt the computations accordingly. Elkies suggests to

parametrize X0(9) using ξ(τ), now defined as

ξ(τ) = 1 +
1

3

(
n(τ)

n(9τ)

)
=

1

3
(q−1 + 5q − 7q5 + 3q8 + 15q11 − 32q14 + . . .) , (2.23)

and then the Atkin-Lehner involution w
(2)
3 acts on P1

ξ as

w
(2)
3 (ξ(τ)) = ξ(−1/9τ) = 1 +

3

ξ(τ)− 1
=
ξ(τ) + 2

ξ(τ)− 1
(2.24)

For X0(3), he similarly uses the Hauptmodul h3 defined as

h3(τ) =

(
η(τ)

η(3τ)

)
= q−1 − 12 + 54q − 76q2 − 243q3 + 1188q4 + . . . , (2.25)

which satisfies

w
(1)
3 (h3(τ)) = h3(−1/3τ) = 36/h3(τ) (2.26)
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Then, all there is left to describe is π0 : X0(9)→ X0(3), i.e. write h3 as a rational function in ξ. Elkies

does not show this step. He arrives directly to (2.28). However, for our purposes, this explicit map does

show some relevant properties (more comments below). After going through the calculations, similar to our

derivation of (2.18), one obtains

h3(τ) = π0(ξ(τ)) = 9
(ξ(τ)− 1)3

ξ(τ)2 + ξ(τ) + 1
(2.27)

Using the same argument as in (2.16), we see that a point (P1, P2) ∈ (X0(9))2 will correspond to a

complex point of X0(27) if P1 = ξ(τ), and P2 ∈ X0(9) verifies the equality π0(P2) = h3(3τ). Using the same

logic as previously, Elkies writes down h3(3τ) in two different ways as

h3(3τ) = 27(ξ(τ)3 − 1) =
27

w
(2)
3 (ξ(3τ))3 − 1

, (2.28)

Conclusion : With the coordinates xi = ξ(3i−1τ) ∈ X0(9), i = 1, . . . , n− 1, the modular curve X0(3n)

is birationally equivalent to the locus of (x1, . . . , xn−1) ∈ (P1)n−1 satisfying the algebraic conditions

(x3i − 1)(z3i+1 − 1) = 1 (2.29)

where i = 1, . . . , n− 2 and zi :=
xi + 2

xi − 1
.

In the last chapter of this paper, we will thoroughly study this model of the modular tower X0(3n).

For instance, this model turns out to be singular, particularly at infinity. We will later try to unravel the

structure of these multiples points on each of these curves and see how they are fundamentally linked to the

ramifications of the maps π0 : X0(3n)→ X0(3n−1).

The reason why they are so important is that they represent the images in (P1)n−1 of cuspidal points

of the actual modular curves X0(3n). They are exactly the points where the proposition of Elkies becomes

subtle, but in this sense, where everything interesting is most likely to happen.

To see that these singularities correspond to cusps, consider the formula of π0 from (2.27). It is known

that for such a polynomial maps, cusps are sent to cusps. Moreover, the cusps of X0(3) are parametrized

by h3 = 0 or h3 =∞. Then, (2.27) gives us that the cusps of X0(3n) are given by points where at least one

coordinates xj = ξ(3j−1τ) is xj = ∞ or xj = ζk3 , k = 0, 1, 2 (any cube root of unity). We’ll see that these

values keep appearing in our future computations of singularities and ramifications.

Remark 2.4.1. These two models are only the first ones given in Elkies’ paper. Refer to [E] to see quite

a few other examples. However, some of them require more involved arguments and computations. Also,

some types of modular curves considered in [E] were not introduced here. However, know that it represents

a tremendous accomplishment to explicitely write down the polynomials over Q of all these modular curves.

For instance, according to a paper published in 2017 by Hasegawa, see [H], the models given by Elkies of

two different towers of Shimura modular curves are the only ones ever constructed.
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Chapter 3

Resolution of Singularities

As mentionned in the previous chapter, the models of tower of modular curves given by Elkies in [E]

turn out to be singular. In this chapter, we discuss the procedure of resolving singularities and consider

various examples. In our next chapter, this will lead to a fabulous result relating the modular curves X0(8),

X0(27) and X0(64) with Fermat curves! Moreover, it will play a key role to understand the ramifications of

π0 : X0(3n)→ X0(3n−1).

Remark 3.0.1. This chapter is the result of shared effort with my collegue Kevin Watmough.

Let X be an variety over an algebraically closed field k, with char(k) = 0. If X is singular, then we wish

to resolve these singularities by finding a nonsingular variety X̃, and a proper birational map ϕ : X̃ → X.

Definition 3.0.2. A modification is a morphism of algebraic varieties which is birational and proper.

Theorem 3.0.3 (Hirokana’s Theorem). Let X be an variety over an algebraically closed field k, with

char(k) = 0. Then, there exists a modification ϕ : X̃ → X such that X̃ is a nonsingular variety.

Remark 3.0.4. Published in 1964, this theorem was a huge accomplishment, as it answered many open

questions and enable at least as many applications. Moreover, by pushing Hironaka’s proof even further,

mathematicians were able to prove that it is always possible to choose ϕ to be an isomorphism exactly on the

smooth locus of X. However, even though Hironaka showed this theorem by giving an explicit construction

of X̃ and ϕ, it is still consider as an highly advanced and difficult proof. Therefore, even for some singular

curves, it is highly nontrivial to find their respective nonsingular models. When this theorem doesn’t apply,

i.e. we’re are not in characteristic 0 (or is too difficult to apply), the concept of alterations gives us another

alternative.

Remark 3.0.5. Note that the concept of proper birational maps is fundamental for this theorem, since

removing it makes the statement trivial. For any singular variety X, we know the set of singularities S is

a subvariety of X, then X ′ = X \ S is an open subvariety of X, hence a variety itself. Simply taking ϕ to

be the inclusion map then would be sufficient. However, this is clearly not what we mean by a resolution of

singularities. This solution is not valid because such a morphism ϕ is not proper. In general, the properness

of a morphism forces it to have no “holes” in its fibers.

One of the main tools in algebraic geometry to desingularise a variety X is to compute a blow-up. In some

sense, this takes a singularity P of X and streches the space at this point to separate the different tangents of

18



X at P . The proof of Hironaka produces the modification ϕ as a sequence of such blow-ups, which simplify

the nature of the singular locus of X at every step. Furthermore, using notation from Hironaka’s theorem,

one can even prove that X̃ is unique, up to isomorphism, using the following result.

Proposition 3.0.6. Let X, Y be two projective smooth curves. If X and Y are birationally equivalent, they

are in fact isomorphic.

Thus, if ψ : X̃ ′ → X is any other proper birational map, with X̃ ′ smooth, then we must have an

isomorphism f : X̃ ′ → X̃ making the following diagram commute

X̃ ′
f
//

ψ
  

X̃

ϕ

��

X

Therefore, we say that X̃ is the nonsingular model of X.

3.1 Normalization of Singular Curves

In this section, we will show how to resolve the singularities of curves. We will use a process called normal-

ization. In this case, it turns out that the normalization of a curve can be seen as a sequence of consecutive

blow-ups.

Definition 3.1.1. Let C be an affine algebraic curve, with coordinate ring Γ(C). The normalization of

Γ(C) is its integral closure in its quotient field k(C). We denote it by Γ̃(C). If Γ̃(C) = Γ(C), we say that C

is a normal curve.

Note that the affiness condition is important here. Otherwise, for projective curves, this is not adapted.

For instance, if we consider the projective singular curve C : y2 = x3 + x2 ⊂ P2, we obtain Γ(C) = k since

the only regular functions on a projective curve over a algebraically closed field are constant. Thus, we

would have both C normal and singular, which would contradict the following proposition 3.1.3. To adapt

the concept of normality, we need the following definition.

Definition 3.1.2. Let X = Pn1 × . . .×Pnr ×Am be a mixed space, and C ⊂ X a curve. Then, C is normal

if, for all affine patch U ⊂ X, the affine curve C ∩ U is normal.

Similarly, we say that P ∈ C is a normal point of X if OP (C) is integrally closed in k(C). Then, it is

equivalent to define C as normal when all its points are normal. Note that the normality of P ∈ C only

depends on the local ring OP (C). Similarly, from [F], we know that a point P is simple if and only if OP (C)

is a DVR. Thus, both of these property are completely based on the behavior of OP (C). Then, it is only

natural to ask if it is possible to related this two properties, and we obtain the following.
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Proposition 3.1.3. Let C be any algebraic curve. Then, C is smooth if and only if C is normal.

Proof. (Sketch)

The first part of this proves is easy. Let C be any curve, and P ∈ C a smooth point. By contradiction,

assume there is a rational function z ∈ k(C) \ OP (C) that is integral over OP (C). Since OP (C) is DVR, it

induces an order function on its quotient ring, ord : k(C)→ Z.

Since z 6∈ OP (C), we know ord(z) < 0. Moreover, the fact that z is integral over OP (C) implies that for

some monic polynomial f ∈ OP (C)[t]

f(z) = zm + am−1z
m−1 + . . .+ a1z + a0 = 0, with ai ∈ OP (C) and m > 1

Since the ai’s are in OP (C), they all have ord(ai) ≥ 0. Moreover, recall that multiply two elements

sums their order, thus zm has a strictly lower order than all the other terms in this expression. Therefore,

ord(f(z)) = m · ord(z), as for any a, b ∈ k(C), with ord(a) < ord(b), we know ord(a+ b) = ord(a). However,

this implies that 0 has a finite order, contradiction. It follows that for a smooth curve C, all its points are

normal, thus C is normal.

For the converse, broadly speaking, Kollar takes some singular point P ∈ C so that

dimk(mP (C)/mP (C)2) ≥ 2

Then, by using two linearly independent elements x, y ∈ mP (C), he explicitely constructs an integral

element of the form

z =
y

x+ ay
u ,

for some a ∈ k and units u ∈ OP (C). In terms of commutative algebra, this shows how integral elements

and singularities are related. For instance, in our later examples, notice how all the integral elements we will

find give a case 0
0 if we were to evaluate them at the singular point. This is what we observe in the integral

element z above. (Since x and y are two rational functions in mP (F ), we know they are zero at P )

Note that this is a result very specific to curves. In general, for algebraic varieties of dimension greater

than 1, a normal variety might very well be singular. For instance look at the cone X ⊂ A3 define by

x2 + y2 = z2. Clearly, this variety is singular at the origin, however one can still show that it is normal.

But even if this correspondence fails in higher dimension, this is of great use to resolve the singularities of

curves.

We will now consider the curve C to be affine and demonstrate the process of normalization. If C was

projective, we can simply restrict it in an affine patch, apply the technique and take back its projective closure.

For an affine curve C, one can show that Γ̃(C) is finite over Γ(C). Therefore, to compute the normalization

of C, we have to find finitely many z1, . . . , zr ∈ k(C), integral over Γ(C), such that Γ̃(C) = Γ(C)[z1, . . . , zr].

Generally, this is a very difficult task. Firstly, you need to find integral elements, and moreover, you need

to show that you have all of them. There is no way around finding integral elements. We can only hope that

the polynomials defining C are not too horrific, or stare at them long enough. To see an algorithm which

finds such an integral element, the one vaguely described in our proof above, see Theorem 1.30 of [K].

On the other hand, to show we have all of them, the previous theorem helps us greatly. Showing that the

curve C̃ satisfying Γ(C̃) = Γ(C)[z1, . . . , zr] is smooth will show that it is normal, hence that we have found

all integral elements.
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Moreover, the inclusion map

ϕ∗ : Γ(C) ↪→ Γ̃(C) = Γ(C̃)

gives a natural birational map ϕ : C̃ → C. Since one can show that this is a proper morphism, Hirokana’s

Theorem tells us that C̃ is the nonsingular model of C. This gives us a way to find a suitable C̃. To summarize,

here is a general idea of the method. Consider an affine singular curve C, with Γ(C) = k[x1, . . . , xn], then

1. Find an integal element z ∈ k(C) over Γ(C), and take Γ′ = Γ(C)[z].

2. If z = h(x1,...,xn)
g(x1,...,xn)

satisfies the monic (in z) polynomial f(x1, ..., xn, z) = 0, then take

Γ′ = k[x1, ..., xn, z]/(I, f, gz − h) .

3. Simplify the ideal (I, f, gz − h) and Γ′ as much as possible by removing redundant equations and

variables, to find Γ′ = k[x′1, ..., x
′
m]/J ′. Then, take C̃ = V (J ′), so that Γ(C̃) = Γ′.

4. If C̃ is nonsingular, then Γ(C̃) = Γ̃(C), and the inclusion map

ϕ̃ : Γ(C)→ Γ̃(C) = Γ(C̃) as xi 7→ xi, ∀ i = 1, ..., n

gives us naturally the birational morphism ϕ : C̃ → C, and we have now the smooth model of C.

5. If C̃ is singular, Γ(C̃) is missing some integral elements, and repeating (1)-(4) a finite number of times

will be sufficient to find all integral elements.

We now illustrate this method with some examples.

3.2 Example 1 : Nodal Curve

Let C : y2 − x2(x+ 1) = 0. This curve C has a singular point, a

node, at P = (0, 0). We will use the method above to resolve the

singularity at P . We first find the integral closure Γ̃(C) of Γ(C).

Note that z = y/x ∈ k(C) is integral over Γ(C), and it satisfies

the relation z2 = x+ 1, since y2 = x2(x+ 1) in Γ(C). Then

Γ(C)[z] = k[x, y, z]/(y2 − x2(x+ 1), y − xz, z2 − x− 1).

Since y2 − x2(x+ 1) = (y − xz)(y + xz) + x2(z2 − x− 1), we can

remove this polynomial from the generators of the ideal. Then,

we obtain

Γ(C)[z] = k[x, y, z]/(y − xz, z2 − x− 1) ' k[z] ,

where the second equality holds as y = xz and x = z2 − 1.

C : y2 − x2(x+ 1) = 0

Remark 3.2.1. Our claim that k[x, y, z]/(y − xz, z2 − x − 1) = k[z] needs a bit of justification. What we

actually mean is that the map k[x, y, z]→ k[z] as

x 7→ z2 − 1 ; y 7→ z(z2 − 1) ; z 7→ z
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is surjective with kernel (y− xz, z2 − x− 1). Surjectivity is easy to check. Now, observe that we can always

write

f(x, y, z) = f(z2 − 1, z(z2 − 1), z) + (y − xz)A(x, y, z) + (z2 − x− 1)B(x, y, z)

using the following procedure :

To replace y with xz, write

f = f0(x, z) + yf1(x, y, z)

= f0(x, z) + xzf1(x, y, z) + (y − xz)f1(x, y, z).

Then, the degree of f1 in y will be lower than that of f , so repeating this a finite number of times (on

f1) will get f in the form f(x, xz, z) + (y − xz)A(x, y, z). A similar process replaces x with z2 − 1.

Hence, f(z2 − 1, z(z2 − 1), z) = 0 if and only if f ∈ (y − xz, z2 − x− 1).

Returning to the problem at hand, we have the map ϕ∗ : Γ(C)→ k[z] as

x 7→ z2 − 1 ; y 7→ z(z2 − 1) (3.1)

Since k[z] = Γ(P1), ϕ∗ gives us the map ϕ : P1 → C as

z 7→ (z2 − 1, z(z2 − 1)) (3.2)

Since P1 is smooth, we are done, and so C is birationally equivalent to P1 via the map ϕ. This shows

that the nonsingular model of C is simply a line. Moreover, note that the map ϕ is one-to-one everywhere

except at the points ±1 ∈ P1, which both map to (0, 0) ∈ C, our singular point. So, intuitively, we have

pulled apart the two tangent lines at (0, 0) to get two simple points.

Remark 3.2.2. Recall that in Remark 3.0.5, we had found a birational morphism over a smooth curve, but

it wasn’t proper, hence not a valid resolution. But the reader might be relief to know that normalization

always yields proper morphisms such as ϕ above. Thus, normalizing a curve always explicitely constructs

its nonsingular model.

3.3 Example 2 : Quadrifolium

We now examine the quadrifolium

C : (x2 + y2)3 − 4x2y2 = 0, (3.3)

which has exactly one singular point, at (0, 0) – see figure below.
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Figure 3.1: C : (x2 + y2)3 − 4x2y2 = 0

We will show that C is birationally equivalent to P1 over Q, by resolving the singularity at (0, 0). This

will give us the rational parametrization of the curve, i.e. we will then be able to find all the rational point

of this curve which are far from obvious to find!

We proceed by the same method of finding the integral closure of Γ(C). We first find, by inspection, that

the integral element

z =
2xy

x2 + y2
(3.4)

satisfies z2 = x2 + y2. We obtain the subring Γ′ = Γ(C)[z] ⊆ Γ̃(C) defined by the quotient of k[x, y, z] by

the ideal defined by the equations 
f1 = (x2 + y2)3 − 4x2y2

f2 = x2 + y2 − z2

f3 = z(x2 + y2)− 2xy

The first equation is redundant, since f1 = (z(x2 + y2) + 2xy)f2 + (x2 + y2)2f3, and we can substitute

z2 = x2 + y2 into the f3 to get

Γ′ = k[x, y, z]/(x2 + y2 − z2, z3 − 2xy),

and a map ϕ∗1 : Γ(C)→ Γ′, simply given by by x 7→ x and y 7→ y.

Let C1 = V (x2 + y2 − z2, z3 − 2xy) ⊂ A3. Then, we have the polynomial map ϕ1 : C1 → C as

(x, y, z) 7→ (x, y) (3.5)

However, the Jacobian of C1 is

J =

(
2x 2y −2z

−2y −2x 3z2

)
,

which is 0 at (0, 0, 0), hence C1 still has a singular point at (0, 0, 0). This means we need more integral

elements. Let’s rewrite the ideal (x2 +y2− z2, z3−2xy) slightly. Substracting these two generators, we have

(x2 + y2 − z2, z3 − 2xy) = (x2 + y2 − z2, z2(z + 1)− (x+ y)2)

Then, dividing the second equation by z2 gives us the integral element

w =
x+ y

z
(3.6)
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verifying w2 = z + 1. Thus, we have Γ′′ = Γ(C ′)[w] ⊆ Γ̃(C) is equal to the quotient of k[x, y, z, w] by the

ideal generated by 
f1 = x2 + y2 − z2

f2 = z3 − 2xy

f3 = zw − x− y
f4 = w2 − z − 1

First, note f2 = (zw + x+ y)f3 − z2f4 + f1, so we can remove it. Moreover, in Γ′′, we have z = w2 − 1

and y = zw − x = w(w2 − 1)− x, so we get

Γ′′ = k[x,w]/((w(w2 − 1)− x)2 + x2 − (w2 − 1)2)

Renaming w as y, and taking C2 = V ((y(y2 − 1) − x)2 + x2 − (y2 − 1)2) ⊂ A2, we now have a map

ϕ2 : C2 → C1 as

(x, y) 7→ (x, y(y2 − 1)− x, y2 − 1)

Again, C2 is singular, since it has singular points at (0,±1).

Figure 3.2: C2 : (y(y2 − 1)− x)2 + x2 − (y2 − 1)2 = 0

Rewriting our equation for C2 gives C2 : (y2 − 1)(2xy − (y2 − 1)2) − 2x2 = 0. Then, from dividing by

−(y2 − 1)2, we obtain

2

(
x

y2 − 1

)2

− 2y

(
x

y2 − 1

)
+ y2 − 1 = 0

Therefore, we get the integral element a =
x

(y2 − 1)
satisfying the relation 2a2 − 2ya + y2 − 1 = 0. We

then get Γ′′′ as the quotient of k[x, y, a] by the ideal generated by
2x(y(y2 − 1)− x)− (y2 − 1)3

x− a(y2 − 1)

2a2 − 2ay + (y2 − 1)

Again, in this ring, we have x = a(y2 − 1), and substituting this into the first equation gives 0. So we

obtain

Γ′′′ = k[y, a]/(2a2 − 2ay + (y2 − 1)) (3.7)
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Finally, rewrite (y, a) as (x, y), and since 2y2 − 2xy + x2 − 1 = (x − y)2 + y2 − 1, take the curve

C3 : (x− y)2 + y2 = 1 ⊂ A2, we have the map ϕ3 : C3 → C2 as

(x, y) 7→ (y(x2 − 1), x) (3.8)

One readily sees that C3 is a smooth ellipse and there is an obvious isomorphism between it and the

circle C4 : x2 + y2 = 1 ⊂ A2, namely ϕ4 : C4 → C3 as (x, y) 7→ (x− y, x). Since a circle is isomorphic to P1,

all of this finally shows that the the nonsingular model of the quadrifolium is P1.

Moreover, recall that the rational parametrization of the circle is given by(
1− t2

1 + t2
,

2t

1 + t2

)
(3.9)

Then we by finally composing this with the map ϕ1 ◦ϕ2 ◦ϕ3 ◦ϕ4, we obtain the rational parametrization

of the quadrifolium (x2 + y2)3 = 4x2y2 as(
8t2(1− t2)

(1 + t2)3
,
−4t(1− t2)2

(1 + t2)3

)
(3.10)

This therefore gives us all the rational point of the quadrifolium. Moreover, using Desmos (or any other

plotting software), one can visualize this parametrization, and see how soothing it is to watch!

3.4 Standard Quadratic Transformations

Let U = P2 \ V (xyz), P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], , P3 = [0 : 0 : 1]. Consider the map

Q : P2 \ {P1, P2, P3} → P2

Q([x : y : z]) = [yz : xz : xy]

Note that for [x : y : z] ∈ U , Q2([x : y : z]) = [x2yz : xy2z : xyz2] = [x : y : z]. So Q = Q−1 on U , and

Q|U : U → U is an isomorphism. Hence Q is a birational map P2 → P2. We call Q the standard quadratic

transformation, and for a curve C, we denote by CQ the curve resulting from this transformation.

In the next section, we give an example where it is helpful to apply a quadratic transformation to a curve

to put it in a form with more easily spotted integral elements.

Remark 3.4.1. This is not the intended use of quadratic transformations. Quadratic transformations give

us a way to transform singular plane curves into plane curves with “better” (i.e. ordinary) singular points.

We have the following theorem, see [F].

Theorem 3.4.2. Let C be an irreducible projective plane curve. With a finite number of quadratic trans-

formations, we can transform C into a plane curve with only ordinary multiple points.

The important thing here is that the final curve is a plane curve. Normalization already gives us a

way to remove singularities, but there is no guarantee that the resulting curve is a plane curve. Quadratic

transformations are useful in instances where we want a plane curve at the end, and “improving” the

singularities is enough.
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3.5 Example 3 : Lemniscate of Bernoulli

We will use this new tool to help resolve the singularities of the Lemniscate of Bernoulli, defined as

C : (x2 + y2)2 = 2(x2 − y2) ⊂ A2 (3.11)

We see that C has a singularity at (0, 0), thus we would like to use the same method to resolve this

singularity. However, there is no obvious integral element. So we’ll try applying a quadratic transformation,

and hope that C comes out nicer.

Firstly, projectivising C gives

C∗ = (x2 + y2)2 − 2z2(x2 − y2) (3.12)

Then, applying the standard quadratic transformation gives

C ′ := (C∗)Q = ((yz)2 + (xz)2)2 − 2(xy)2((yz)2 − (xz)2)

= z2(z2(x2 + y2)2 + 2x2y2(x2 − y2))

= z2(x2 + y2)2 + 2x2y2(x2 − y2) (3.13)

Note we can drop the z2 since we only consider C ′ on U = P2 \ V (xyz). We now deprojectivize C ′ to

resolve its singularities. The reader can check that there is a singularity at [0 : 1 : 0], so we deprojectivize

with respect to y to get

C ′∗ = z2(x2 + 1)2 + 2x2(x2 − 1) (3.14)

to obtain an affine curve singular at the origin. Then, Γ(C ′∗) has the integral element

w =
z(x2 + 1)√

2x
, (3.15)

satisfying the relation w2 = 1− x2. This element w makes a
√

(2) appear, which makes our map no longer

defined over Q. Although, this not a problem, since we will clear out this square root in a moment and come

back to Q. One may do this resolution without the need to extend Q to Q[
√

(2)], the end result is the same.

Then, we obtain the coordinate ring

Γ(C ′∗)[w] = k[x, z, w]/(z2(x2 + 1)2 + 2x2(x2 − 1),
√

2xw − z(x2 + 1), w2 + x2 − 1) (3.16)

and using similar computations as in our previous example, one can reduce it to

k[x, z, w]/(
√

2xw − z(x2 + 1), w2 + x2 − 1) (3.17)
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Hence C is birationally equivalent to C ′′ = V (
√

2xw − z(x2 + 1), w2 + x2 − 1) ⊂ A3. Furthermore, note

that there is no point on C ′′ such that x2 + 1 = 0 (otherwise w2 = 2, and then ±2i = 0). Hence, in the

coordinate ring, we have

z =

√
2xw

x2 + 1
, (3.18)

All of this gives us the map from V (x2 + y2 − 1) to C ′′ defined by

(x, y) 7→

(
x,

√
2xy

x2 + 1
, y

)
(3.19)

Again, recall that we know the rational parametrization of the circle V (x2 + y2 − 1) is given by

t 7→
(

1− t2

1 + t2
,

2t

1 + t2

)
(3.20)

A straightforward calculation composing all these operations gives a parametrization for the Lemniscate

of Bernoulli: (√
2t(1 + t2)

1 + t4
,

√
2t(1− t2)

1 + t4

)
(3.21)

Because of the
√

2 this is not a rational map, but sending t 7→
√

2t gives(
2t(1 + 2t2)

1 + 4t4
,

2t(1− 2t2)

1 + 4t4

)
(3.22)

Since a birational equivalence only requires an isomorphism on an open subset of C and P1, we don’t need

to worry about what happened to the points at infinity. Namely, there is no issue with projectivising and

then deprojectivising C. All of this proves that the nonsingular model of C is P1, and this parametrization

gives all the rational solutions of Bernoulli’s Lemniscate.
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Chapter 4

Tower of Modular Curves X0(3
n)

Let’s consider the model given in [E] of the tower of modular curves X0(3n), described in chapter 2. For

n ≥ 2, we have X0(3n) birationally equivalent to the curve in (P1)n−1 defined by the n− 2 equations

(x3i − 1)(z3i+1 − 1) = 1, where zi =
xi + 2

xi − 1

for i = 1, . . . , n− 2.

This model is singular, hence it is not completely isomorphic to X0(3n). To avoid confusion, we will refer

to the model above by E3n and denote these n− 2 equations as F (i)(xi, xi+1) = (x3i − 1)(z3i+1 − 1)− 1.

Remark 4.0.1. Clearly, each of the rational expressions F (i) lies in C(x1, . . . , xn−1). However, since they

only depend on xi and xi+1, we write F (i)(xi, xi+1) instead of F (i)(x1, . . . , xn−1). Moreover, the zi+1 can

be seen as just a change of variable from xi+1 to xi+1+2
xi+1−1 .

We will first find these singularites and try to understand as much as possible how they affect the structure

of both E3n and X0(3n). However, before starting, we need to specify one important feature of the model

E3n .

Remark 4.0.2. This is the first instance where we see how the image of the cusps of X0(3n) affects the

behavior of E3n . In the previous chapter, we pointed out how the values 1, ζ3, ζ
2
3 and ∞ are important for

the coordinates xi. Doing some simple computations, one can see that if a point P ∈ E3n has one coordinate

xi = ζk3 , for some i = 1, . . . , n− 1 and k = 1, 2, then xj =∞ for all j < i, and xj = 1 for all j > i. We will

denote these special points as

Pi,k = (∞, . . . ,∞, ζk3 , 1, . . . , 1) ,

where ζk3 is at the i-th position. By abusing notation modulo 3, we may say, when considering Pi,k, that the

other one is Pi,2k.

Moreover, these are almost the only points involving coordinates equal to ∞ and 1. The only others are

the 2 points

P0 = (1, 1, . . . , 1) ; P∞ = (∞, . . . ,∞)

In the spirit of P0, lets rename P1,1 and P1,2 as P1 and P2 respectively, so that in general we have

Pe = (ζe3 , 1, . . . , 1) , for e = 0, 1, 2
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4.1 Singularities of Elkies Models

Recall that to find singular points of a curve, we need to look at the rank of its Jacobian. For E3n , differentiate

each Fi by xi and zi+1, to obtain

Jn =



F
(1)
x1 F

(1)
z2 0 · · · · · · 0

0 F
(2)
x2 F

(2)
z3 · · · · · · 0

...
...

. . .
. . . · · · 0

0 0 . . . F
(n−3)
xn−3 F

(n−3)
zn−2 0

0 0 · · · 0 F
(n−2)
xn−2 F

(n−2)
zn−1


, (4.1)

where all the partial derivatives are of the forms

F (i)
xi

(xi, zi+1) = 3x2i (z
3
i+1 − 1)

F (i)
zi+1

(xi, zi+1) = 3z2i+1(x3i − 1)

Given P ∈ E3n , since Jn is an n− 2× n− 1 matrix, we know rank(Jn(P )) < n− 2 if and only if all its

n − 2 × n − 2 submatrices (i.e. when we remove any one row) have determinant 0 at P . It turns out that

only looking at the one where we removed the last row, say M , will be sufficient. Since M is diagonal, we

know it has determinant 0 exactly when F
(i)
xi = 0 for some i = 1, . . . , n − 2. Thus, we must have xi = 0 or

z3i+1 = 1, i.e. xi+1 is equal to ζ3, ζ23 or ∞.

Case xi = 0 : We obtain that xi+1 = −2, which gives both F
(i)
xi (0,−2) = F

(i)
xi+1(0,−2) = 0. This means

that the i-th line of the Jn is zero, hence it’s a singular point. In the next section, they will be studied in depth.

Case xi+1 = ζ3, ζ
2
3 , ∞ : We are dealing with P = Pi,k from Remark 4.0.2 for some i = 1, . . . , n − 2

and k = 1, 2. To see which of these are actually singular, we need to evaluate the partial derivatives at every

significant pairs, i.e, (∞,∞), (∞, ζk3 ), (ζk3 , 1) and (1, 1).

Evaluating these requires precaution as they can lead to indefinite forms like 0×∞ or simply a derivative

equal to∞, which doesn’t mean anything. Again, considering the polynomial F (i) as depending on (xi, zi+1)

instead of (xi, xi+1) simplifies the computations significantly. By changing affine patch appropriately, one

obtains

(xi, xi+1) (xi, zi+1) F
(i)
xi (xi, zi+1) F

(i)
zi+1(xi, zi+1)

(∞,∞) (∞, 1) 0 -3

(∞, ζk3 ) (∞, ζ2k3 ) 0 −3ζk3
(ζk3 , 1) (ζk3 ,∞) −3ζ2k3 0

(1, 1) (∞,∞) -3 0
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Therefore, in general, we have the Jacobian

Jn(Pi,k) =



0 −3 0 0 0 0 0 0 . . . 0

0 0 −3 0 0 0 0 0 . . . 0
...

. . .
. . . 0

...
...

...

0 . . . 0 0 −3 0 0 0 . . . 0

0 . . . 0 0 0 −3ζk3 0 0 . . . 0

0 . . . 0 0 0 −3ζ2k3 0 0 . . . 0

0 . . . 0 0 0 0 −3 0 . . . 0
...

...
...

...
...

. . .
. . .

...

0 . . . 0 0 0 0 −3 0


(4.2)

where the entries −3ζk3 and −3ζ2k3 are both on the i-th column, and respectively on the (i− 1)-th and i-th

row. Moreover, this gives us that the Jacobian of Pe, for e = 0, 1, 2, and P∞ are

Jn(Pe) =


−3ζ2e3 0 0 . . . 0

0 −3 0 . . . 0
...

. . .
. . .

...

0 . . . −3 0

 and Jn(P∞) =

 0 −3 . . . 0
...
. . .

. . .
...

0 . . . 0 −3

 (4.3)

It follows readily that the only singular points of this type are the points Pi,k ∈ E3n , where i = 2, . . . , n−2

and k = 1, 2. The behavior of these curves E3n around those points, as we’ll see in section 4.3, fundamentally

dictates the ramification of π0 : X0(3n)→ X0(3n−1).

4.2 Resolution of Singularities on Elkies Models

Let us study the singularities of the form P = (. . . , 0,−2, . . .) ∈ E3n , found in the previous section. Under-

standing the geometry of E3n near them will help us later on. Moreover, resolving such singularity is fairly

straightforward in general, and yields surprising relations between modular curves with Fermat curves.

Let P = (x1, . . . , xn−1) ∈ E3n such that (xi, xi+1) = (0,−2), for some i = 1, . . . , n − 2. In this case,

the i-th row of Jn(P ) is null. One easily sees that the other rows of this Jacobian are linearly independent,

thus the surface defined by F (1), . . . , F (i−1), F (i+1), . . . , F (n−2) has a well-defined tangent plane T at P . It is

given by the kernel of J(P ), after removing the row full of 0’s. Then, the local geometry of E3n at this point

is given by the intersection of this plane with the tangent branches, at P , of the singular variety defined by

F (i)(xi, xi+1) = 0.

To find these branches, we use a theory developped in [F]. Let C ⊂ P2 be plane curve, defined by some

polynomial F ∈ k[x, y], where k is some algebraically closed field. Say C is singular at some point P ∈ C.

By doing a change of variable, we can always assume P = (0, 0). Then, the form Fm of lowest degree in

F has degree m > 1. Since k is algebraically closed, we can factorize Fm = ε
m∏
i=1

Li into irreducible linear

components Li = aix + biy, with ai, bi ∈ k. The branches of C, the lines Li = 0, are not necessarily all

distincts.

In our case, F (i) only depends on two variables, hence it does define a plane curve. Working in terms of

variables (xi, zi+1) is again more conveniant. Then, the singularity of F (i) passes from (0,−2) to (0, 0) and

looking at the form of lowest degree gives us

z3i+1 − x3i = (zi+1 − xi)(zi+1 − ζ3xi)(zi+1 − ζ23xi) . (4.4)
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Then, one embeds these lines of P1×P1 in (P1)n−1 to obtain three hyperplanes. Trivially, their intersection

with our tangent plane T gives three simple lines, hence E3n has three distinct tangent lines at P . It follows

that these singularities are ordinary triple points, which implies that when resolving any one of them, the

point will separate into exactly three distinct smooth points. Locally, the resolution of singularity will look

similar to the example of the Nodal Curve from section 3.2, and the three branches will simply be pulled

apart. To see this, one may refer section 7.2 and 7.3 of [F] to see exactly how one can algebraically separate

distinct tangents of ordinary multiple points.

Let us try to resolve such singularities for n = 3, i.e. E27. This is certainly an interesting case as it is

given by a single equation and P = (0,−2) is its only singular point. Thus, resolving the singularity at P

will give a nonsingular model C27 of E27. But recall that by definition, X0(27) is a smooth model of E27.

Since this model is unique up to isomorphism, this resolution process will let us conclude X0(27) ∼= C27

Remark 4.2.1. This type of singularities (. . . , 0,−2, . . .) are easy to resolve in general, and one can apply

the same argument as we will now present on any of them. The other coordinates do not affect anything,

the algebra is almost identical, with the only exception that we have some other polynomials to carry.

As in the previous chapter, one could try to resolve the singulary at P by normalization, and that is how

I originally obtained the following result. However, by inspection, one can actually directly find the smooth

model. Recall that E27 is given by (x3 − 1)(y3 − 1) = 1 ⊂ P1 × P1, where here we renamed x1 and z2 to x

and y respectively. Rearranging the equation gives E27 : x3y3 = x3 + y3. Then, consider F3 : z3 = x3 + y3,

the Fermat cubic curve. We have a rational map ϕ : F3 → E3 as

[x : y : z] 7→
(
z

x
,
z

y

)
(4.5)

Firstly, observe that this map does send points of F3 to E3. Let P = [x : y : z] ∈ F3. If x = 0 (resp.

y = 0), then ϕ3(P ) = (∞, 1) (resp. (1,∞)), which is a point of E3. For every other point with x, y 6= 0,

hence

z3 = x3 + y3 ⇒ (z · z)3 = (z · y)3 + (z · x)3 ⇒
(
z · z
x · y

)3

=
( z
x

)3
+

(
z

y

)3

(4.6)

namely, ϕ3(P ) ∈ E3. Moreover, when x, y, z 6= 0, this map is invertible with ψ : E3 → F3 as

(x, y) 7→ [y : x : xy] (4.7)

It follows that ϕ is invertible, except at finitely many points of F3, i.e. is a birational map from F3 → E3.

But one readily sees that F3 is smooth everywhere. Therefore, we found an explicit nonsingular model of E3

which, as explained above, proves

X0(27) ∼= x3 + y3 = z3 (4.8)

Remark 4.2.2. This link between modular curve and Fermat curve is in no way trivial. The sudden

appearance of Fermat curves is actually quite surprising. Moreover, the model Elkies gives for X0(8) and

X0(64) are almost identical, and one can apply the same argument to obtain

X0(8) ∼= x2 + y2 = z2 ∼= P1 ; X0(64) ∼= x4 + y4 = z4 (4.9)

But for n = 5, X0(125) 6∼= x5 + y5 = z5. For instance, their respective geni are not equal. However here,

this marvelous relation enables us to draw the following results.

31



Theorem 4.2.3. There exists infinitely many elliptic curves with a rational subgroup of order 8.

Proof. Since F2 : x2 + y2 = z2 is a smooth curve of degree 2 (hence of genus 0) with a rational point, it

must be isomorphic to P1, hence X0(8) ∼= F2
∼= P1 over Q. Since P1 = C∪ {∞} has infinitely many rational

points (i.e. Q ⊂ P1), using the moduli interpretation yields our results.

Remark 4.2.4. Looking closer at the isomorphism P1 → F2, the birational morphism F2 → E2, and the

birational morphism π : X0(8)→ E2 that Elkies constructs, one could compose all these maps and find our

isomorphism P1 → X0(8). This would give an explicit parametrization of all these elliptic curves! However,

elliptic curves with rational subgroups of order 27 suffer a different fate.

Theorem 4.2.5. There exists a unique elliptic curve with a rational subgroup of order 27.

Proof. Using the moduli interpretation, it suffices to show that all rational solutions of F3, but one, represent

cusps of X0(27). Since both X0(27) and F3 are smooth moduls for E3, we know there exists an isomorphism

f : X0(27)→ F3 such that the following diagram commutes :

X0(27)
f
//

π

##

F3

ϕ3

��

E3

Therefore, a point P ∈ F3 represents a cusp if and only if ϕ3(P ) = π(Q), some cusp Q of X0(27).

However as seen at the end of Chapter 2 when discussing the construction of the Elkies’ model for X0(3n),

we know Q ∈ X0(27) is a cusps if and only if π(Q) is a point at infinity of E3. Thus, we simply have to

answer the following question : If P ∈ F3 is defined over Q, is ϕ3(P ) a point at infinity of E3?

But this part is rather easy to answer. Fermat’s Last Theorem tells us that F3 only has trivial rational

solutions, i.e.

P1 = [1 : 0 : 1], P2 = [0 : 1 : 1] and P3 = [1 : −1 : 0] (4.10)

Then, evaluating ϕ at these points gives

ϕ3(P1) = (1,∞), ϕ3(P2) = (∞, 1) and ϕ3(P3) = (0, 0) (4.11)

which is exactly what we wanted.

This shows that there exists a unique elliptic curve having a rational subgroup of order 27, but it even

tells us which one! It is the unique point P ∈ X0(27) such that f(P ) = P3. Finding this point would require

us to further investigate the behavior of π : X0(27) → E3. We won’t continue in that direction but it is

rather interesting that mathematicians, using different tools, actually found it. The unique elliptic curve

having a rational subgroup of order 27 is

y2 + y = x3 − 270x− 1708 (4.12)

4.3 Ramification of π0

Let us now solely focus on the map π0 : X0(3n) → X0(3n−1). From Remark 2.7, we can see this map in

terms of the models E3n , in which case it is given by π0 : E3n → E3n−1 as

(x1, . . . , xn−1) 7→ (x1, . . . , xn−2) (4.13)
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As we have seen, this map is of degree 3. We will try to find the ramification points of π0 and compute

their ramification index. We will study π0 : X0(3n)→ X0(3n−1), using the map π0 : E3n → E3n−1 . This will

be achieved by finding all the points of E3n−1 whose preimage has cardinality less than 3, and then deciding

which of these corresponds to ramification points on the desingularisation π0 : X0(3n)→ X0(3n−1). As easy

as this first matter will be, the second will certainly reveal itself to be more difficult as it will require some

deep understanding of the local geometry around singularities of E3n .

Remark 4.3.1. To clarify what is meant here, consider the projective nodal curve C : y2 = x2(x+ 1) ⊂ P2

and the polynomial map α′ : C → P1 as (x, y) 7→ x. The curve C is easily seen to have a single point at

infinity, say R, which is mapped to ∞ ∈ P1. We see that this map as degree 2, and the only ramified point

are clearly P = (0, 0) and Q = (−1, 0) and our point R.

However, as we have seen in section 3.2, the resolution of singularity at P gives that its smooth model

is P1. It gives the modification ϕ : P1 → C found in (3.2). The resolution pulled appart its two distinct

tangent to give 2 distinct points in its smooth model, i.e. “resolved the ramification” as well. However, one

might have realized that Q and R are still ramified, with ramification index 2, in the nonsingular model.

Therefore, by studying α′, we were able to find the ramification of the map α : P1 → P1

P1 C

P1

ϕ

α
α′

Given α directly, this problem would have been completely trivial. However, we will perform a similar

inspection to π0 : E3n → E3n−1 to study π0 : X0(3n)→ X0(3n−1), respectively in the role of α′ and α.

Our main goal is to be able to use the Riemann-Hurwitz formula. It states that for any finite morphism

ϕ : C1 → C2, where both C1, C2 are smooth projective curves, then

(2g(C1)− 2) = deg(ϕ) · (2g(C2)− 2) +
∑
P∈C1

(eP − 1) (4.14)

The quantity g(Ci) is the genus of Ci and eP is the ramification index of P ∈ C1. However, this formula

requires smooth varieties, such as X0(3n) and X0(3n−1).

We will see in a moment that the ramification points always can only have index 1 or 3 in π0. Then,

using the fact that X0(9) ∼= P1, i.e. g(X0(9)) = 0, we will be able to write the genus for the curves for the

whole tower X0(3n) recursively as

g(X0(3n)) = 3g(X0(3n−1)) +m− 2 (4.15)

where m is the number of ramification points of π0 : X0(3n)→ X0(3n−1).

4.3.1 Structure of fibers of π0 using Galois theory

Note that in our next section, we will explicitely find the ramification index of all our points on these modular

curves. However, it is satisfying to see that we can compute it by only using group theory. To show that

the ramification index of the map π0 : X0(3n) → X0(3n−1) can only be equal to 1 or 3, it suffices to prove

that π0 provides a Galois cover of X0(3n−1) by X0(3n).
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Namely, one has to show that for any points P ∈ X0(3n−1), there exists a transitive action on the fiber

of P . Using Galois theory, this follows if Γ0(3n) is normal in Γ0(3n−1). To show that the latter holds true,

one can use principal congruence subgroups. Since the principal congruence subgroup Γ(3n−1) is normal in

Γ0(3n−1), it suffices to show that the principal congruence subgroup Γ(3n) is normal in Γ(3n−1). Since they

are both finite groups and [Γ(3n−1) : Γ(3n)] = 3 is the smallest prime dividing the order of Γ(3n−1), the

following proposition proves our claim.

Proposition 4.3.2. Let G be a finite group and H < G, a subgroup. If [G : H] = p, where p is the smallest

prime dividing |G|, then H is a normal subgroup.

Proof. Let G act on G/H via the coset representation. Then, we obtain an homomorphism

τ : G→
∑
G/H

as g 7→ τg (4.16)

where τg(g
′H) = (gg′)H, for all cosets g′H ∈ G/H. Then, clearly, if g ∈ ker(τ) =: K, we have

gH = τg(H) = H ⇒ g ∈ H ⇒ K ⊂ H (4.17)

Since K /G, we can prove our claim by showing that in fact K = H. To achieve this, it suffices to show

that K has the same index as H in G, as we already know K ⊂ H, and we are dealing with finite groups.

Observe that from the First Isomorphism Theorem, we may identify G/K ∼= Im(τ) as a subset of∑
G/H

∼= Sp, where we recall p = [G : H]. Therefore, [G : K] divides p!. But since [G : K] also divides |G|,
it follows that [G : K] divides gcd(p!, |G|) = p. This last equation holds true because every other divisor of

p! is divisible by some integer 1 < n < p, hence can’t divide |G| by hypothesis. Therefore, [G : K] = 1 or

p. But it can’t be equal to 1, as otherwise K = G ⇒ H ⊃ K = G ⇒ H = G ⇒ [G : H] = 1, contradiction.

Thus, [G : K] = p = [G : H], which proves our claim.

4.3.2 Genus of X0(3
n)

Given any point P = (x1, . . . , xn−2) ∈ E3n−1 , its fiber π−10 (P ) contains exactly the elements of the form

Qi = (x1, . . . , xn−2, xn−1), where the xn−1 is one of the three solutions of

(x3n−2 − 1)(z3n−1 − 1) = 1 ⇐⇒ z3n−1 =
x3n−2

x3n−2 − 1
(4.18)

It follows readily that zn−1 has less than 3 distinct solutions if and only if the RHS evaluates to 0 or

∞, in which case it has only one solution. Since the correspondence xn−1 ↔ zn−1 is one-to-one, this shows

that ramification happens exactly when xn−2 = 0 or xn−2 = ζe3 , e = 0, 1, 2. These are our “special values of

ramification”.

If xn−2 = 0, then P lies below the singular point Q = (x1, . . . , xn−3, 0,−2). As we have seen in the

previous section, Q has three distinct simple tangents. Namely, if one resolves the singularities at each of

these points, the same thing will happen as in the example of the nodal curve in section 3.2, and the three

tangents will simply be pulled appart. This will outburst three distinct points in the smooth model, no

longer ramified.
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This case is of no interest in the actual ramification of π0 : X0(3n) → X0(3n−1). We will soon draw a

modelisation of the ramification behavior in this tower, and these points won’t make an appearance, as there

is nothing more to say about them in this regard.

The cases xn−2 = 1, ζ3, ζ23 , on the other hand, will create “towers of ramification”. Observe that these

cases involve our points Pi,k, Pe and P∞. Just to make the notation slightly more precise (but heavier), let’s

now denote them as P
(n)
i,k , P

(n)
e and P

(n)
∞ , all in E3n , to specify in which of these curves they are.

If xn−2 = 1, we must have P = P
(n−1)
i,k , for some i < n− 2, and its fiber is therefore P

(n)
i,k , for the same

value of i. Similarly, if xn−2 = ζk3 , k = 1, 2, then we are dealing with P = P
(n−1)
n−2,k , and its fiber is P

(n)
n−2,k.

What is interesting is how this interacts with the rest of tower. For instance, no matter which cube root of

unity xn−2 is, it always leads to xn−1 = 1. Since this is again a “special value of ramification”, the ramification

is then carried over in π0 : E3n+1 → E3n . By induction, this is carried over in all π0 : E3m → E3m−1 for all

m ≥ n, and this is what what is by a “tower of ramification”.

Pictorially, we represent this situation by only writing the last coordinate of every point. Its other

coordinates are obvious by looking at the points below it.

Figure 4.1: Ramifications behavior in the tower E3n

As indicated by the different colors, the red points are singular points found in the previous sections.

Thus, we now need to study the behavior of these blue fibers : Do they act like the nodal curve example

or differently? To figure it out, one can always try to resolve these singularities directly but it turns out

to be much more complicated than our previous examples. Instead, let us study the local geometry of

P
(n)
i,k = (∞, . . . ,∞, ζk3 , 1, . . . , 1) ∈ E3n , for some i = 2, . . . , n− 2.

To do so, one usually computes the formal completion of the local ring OPi
(E3n). This simply means

that we allow ourselves the use of infinite power series, without having to worry about if it converges or not.

Algebraically, this let us focus solely on our point and zoom in on the curve to forget about everything else.
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To see that, let us first consider a toy example. We will show that around the origin, the curve C : y2 =

x2(x + 1) looks like V : xy = 0. To see this, solve y as a function of x, i.e. y = x
√
x+ 1. Previously, we

couldn’t make sense of this square root, but now with the usage of power serie, one may check that

x
√

1 + x =

∞∑
n=0

(−1)n(2n)!

(1− 2n)(n!)2(4n)
xn+1 (4.19)

By denoting this power serie as u(x), we have that the formal completion of the coordinate ring of C is

C[[x, y]]/((y − u(x))(y + u(x))) , (4.20)

where the double brackets [[ ]] mean that we allow infinite power series. This ring looks exactly the same as

C[[x, y]]/(xy), exposing their similarty at the origin.

Let us now compute the formal completion of our curve E3n around our point

P
(n)
i,k = (∞, . . . ,∞, ζk3 , 1, . . . , 1)

where the ζk3 is at the i-th coordinate and k = 1, 2. To do so, one needs to apply a change of coordinates

to send the point of interest at the origin. Thus, take yj = 1/xj for j < i, yi = xi − ζk3 and yj = 1/zj for

j > i. Note that in the example above with the nodal curve, one writes y in terms of x to describe the

local geometry around the origin. However, we can’t always pick arbitrarily one coordinate and write all the

others in terms of it.

For instance, in the previous example, we wrote y as a power serie of degree 1 (i.e. its lowest term has

degree 1) in x. However, if it had degree n > 1, then it wouldn’t be possible to write x as a power serie in

y. This will be particularly important in our case.

Indeed, using Elkies equations F (j) = 0, which relates yj and yj+1, we may write both of these coordinates

as an expression with respect to the other, and obtain

j < i− 1 yj+1 =
1− (1− y3j )1/3

1 + 2(1− y3j )1/3
yj =

1−

(
1− y3j+1

1 + 2y3j+1

)3
1/3

j = i− 1 yi =
1 + 2ζk3 (1− y3i−1)1/3

1− ζk3 (1− y3i−1)1/3
− ζk3 yi−1 =

(
1−

(
yi + ζk3 − 1

yi + ζk3 + 2

)3
)1/3

j = i yi+1 =
(
1− (yi + ζk3 )−3

)1/3
yi = ζk3

(
1

1− y3i+1

)1/3

− ζk3

j > i yj+1 =

(
1−

(
1− yj
1 + 2yj

)3
)1/3

yj =
1− (1− y3j+1)1/3

1− (1 + 2y3j+1)1/3

(4.21)

Remark 4.3.3. Note that expressions such as (1 − y)1/3 will now become infinite power series. We may

multiply all its coefficient by a cube root of unity to get a similar infinite power series. However, after such

rescaling, the expressions above containing (1− y)1/3 might no longer be satisfied by (yj , yj+1) = (0, 0). We

need to worry about this issue in the cases for j < i when writing yj+1 in terms of yj (the 2 cases in the top

left corner), and j ≥ i when writing yj in terms of yj+1 (the 2 cases on the bottom right). Then only one

of the three possible power series will be valid. However, for the other four cases, all three power series are

valid.
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Writting these power series explicitely, one easily sees that yj has degree 3 w.r.t. to yj−1, for all j ≤ i,

and yj has degree 3 w.r.t. yj+1, for all j ≥ i. Thus, one can always write yj in terms of yj−1 for j ≤ i, but

this is no longer possible when j > i. However, by induction, degy1(yi) = 3i−1, hence degy1(yi+1) = 3i−2.

Thus, one may write yi+1 as a power serie in y1. In fact, we have the following chart

coordinates y1 y2 . . . yi−1 yi yi+1 . . . yn−1

degy1 1 3 . . . 3i−2 3i−1 3i−2 . . . 32i−n

which shows that one can write all coordinates y1, . . . , yn−1 in terms of y1, provided n ≤ 2i. Namely, in

the values of the coordinates of P
(n)
i,k , we require at most as many ending 1’s as the number of leading ∞’s.

Conversely, if there are more 1’s than ∞’s, then one simply needs to write everything in terms of yn−1 since

the following chart is also valid

coordinates yn−1 yn−2 . . . yi+1 yi yi−1 . . . y1

degyn−1
1 3 . . . 3n−i−1 3n−i 3n−i−1 . . . 3n−2i

We will soon consider these two cases distinctively but first, let us look at a specific example. Consider

P
(6)
4,1 = (∞,∞,∞, ζ3, 1) ∈ E729, and rewrite all yj in terms of y1, using (4.21) for i = 4. But recall that from

Remark 4.3.3, we know y5 can be written in three different ways in terms of y4 (depending on which cube

root is taken). Hence, one obtains

y2 =
1

9
y31 +

5

81
y61 +

31

729
y91 +

212

6561
y121 + . . .

y3 =
1

6561
y91 +

5

19683
y121 +

56

177147
y151 + . . .

y4 =
1

847288609443
y271 +

5

847288609443
y301 +

131

7625597484987
y331 + . . .

y5 = −ζe3 · ζ29 (1 + ζ3) ·
(

1

6561
y91 +

5

19683
y121 +

56

177147
y151 + . . .

)
, for e = 0, 1, 2.

Note that we may forget the higher order term since they do not affect the local geometry. It is for the

exact same reason that we were able to find the tangents of a plane curve at the origin by looking at the

form of the lowest degree in the polynomial defining the curve. Moreover, omitting them doesn’t change

anything to the following result, it is just longer and messier to write if one keeps them.

We may now conclude that the formal completion of the coordinate ring at this point is

C[[y1, . . . , y5]]/

(
y2 −

1

9
y31 , y3 −

1

6561
y91 , y4 −

1

847288609443
y271 ,

2∏
e=0

(
y5 + ζe3 ·

ζ29 (1 + ζ3)

6561
y91

) )

∼= C[[x, y]]/

(
2∏
e=0

(
y + ζe3 ·

ζ29 (1 + ζ3)

6561
x9
) )

37



This means that locally, the curve looks like

where these are 3 curves of degree 9. The nonsingular model here is trivial : it is simply 3 lines. They each

send t 7→ (t,−ζe3 ·
ζ29 (1+ζ3)

6561 t9) for some e = 0, 1, 2. Thus, when resolving the singularity P
(6)
4,1 on E729, one

obtains 3 distinct simple points. Clearly, the same holds for P
(6)
4,2

Claim : For any P
(n)
i,k ∈ E3n where n ≤ 2i, when resolving the singularity, it separates into 3n−i−1

distinct points. However, for any n ≥ 2i, it constantly gives 3i−1 distinct simple points.

If n ≤ 2i, we may write everything in terms of y1. As above, every yj for j ≤ i, one simply obtains

yj = cj · y3
j−1

1 , for some constants cj ∈ C. On the other hand, for the j > i, use (4.21) and Remark 4.3.3, to

find first

yi+1 = ζe3ci+1 · y3i = ζe3ci+1 ·
(
ciy

3i−1

1

)3
= ζe3c

′
i+1 · y3

i

1 (4.22)

for e = 0, 1, 2. Similarly, for yi+2, one obtains

yi+2 = ζe
′

3 ci+2 · y3i+1 = ζe
′

3 ci+2 ·
(
ζe3c
′
i+1y

3i

1

)3
= ζe

′

3 c
′
i+2 · y3

i+1

1 (4.23)

for e, e′ = 0, 1, 2. By induction, one obtains

yj = ζe3c
′
j · y3

j−1

1 (4.24)

for all j > i, where e = 0, 1, 2. Thus, the formal completion of the coordinate ring is

C[[y1, . . . , yn−1]]/

(
y2 − c2y31 , . . . , yi − ciy3

i−1

1 ,

2∏
e=0

(
yi+1 − ζe3c′i+1 · y3

i

1

)
, . . . ,

2∏
e=0

(
yn−1 − ζe3c′n−1 · y3

n−2

1

) )

∼= C[[y1, yi+1, . . . , yn−1]]/

(
2∏
e=0

(
yi+1 − ζe3c′i+1 · y3

i

1

)
, . . . ,

2∏
e=0

(
yn−1 − ζe3c′n−1 · y3

n−2

1

) )

Again, the resolution of the singularity here is trivial : it is 3n−i−1 lines. They each send

t 7→ (t , ζe13 c
′
i+1 · t3

i

, ζe23 c
′
i+2 · t3

i+1

, . . . , ζ
en−i−1

3 c′n−1 · t3
n−2

) (4.25)

for all possible combinations (e1, . . . , en−i−1) ∈ {0, 1, 2}n−i−1. This proves the first part of our claim.
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For the second part, one simply has to apply the same procedure, but by writting everything in terms

of yn−1 instead. One may verify that the situation is perfectly anti-symmetrical. Namely, it is the first few

equations, i.e. F (j) for j < i, that factor into products of 3 distinct terms, when all the last ones, i.e. F (j)

for j ≥ i, only factor into a unique irreducible term. Namely, one may check that for P
(n)
i,k ∈ E3n , where

n > 2i, the formal completion of the coordinate ring is

C[[y1, . . . , yn−1]]/

(
2∏
e=0

(y1 − ζe3d1 · yn−1) , . . . ,

2∏
e=0

(
yi−1 − ζe3di−1 · y3

i−2

n−1

)
, yi − ciy3

i−1

n−1 , . . . , yn−2 − cn−2y3i−1

)

∼= C[[y1, . . . , yi−1, yn−1]]/

(
2∏
e=0

(y1 − ζe3d1 · yn−1) , . . . ,

2∏
e=0

(
yi−1 − ζe3di−1 · y3

i−2

n−1

) )
for some constants dj ∈ C. Therefore, no matter the value of n > 2i, the nonsingular model here is

always exactly 3i−1 lines. They each map

t 7→ (ζe13 d1 · t, . . . , ζ
ei−1

3 di−1 · t3
i−2

, t) (4.26)

for all possible combinations (e1, . . . , ei−1) ∈ {0, 1, 2}i−1. This shows the second part of our claim.

This finally tells us exactly what happens to the blue arrows from Figure 4.1, i.e. how many points

are ramified in π0 : X0(3n) 7→ X0(3n−1). For any fixed i, k, the points P
(n)
i,k is no longer ramified when

n ≤ 2i. The first singularity P
(i+2)
i,k separates into 3 points, P

(i+3)
i,k separates into 9 points, and so on until

P
(2i)
i,k which separates into 3i−1 points. However, all the points above this, i.e. P

(n)
i,k , for n > 2i, will also

separate into exactly 3i−1 points. Thus, this leads to a tower of ramification involving 3i−1 ramified points,

all of ramification index 3. In the following picture, we change color to better identify the different towers of

ramification. Also, one may see that the fibers in the top right corner are not fully written, due to the lack

of space. Finally, for the simple points of E3n (the black points in Figure 4.1), the same notation is used to

denote the point the represent in X0(3n).

Figure 4.2: Ramifications behavior in the tower X0(3n)
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Therefore, we now have that π0 : X0(3n)→ X0(3n−1) has exactly

3 + (2 · 3) + (2 · 9) + . . .+ (2 · 3b(n−2)/2c) = 3b(n−1)/2c (4.27)

ramification points, where bxc is the floor value of x.

Conclusion : We can finally substitute this into (4.15) and working out the recursion, we obtain that,

for n ≥ 3, the genus of X0(3n) is

g(X0(3n)) = 1 +

n−3∑
i=1

3b(n+i−2)/2c =

{
3n−2 − 2 · 3

n−2
2 + 1 , if n is even.

3n−2 − 3
n−1
2 + 1 , if n is odd.

(4.28)
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