1 Eichler-Shimura Isomorphism

1.1 Cohomology of Fuchsian Groups

Let G be a group, R be a given ring, M be a R[G]-module. We define the group cohomology as

$$H^*(G, M) := \operatorname{Ext}^*_{R[G]}(R, M),$$

where R is endowed with the trivial G-action. In this way, $H^*(G, M)$ is endowed with natural R-module structure, while the underlying group itself is independent of the R, as it is the derived functor of $M \mapsto M^G$.

In terms of the non-homogeneous cochain, we define $C^n(G, M)$ as the *R*-module of all maps from $G^{\times n}$ to *M*, here *R* acts on *M*, with differential maps given by

$$du(g_1, \cdots, g_{n+1}) := g_1 u(g_2, \cdots, g_{n+1}) + \sum_{i=1}^n (-1)^i u(g_1, \cdots, g_{i-1}, g_i g_{i+1}, g_{i+1}, \cdots, g_{n+1}) + (-1)^{n+1} u(g_1, \cdots, g_n).$$

 $H^*(G, M)$ is identified with the cohomology of $C^*(G, M)$. For degree 0, we have $H^0(G, M) = M^G$. For degree 1, we have

$$Z^{1}(G,M) = \{ u : G \to M \mid u(g_{1}g_{2}) = g_{1}u(g_{2}) + u(g_{1}) \},\$$

and

$$B^1(G,M) = \{ dm_v : g \mapsto (g-1)m_v \}.$$

Let Q be a subset of G. We define $C^*_Q(G, M)$ as the sub-cochain of $C^*(G, M)$ given by

$$C^1_Q(G,M) := \{ u : G \to M \mid u(g) \in (g-1)M \text{ for all } g \in Q \},\$$

and $C_Q^i(G, M) = C^i(G, M)$ if $i \neq 1$. It is clear that $B^1(G, M) \subset C_Q^1(G, M)$. We define $H_Q^*(G, M)$ as the cohomology of $C_Q^*(G, M)$. In particular, $H_Q^i(G, M) = H^i(G, M)$ for $i \neq 1, 2$, and

$$H^1_Q(G, M) = \ker(H^1(G, M) \to \prod_{g \in Q} (\langle g \rangle, M)).$$

Like the usual cohomology, $H^1_Q(G, M)$ has the following functoriality:

Lemma 1. Assume $Q \subset G$ is closed under conjugation and taking powers. Let $H \subset G$ be a subgroup of finite index and M be a H-module. Then the canonical isomorphism $H^1(G, \operatorname{Ind}_H^G(M)) \cong H^1(H, M)$ induces an isomorphism $H^1_Q(G, \operatorname{Ind}_H^G(M)) \cong H^1_{Q \cap H}(H, M)$.

Proof. Let S be a set of representatives of $H \setminus G/K$ and define $H_s := s^{-1}Hs \cap K$ for each $s \in S$, and M_s the H_s -module whose underlying space is M and $s^{-1}hs(m_s) := (hm)_s$. Then we have the canonical isomorphism

$$\operatorname{Res}|_{K}\operatorname{Ind}_{H}^{G}(M)\cong\bigoplus_{s\in S}\operatorname{Ind}_{H_{s}}^{K}(M_{s}).$$

To be explicit, the isomorphism is given by $\varphi \mapsto (\varphi_s : k \mapsto \varphi(sk))$.

For every $s \in S$, we have the restriction map

$$H^*(H, M) \to H^*(H_s, M_s)$$

induced by the pair of maps. $(s^{-1}hs \mapsto h, id_M)$. Therefore, the map

 $H^*(G, \operatorname{Ind}_H^G(M)) \to H^*(H, M) \to H^*(H_s, M_s)$

is induced by the pair of maps

$$(s^{-1}hs \mapsto h, \varphi \mapsto \varphi(1)).$$

On the other hand, $H^*(K, \operatorname{Ind}_H^G(M)) \to H^*(H_s, M_s)$ is induced by the pair of maps $(s^{-1}hs \mapsto s^{-1}hs, \varphi \mapsto \varphi(s))$. Hence

$$H^*(G, \operatorname{Ind}_H^G(M)) \to H^*(K, \operatorname{Ind}_H^G(M)) \to H^*(H_s, M_s)$$

is induced by the pair of maps

$$(s^{-1}hs \mapsto s^{-1}hs, \varphi \mapsto s\varphi(1)).$$

Hence we have a commutative diagram

$$\begin{array}{ccc} H^*(G, \operatorname{Ind}_H^G(M)) & \longrightarrow & H^*(K, \operatorname{Ind}_H^G(M)) \\ & & & & \downarrow \\ & & & \downarrow \\ & & & H^*(H, M) & \longrightarrow & \bigoplus_{s \in S} H^*(H_s, M_s) \end{array}$$

,

whose vertical maps are isomorphisms. Let K runs through $\{\langle q \rangle\}_{q \in Q}$ and we get the result.

Let $\Gamma \subset \mathrm{PSL}_2(\mathbb{R})$ be a Fuchsian group of the first kind and s_1, \dots, s_m be the set of cusps on $X(\Gamma)$. For every s_i we find a small open disk D_i on $X(\Gamma)$, centered at s_i . We can make $X(\Gamma) - \bigcup_{i=1}^m D_i$ a simplicial complex satisfying that

- 1. Each elliptic point is a 0-simplex.
- 2. For each cusp s_i , ∂D_i is a 1-simplex.

Let \mathcal{H}_0 be the preimage of $X(\Gamma) - \bigcup_{i=1}^m D_i$ under the projection map $\mathcal{H} \to Y(\Gamma)$. \mathcal{H}_0 can be chosen so that it has trivial homology. We pull-back the simplicial complex structure of $X(\Gamma) - \bigcup_{i=1}^m D_i$ and we make \mathcal{H}_0 a simplicial complex, say K. Let $C_*(K)$ be the simplicial chain complex with coefficient R. We have that there is a $R[\Gamma]$ -action on $C_*(K)$ and $C_2(K), C_1(K)$ are free $R[\Gamma]$ -modules. We define $C^*(K, M) := \operatorname{Hom}_{R[\Gamma]}(C_*(K), M)$ and $H^*(K, M)$ the cohomology of $C^*(K, M)$.

For every s_i we choose t_i a 1-simplex of K such that t_i is mapped to ∂D_i and define q_i as the starting point of t_i . Then $\partial t_i = (\pi_i - 1)[q_i]$ where π_i is a generator of Γ_{s_i} . Let $Q = {\pi_1, \dots, \pi_m}$. We define $C_Q^*(K, M)$ as the subcochain complex of $C^*(K, M)$ given by

$$C^{1}_{Q}(K,M) := \{ u \in \operatorname{Hom}_{R[\Gamma]}(C_{1}(K),M) \mid u(t_{i}) \in (\pi_{i}-1)M \text{ for all } i \},\$$

and $C^1_Q(K, M) = C^i(K, M)$ if $i \neq 1$. It is clear that $B^1(K, M) \subset C^1_Q(G, M)$. We define $H^*_Q(K, M)$ as the cohomology of $C^*_Q(K, M)$.

If Γ has no elliptic elements, $C_0(K)$ is also free over $R[\Gamma]$ and

$$C_*(K) \xrightarrow{a} R$$

is a free $R[\Gamma]$ -resolution of R. In this case, $H^*(\Gamma, M)$ is canonically identified with $H^*(K, M)$. In general, we have to deal with those elliptic points of $X(\Gamma)$. Let $p_1, \dots, p_r \in \mathcal{H}$ be a set of representatives of elliptic points of $X(\Gamma)$, $e_j := |\Gamma_{p_j}|$, and $E := \operatorname{lcm}\{e_j\}$. Let $C_*(\Gamma)$ be the homogeneous chain complex. We would like to define chain maps

$$f_*: C_*(K) \to C_*(\Gamma), g_*: C_*(\Gamma) \to C_*(K)$$

so that both $f_* \circ g_*$ and $g_* \circ f_*$ are homotopic to $E \cdot id$. We define f_* as follows: Let $S \subset \mathcal{H}_0$ be a set of representatives of Γ -orbits on 0-simplices. We may assume that

S contains $p_1, \dots, p_r, q_1, \dots, q_m$. We define $f_0: S \to C_0(\Gamma) = R[\Gamma]$ by

$$f_0(p_j) := \frac{E}{e_j} \sum_{g \in \Gamma_{p_j}} [g]$$

and $f_0(s) = E[e]$ if $s \in S - \{p_1, \dots, p_r\}$. Then f_0 extend uniquely to a $R[\Gamma]$ -homomorphism from $C_0(K)$ to $C_0(\Gamma)$ with the commutative diagram

$$0 \longrightarrow C_2(K) \longrightarrow C_1(K) \longrightarrow C_0(K) \xrightarrow{a} R \longrightarrow 0$$
$$\downarrow^{f_0} \qquad \qquad \downarrow^{E}$$
$$\cdots \longrightarrow C_2(\Gamma) \longrightarrow C_1(\Gamma) \longrightarrow R[\Gamma] \xrightarrow{a} R \longrightarrow 0$$

Since $C_2(K), C_1(K)$ are free over $R[\Gamma]$ and $C_*(\Gamma)$ is exact, $(f_0, E \cdot)$ extends uniquely up to chain homotopy to a chain map f_* . Similarly, we pick an arbitrary 0-simplex p of K and define $g_0 : R[\Gamma] \to C_0(K)$ by evaluation at [p]. g_0 is extended uniquely up to chain homotopy to a chain map g_* such that g_* induces identity map at H_0 . Now we see that $f_* \circ g_*$ induces $E \cdot$ on $H_0(C_*(\Gamma))$, so it's chain homotopic to $E \cdot id$. For $g_* \circ f_*$, the only problem is that $f_0 \circ g_0(p_j)$ should be Γ_{p_j} -invariant, which is clear. Now we have

$$f^*: C^*(G,M) \to C^*(K,M), \ g^*: C^*(K,M) \to C^*(G,M),$$

such that both $f^* \circ g^*$ and $g^* \circ f^*$ induce multiplication by E on cohomology. In particular, if E is invertible in R, $H^*(G, M) \cong H^*(K, M)$.

To deal with the parabolic cohomology, we may assume that

- 1. $f_*(t_i) = E([1, \pi_i])$ and $g_*([1, \pi_i]) = t_i + (\pi_i 1)b_i$ where b_i is a 1-chain with $\partial b_i = [p] [q_i]$.
- 2. $p \in S$ but is not an elliptic point. In this way, we have that $f_0 \circ g_0 = E \cdot$.
- 3. The chain homotopy U_* between $f_* \circ g_*$ and $E \cdot \mathrm{id}_{C_0(\Gamma)}$ satisfies that $U_1([1, \pi_i]) \in (\pi_k 1)C_2(\Gamma)$. We first take $U_0 = 0$. We have that

$$(f_1 \circ g_1)([1, \pi_i]) = E([1, \pi_i]) + (\pi_i - 1)f_1(b_i)$$

Since $\partial f_1(b_i) = f_0([p] - [q_i]) = 0$, U_1 can be chosen so that $U_1([1, \pi_i]) \in (\pi_i - 1)\partial^{-1}(f_1(b_i))$.

4. The chain homotopy V_* between $g_* \circ f_*$ and $E \cdot \mathrm{id}_{C_0(\Gamma)}$ takes 0 on t_i . Since $(g_0 \circ f_0)[q_i] = E[p], V_0$ can be chosen so that $V_0([q_i]) = b_i$. Since

$$(g_1 \circ f_1)(t_i) - Et_i = V_0(\partial t_i),$$

 V_1 can be chosen so that $V_0([t_i]) = 0$.

Now if $u \in C^1_Q(G, M)$, we have that

$$f^*(u)(t_i) = u(f_*(t_i)) = Eu([1, \pi_i]) = Eu(\pi_i) \in E(\pi_i - 1)M,$$

and if $u \in C^1_Q(K, M)$

$$g^*(u)(\pi_k) = g^*(u)([1,\pi_i]) = u(t_i) + (\pi_i - 1)u(b_i) \in (\pi_i - 1)M.$$

Hence $f^* : C^*(G, M) \to C^*(K, M), g^* : C^*(K, M) \to C^*(G, M)$ and U_*, V_* remain chain homotopies. We obtain the same result as usual cohomology case.

Remark 1. Let P be the set of all parabolic elements of Γ , then every element $\pi \in P$ is conjugate to a power of some π_i . If $u(\pi_i) = (\pi_i - 1)x_i$, $u(g\pi_i^n g^{-1}) = (g\pi_i^n g^{-1} - 1)(gx - u(g))$. Hence $Z_P^1(\Gamma, M) = Z_Q^1(\Gamma, M)$ and $H_P^1(\Gamma, M) = H_Q^1(\Gamma, M)$.

Let R be a ring, G be a group, M be a R[G]-module, and S be a flat Rmodule endowed with trivial G-action. Then both $H^*(G, \cdot) \otimes_R S$ and $H^*(G, (\cdot) \otimes_R S)$ are cohomological delta functors from $\operatorname{Mod}_{R[G]}$ to Mod_R , or Mod_S when S is a Ralgebra. Since $H^*(G, \cdot) \otimes_R S$ vanishes on injective R[G]-modules, $H^*(G, \cdot) \otimes_R S$ is an universal delta functor. At degree 0, we have the functorial map $M^G \otimes_R S \to$ $(M \otimes_R S)^G$, which is injective. Hence we obtain a unique natural transformation t^* from $H^*(G, \cdot) \otimes_R S$ to $H^*(G, (\cdot) \otimes_R S)$. Alternatively $t^*(M)$ is induced by the obvious chain map $C^*(G, M) \otimes_R S \to C^*(G, M \otimes_R S)$.

 t^* may not be a natural isomorphism of delta functors as tensor product does not commute with infinite product.

Lemma 2. If R[G] is Noetherian, or G is cyclic, t^* is a natural isomorphism of delta functors.

Proof. In both cases, R has a finite free resolution.

Lemma 3. If G is generated by finitely many elements, $t^0(M)$ is a natural isomorphism and $t^1(M)$ is injective for every M.

Proof. Let g_1, \dots, g_m be a generating set of G. Tensoring S on the exact sequence

$$0 \to M^G \to M \xrightarrow{\oplus g_i - 1} \bigoplus_{i=1}^m M$$

and we get the exact sequence $0 \to M^G \otimes_R S \to M \otimes_R S \xrightarrow{\oplus g_i - 1} \bigoplus_{i=1}^m M \otimes_R S$, hence the isomorphism $M^G \otimes_R S \cong (M \otimes_R S)^G$.

Consider a short exact sequence

$$0 \to M \to M' \to M'' \to 0$$

with injective M'. Apply the delta functors and use that t^0 is a natural isomorphism we have that $t^1(M)$ is injective.

Suppose $t^1(M)$ is an isomorphism and $Q \subset G$ is a finite set. Then $H^1_Q(G, M) \otimes S = H^1_Q(G, M \otimes_R S)$.

Let $\Gamma \subset PSL_2(\mathbb{R})$ be a Fuchsian group of the first kind.

Lemma 4. $H^*(K, M) \otimes_R S \cong H^*(K, M \otimes_R S).$

Proof. We have to compare the cohomology of

$$\operatorname{Hom}_{R[\Gamma]}(C_*(K), M) \otimes_R S$$

 to

$$\operatorname{Hom}_{R[\Gamma]}(C_*(K), M \otimes_R S).$$

Consider the natural transformation $\operatorname{Hom}_{R[\Gamma]}(\cdot, M) \otimes_R S \to \operatorname{Hom}_{R[\Gamma]}(\cdot, M \otimes_R S)$. Both functors commute with finite direct sum. If $N \cong R[\Gamma]/(g-1)$ for some $g \in \Gamma$, we have $\operatorname{Hom}_{R[\Gamma]}(N, M) \otimes_R S = M^g \otimes_R S$, $\operatorname{Hom}_{R[\Gamma]}(N, M \otimes_R S) = (M \otimes_R S)^g$, and the natural homomorphism is an isomorphism. Since each $C_*(K)$ is a finite direct sum of $R[\Gamma]$ -modules of this form, we get an isomorphism of cochain complexes. \Box

Proposition 1. If $E : M \otimes_R S \to M \otimes_R S$ is an isomorphism and $t^1(M)$ is injective, $H^1(\Gamma, M) \otimes_R S \to H^1(\Gamma, M \otimes_R S)$ is an isomorphism.

Proof. Consider the commutative diagram

$$\begin{array}{cccc} H^{1}(\Gamma, M) \otimes_{R} S & \stackrel{t^{1}}{\longrightarrow} & H^{1}(\Gamma, M \otimes_{R} S) \\ & & & \downarrow^{f^{1} \otimes 1} & & \downarrow^{f^{1}} \\ H^{1}(K, M) \otimes_{R} S & \stackrel{\psi}{\longrightarrow} & H^{1}(K, M \otimes_{R} S) \\ & & \downarrow^{g^{1} \otimes 1} & & \downarrow^{g^{1}} \\ H^{1}(\Gamma, M) \otimes_{R} S & \stackrel{t^{1}}{\longrightarrow} & H^{1}(\Gamma, M \otimes_{R} S). \end{array}$$

We already have that t^1 is injective, ψ is an isomorphism, and $f^1 \circ g^1 = g^1 \circ f^1 = E$. Now $(g^1 \otimes 1) \circ \psi^{-1} \circ (E^{-1}f^1)$ is the inverse of t^* .

1.2 Eichler-Shimura Isomorphism

Let $R = \mathbb{R}$ or \mathbb{C} , R^2 be endowed with the standard $\operatorname{GL}_2(R)$ -representation, and $\operatorname{Sym}^n(R^2)$ be the S_n -fixed subspace of $(R^2)^{\otimes n}$ with the natural $\operatorname{GL}_2(R)$ -action. Let θ be the *R*-bilinear form on R^2 given by $(v, w) \to \operatorname{det} \begin{pmatrix} v & w \end{pmatrix}$. This is extended to Θ_n , the *R*-bilinear form on $\operatorname{Sym}^n(R^2)$, determined by

$$\Theta_n(v^{\otimes n}, w^{\otimes n}) = \Theta(v, w)^n.$$

We have $\Theta_n(v, w) = (-1)^n \Theta_n(w, v)$, and $\Theta_n(\alpha v, \alpha w) = \det(\alpha)^n \Theta_n(v, w)$. This makes $\operatorname{Sym}^n(R^2)$ a self-dual $\operatorname{SL}_2(R)$ -module.

Let $\Gamma \subset \mathrm{SL}_2(\mathbb{R})$ be a Fuchsian group of the first kind, $\rho : \Gamma \to \mathrm{GL}(V)$ be a finite dimensional \mathbb{C} -representation with finite image, and k be a positive integer.

Definition 1. $S_k(\Gamma, \rho)$ is the space of holomorphic functions $f : \mathcal{H} \to V$ satisfying that

- 1. $f(\alpha z)j(\alpha, z)^{-k} = \rho(\alpha)f(z)$ for all $\alpha \in \Gamma$.
- 2. For every $\ell \in \operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C}), \ \ell \circ f \in S_k(\ker(\rho)).$

Proposition 2. $S_k(\Gamma, \rho_1 \oplus \rho_2) = S_k(\Gamma, \rho_1) \oplus S_k(\Gamma, \rho_2)$. For another Fuchsian group of the first kind $\Gamma' \supset \Gamma$ with $[\Gamma : \Gamma'] < \infty$, there is a natural isomorphism

$$S_k(\Gamma, \rho) \cong S_k(\Gamma', \operatorname{Ind}_{\Gamma}^{\Gamma'}(\rho)).$$

Proof. The first assertion is trivial. For the second one, we define

$$\phi: S_k(\Gamma', \operatorname{Ind}_{\Gamma}^{\Gamma'}(\rho)) \to S_k(\Gamma, \rho), \ z \mapsto f(z)(1),$$
$$\psi: S_k(\Gamma, \rho) \to S_k(\Gamma', \operatorname{Ind}_{\Gamma}^{\Gamma'}(\rho)), \ z \mapsto (\alpha \mapsto f(\alpha z)j(\alpha, z)^{-k}).$$

They are well-defined \mathbb{C} -linear map that are inverse to each other.

Let
$$\overline{\rho} : \Gamma \to \operatorname{GL}(V)$$
 given by $\overline{\rho}(\alpha)(\overline{v}) := \overline{\rho(\alpha)(v)}$. For every $f \in S_k(\Gamma, \overline{\rho})$, we
have $\overline{f(\alpha z)}j(\alpha, \overline{z})^{-k} = \overline{\overline{\rho}(\alpha)f(z)} = \rho(\alpha)\overline{f(z)}$.
Suppose $k \ge 2$. For every $f = (f_1, \overline{f_2}) \in S_k(\Gamma, \rho) \oplus \overline{S_k(\Gamma, \overline{\rho})}$, we define
 $\omega(f) \in H^0(\Omega^1(\mathcal{H}, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2))),$
 $\omega(f)(z) := f_1(z)(ze_1 + e_2)^{\otimes n}dz + \overline{f_2(z)(ze_1 + e_2)^{\otimes n}dz}.$

In particular, $\omega(f)$ is a closed 1-form, and $\omega(f) \circ \alpha = \chi(\alpha)\omega(f)$, where χ is the representation $V \otimes \operatorname{Sym}^{k-2}(\mathbb{C}^2)$. Let F be a primitive of $\omega(f)$. Then F have the form

$$F(z) = \int_{z_0}^z \omega(f) + v$$

for some $z_0 \in \mathcal{H}$ and $v \in V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2)$. We define $u(f) \in Z^1(\Gamma, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2))$ by

$$u(f)(\alpha) := F(\alpha z) - \chi(\alpha)F(z) = \int_{z_0}^{\alpha z_0} \omega(f) + (1 - \chi(\alpha))v$$

Let $\pi \in \Gamma$ be a parabolic element and $s \in \mathbb{P}^1(\mathbb{R})$ be a cusp fixed by π . F can be extend to s and we obtain that

$$F(s) = F(\pi(s)) = \chi(\pi)F(s) + u(f)(\pi).$$

Hence $u(f) \in Z_P^1(\Gamma, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2))$ and [u(f)] is a well-defined class in $H_P^1(\Gamma, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2))$, independent of the choice of F. We therefore obtain a \mathbb{C} -linear map

$$\Psi_{\rho}: S_k(\Gamma, \rho) \oplus \overline{S_k(\Gamma, \overline{\rho})} \to H^1_P(\Gamma, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2)), \ f \mapsto [u(f)].$$

Lemma 5. Let $\Gamma' \supset \Gamma$ be a Fuchsian group of the first kind such that $[\Gamma : \Gamma'] < \infty$. Then we have the commutative diagram

Note that $\operatorname{Ind}_{\Gamma}^{\Gamma'}(\overline{\rho}) = \overline{\operatorname{Ind}_{\Gamma}^{\Gamma'}(\rho)}$ and Φ is induced by the natural inclusion $\Gamma \to \Gamma'$ and $\operatorname{Ind}_{\Gamma}^{\Gamma'}(V) \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2) \to V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2), \varphi \otimes v \mapsto \varphi(1) \otimes v$. Here we use the isomorphism

$$\operatorname{Ind}_{H}^{G}(U \otimes \operatorname{Res}_{H} T) \cong \operatorname{Ind}_{H}^{G}(U) \otimes T.$$

Proof. An explicit computation shows that both $\Psi_{\rho} \circ \phi$ and $\Phi \circ \Psi_{\operatorname{Ind}_{\Gamma}^{\Gamma'}(\overline{\rho})}$ maps f to the class represented by

$$u: \alpha \mapsto \int_{z_0}^z \omega(f)(z)(1).$$

Theorem 1.

$$\Psi_{\rho}: S_k(\Gamma, \rho) \oplus \overline{S_k(\Gamma, \overline{\rho})} \to H^1_P(\Gamma, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2))$$

is an isomorphism.

Proof. By the additivity at ρ we may assume that ρ is a regular representation $\operatorname{Ind}_{\Gamma_0}^{\Gamma}(\mathbb{C})$, where Γ_0 is the kernel of ρ , and the case is reduced to $\Gamma = \Gamma_0$ and ρ is the trivial representation.

Now we show that

$$\Psi_1: S_k(\Gamma) \oplus \overline{S_k(\Gamma)} \to H^1_P(\Gamma, \operatorname{Sym}^{k-2}(\mathbb{C}^2))$$

is an isomorphism. Since both sides have the same dimension over \mathbb{C} , it suffices to show the injectivity. We define

$$(f,g) := \int_{\Gamma \setminus \mathcal{H}} \omega(f) \wedge \omega(g),$$

which is a nondegenerate \mathbb{C} -bilinear form on $S_k(\Gamma) \oplus \overline{S_k(\Gamma)}$. To be explicit, if $f = (f_1, \overline{f_2}), g = (g_1, \overline{g_2}),$

$$(f,g) = \int_{\Gamma \setminus \mathcal{H}} \left(f_1(z)\overline{g_2(z)} - g_1(z)\overline{f_2(z)} \right) (z - \overline{z})^{k-2} dz \wedge d\overline{z}.$$

Let F be a primitive of $\omega(f)$. If $\Psi_1(f) = 0$, F can be chosen so that $F(\alpha z) = \chi(\alpha)F(z)$ for all $\alpha \in \Gamma$. Let X be a fundamental domain of $X(\Gamma)$. $\partial X = \sum_i (\alpha_i - 1)s_i$

where s_i are 1-simplices. Then

$$(f,g) = \int_{\partial X} F \wedge \omega(g) = \sum_{i} \left(\int_{\alpha_{i} s_{i}} F \wedge \omega(g) - \int_{s_{i}} F \wedge \omega(g) \right) = 0.$$

for all g. Hence f = 0 and we get the injectivity.

We similarly define

1. $M_k(\Gamma, \rho)$ is the space of holomorphic functions from \mathcal{H} to V such that

$$f(\alpha z)j(\alpha, z)^{-k} = \rho(\alpha)f(z)$$

and for every $\ell \in \operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C}), \ \ell \circ f \in M_k(\ker(\rho)).$

2.

$$\Psi_{\rho}: M_k(\Gamma, \rho) \oplus \overline{S_k(\Gamma, \overline{\rho})} \to H^1(\Gamma, \rho \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2))$$

given by

$$f \mapsto \left[\left(\alpha \mapsto \int_{z_0}^{\alpha z_0} \omega(f) \right) \right].$$

Corollary 1.

$$\Psi_{\rho}: M_k(\Gamma, \rho) \oplus \overline{S_k(\Gamma, \overline{\rho})} \to H^1(\Gamma, \rho \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2))$$

is an isomorphism.

Proof. By the same functoriality we reduce this to the case $\rho = 1$. Since $M_k(\Gamma) \oplus \overline{S_k(\Gamma)}$ and $H^1(\Gamma, \operatorname{Sym}^{k-2}(\mathbb{C}^2))$ have the same dimension, it suffices to show the injectivity. We consider the commutative diagram with exact rows:

Let $x_i := \int_{z_i}^{\beta_i \pi_i \beta_i^{-1} z_i} f|[\beta^{-1}]_k(z)(ze_1 + e_2)^{\otimes k-2}$. $\beta_i^{-1} x_i \in (\pi_i - 1) \operatorname{Sym}^{k-2}(\mathbb{C}^2)$ if and only if $x_i \in (\beta_i \pi_i \beta_i^{-1}) \operatorname{Sym}^{k-2}(\mathbb{C}^2)$. Therefore, f is in the kernel if and only if for all regular cusps s_i ,

$$\int_{z_i}^{\beta_i \pi_i \beta_i^{-1} z_i} f|[\beta_i^{-1}]_k(z) dz = 0.$$

Let $q = e^{2\pi i z}$. If s_i is irregular, $f|[\beta_i^{-1}]_k(z) \in q^{1/2} \mathbb{C}[[q]]$. If s_i is regular, $f|[\beta_i^{-1}]_k(z) \in \mathbb{C}[[q]]$, and the constant term is given by

$$\int_{z_i}^{\beta_i \pi_i \beta_i^{-1} z_i} f|[\beta_i^{-1}]_k(z) dz.$$

Hence the kernel of $M_k(\Gamma) \to \bigoplus_{i=1}^m H^1(\langle \pi_i \rangle, \operatorname{Sym}^{k-2}(\mathbb{C}^2))$ is exactly $S_k(\Gamma)$. \Box

1.3 Double Coset Operators

Let $\Gamma_1, \Gamma_2 \subset SL_2(\mathbb{R})$ be two Fuchsian groups of the first kind. Let $\Delta \subset GL_2^+(\mathbb{R})$ be a semi-group containing Γ_1, Γ_2 , and for every $\alpha \in \Delta$, $\alpha \Gamma_1 \alpha^{-1}$ and Γ_2 are commensurable. Consider the involution

$$\iota: \alpha \mapsto \det(\alpha)\alpha^{-1}.$$

Let X be a $R[\Delta^{\iota}]$ -module. We define for every $\alpha \in \Delta$ a R-linear map

$$(\Gamma_1 \alpha \Gamma_2)_X : H^1_P(\Gamma_1, X) \to H^1_P(\Gamma_2, X)$$

as follows: Let $\{\alpha_1, \dots, \alpha_d\}$ be a set representatives of $\Gamma_1 \setminus \Gamma_1 \alpha \Gamma_2$. For every $\beta \in \Gamma_2$, we have $\alpha_i \beta = \gamma_i \alpha_j$ (or we write $\alpha_i \beta = \gamma_i^\beta \alpha_j$) for some $\gamma_i \in \Gamma_1$. $(\Gamma_1 \alpha \Gamma_2)_X$ sends a 1-cocycle u to $v : \beta \mapsto \sum_{i=1}^d \alpha_i^\iota u(\gamma_i)$. This double coset operator actually defines a "corestriction" map on the category of $R[\Delta^\iota]$ -modules. We first define a chain map α^* on homogeneous chains

$$\alpha^n : \widetilde{C}^n(\Gamma_1, X) \to \widetilde{C}^n(\Gamma_2, X)$$

by

$$\alpha(\widetilde{u})(g_0,\cdots,g_n):=\sum_{i=1}^d \alpha_i^{\iota} \widetilde{u}(\gamma_i^{g_0},\cdots,\gamma_i^{g_n}).$$

Since

$$\alpha_i gh = \gamma_i^g \alpha_{ig} h = \gamma_i^g \gamma_{ig}^h \alpha_{igh},$$

 $\gamma_i^{gh}=\gamma_i^g\gamma_{ig}^h.$ Therefore,

$$\alpha(\widetilde{u})(gh_0,\cdots,gh_n) = \sum_{i=1}^d \alpha_i^{\iota} \widetilde{u}(\gamma_i^g \gamma_{ig}^{h_0},\cdots,\gamma_i^g \gamma_{ig}^{h_n}) = \sum_{i=1}^d \alpha_i^{\iota} \gamma_i^g \widetilde{u}(\gamma_{ig}^{h_0},\cdots,\gamma_{ig}^{h_n})$$
$$= \sum_{i=1}^d g \alpha_{ig}^{\iota} \widetilde{u}(\gamma_{ig}^{h_0},\cdots,\gamma_{ig}^{h_n}) = g \alpha(\widetilde{u})(h_0,\cdots,h_n).$$

Moreover, α is clearly a chain map. Hence we obtain α^* on cohomology, and clearly is a homomorphism for delta functors.

Use $u(g_1, \dots, g_n) = \widetilde{u}(1, g_1, g_1g_2, \dots, g_1 \dots g_n)$ and we see that for H^1 , α^1 is the double coset operator we defined.

At degree 0 we have $\alpha^0 : X^{\Gamma_1} \to X^{\Gamma_2}, x \mapsto \sum_{i=1}^d \alpha_i^{\iota} x.$

Let V be a finite dimensional \mathbb{C} -vector space and $\rho : \Delta^{\iota} \to \operatorname{GL}(V)$ be multiplicative such that $\rho(\Gamma_1)$, $\rho(\Gamma_2)$ are finite. Then Δ^{ι} acts on $V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}(\mathbb{C}^2)$, denoted by χ . Suppose further that $\rho(-I_2) = (-1)^k$ if $-I_2 \in \Delta$. We define

$$f|[\Gamma_1 \alpha \Gamma_2]_{k,\rho} : z \mapsto \det(\alpha)^{k-1} \sum_{i=1}^d \rho(\alpha_i^\iota) f(\alpha_i z) j(\alpha_i, z)^{-k}.$$

Then $[\Gamma_1 \alpha \Gamma_2]_{k,\rho} : S_k(\Gamma_1, \rho) \to S_k(\Gamma_2, \rho)$ is a well-defined \mathbb{C} -linear map. We also define $[\Gamma_1 \alpha \Gamma_2]_{k,\rho} : \overline{S_k(\Gamma_1, \overline{\rho})} \to \overline{S_k(\Gamma_2, \overline{\rho})}$ by

$$\overline{f}|[\Gamma_1 \alpha \Gamma_2]_{k,\rho} := \overline{f|[\Gamma_1 \alpha \Gamma_2]_{k,\overline{\rho}}}.$$

This is also C-linear.

Proposition 3. We have the commutative diagram

Proof. Let $f = (f_1, \overline{f_2}) \in S_k(\Gamma_1, \rho) \oplus \overline{S_k(\Gamma_1, \overline{\rho})}$. We have

$$\omega(f_1|[\Gamma_1 \alpha \Gamma_2]_{k,\rho}) = \sum_{i=1}^d \rho(\alpha_i^\iota) f_1(\alpha_i z) j(\alpha_i, z)^{-k} \det(\alpha)^{k-1} (ze_1 + e_2)^{\otimes k-2} dz$$
$$= \sum_{i=1}^d \rho(\alpha_i^\iota) f_1(\alpha_i z) \det(\alpha)^{k-1} \alpha_i^{-1} (\alpha_i ze_1 + e_2)^{\otimes k-2} d\alpha_i z$$
$$= \sum_{i=1}^d \chi(\alpha_i^\iota) \omega(f_1) \circ \alpha_i,$$

and

$$\omega(\overline{f_2}|[\Gamma_1 \alpha \Gamma_2]_{k,\rho}) = \overline{\omega(f_2|[\Gamma_1 \alpha \Gamma_2]_{k,\rho})} = \overline{\sum_{i=1}^d \overline{\chi(\alpha_i^\iota)}} \omega(f_2) \circ \alpha_i$$
$$= \overline{\sum_{i=1}^d \overline{\chi(\alpha_i^\iota)}} \omega(f_2) \circ \alpha_i = \sum_{i=1}^d \chi(\alpha_i^\iota) \omega(\overline{f_2}) \circ \alpha_i$$

Therefore,

$$\omega(f|[\Gamma_1 \alpha \Gamma_2]_{k,\rho}) = \sum_{i=1}^d \chi(\alpha_i^\iota) \omega(f) \circ \alpha_i.$$

We have that

$$\int_{z_0}^{\beta z_0} \omega(f|[\Gamma_1 \alpha \Gamma_2]_{k,\rho}) = \sum_{i=1}^d \int_{z_0}^{\beta z_0} \chi(\alpha_i^\iota) \omega(f) \circ \alpha_i = \sum_{i=1}^d \chi(\alpha_i^\iota) (F(\alpha_i \beta z_0) - F(\alpha_i z_0))$$
$$= \sum_{i=1}^d \chi(\alpha_i^\iota) (F(\gamma_i \alpha_j z_0) - F(\alpha_i z_0))$$
$$= \sum_{i=1}^d \chi(\alpha_i^\iota) (u(f)(\gamma_i) + \chi(\beta_i) F(\alpha_j z_0) - F(\alpha_i z_0))$$
$$= \sum_{i=1}^d \chi(\alpha_i^\iota) u(f)(\gamma_i) + \sum_{i=1}^d [\chi(\beta) \chi(\alpha_j^\iota) F(\alpha_j z_0) - \chi(\alpha_i) F(\alpha_i z_0)]$$

and we get the commutativity.

Similarly,

$$M_k \oplus \overline{S_k} \to H^1$$

is Hecke-equivariant.

1.4 Lattices and Duality

Let $\Gamma = \Gamma_1(N)$. Consider Diamond operators and Hecke operators:

$$\langle d \rangle := \left[\Gamma \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Gamma \right]_k$$

for some $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$, and $T_p := \left[\Gamma \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \Gamma \right]_k.$ We denote by $H_k(N)$ and $h_k(N)$ C-subalgebras of $\operatorname{End}_{\mathbb{C}}(M_k(N))$ and $\operatorname{End}_{\mathbb{C}}(S_k(N))$ generated by all Diamond operators and Hecke operators. There are both commutative C-algebras.

For every Dirichlet character $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ we define $M_k(N,\chi)$ and $S_k(N,\chi)$ as $M_k(N)[\chi]$ and $S_k(N)[\chi]$, respectively. That means, $\langle d \rangle(f) = \chi(d)f$ for all (d, N) = 1. We take $\Gamma = \Gamma_0(N)$,

$$\Delta^{\iota} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| N \mid c, \ (d, N) = 1 \right\},$$

extend χ on Δ^{ι} by $\chi(g) = \chi(d)$, and define

$$T_p := \left[\Gamma \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \Gamma \right]_k.$$

We define $\mathcal{E}_k(N,\chi)$ as the orthogonal complement of $S_k(N,\chi)$ in $M_k(N,\chi)$ under the Petersson inner product. An explicit construction of a basis for $\mathcal{E}_k(N,\chi)$ when $k \geq 2$ is given as follows: Let ψ , φ be Dirichlet characters with conductor u, v, respectively and $(\psi\varphi)(-1) = (-1)^k$. Define

$$E_k^{\psi,\varphi}(q) := \delta(\psi)L(1-k,\varphi) + 2\sum_{n=1}^{\infty} \sigma_{k-1}^{\psi,\varphi}(n)q^n$$

where

$$\sigma_{k-1}^{\psi,\varphi}(n) := \sum_{d|n} \psi(n/d)\varphi(d)d^{k-1}$$

Define

$$E_k^{\psi,\varphi,t}(z) := \begin{cases} E_k^{\psi,\varphi}(tz), & (k,\psi,\varphi) \neq (2,1,1) \\ E_2^{1,1}(z) - tE_2^{1,1}(tz) & (k,\psi,\varphi) = (2,1,1) \end{cases}$$

Proposition 4. $\{E_k^{\psi,\varphi}: tuv \mid N, \psi\varphi = \chi\}$ is a basis for $\mathcal{E}_k(N,\chi)$.

Let R be a subring of \mathbb{C} containing $\mathbb{Z}[\chi]$. We define $M_k(N, \chi; R)$, $S_k(N, \chi; R)$ as subspaces of $M_k(N, \chi)$, $S_k(N, \chi)$ consisting of forms whose q-expansions are in R[[q]]. We define $m_k(N, \chi; R)$ as the subspace of $M_k(N, \chi)$ of forms whose q-expansions are in $\operatorname{Frac}(R) + qR[[q]]$. Note that $M_k(N, \chi; R)$, $S_k(N, \chi; R)$, and $m_k(N, \chi; R)$ are all contained in finite free R-modules. **Lemma 6.** Define $\mathcal{E}_k(N, \chi)$ has a basis with elements in $M_k(N, \chi; \mathbb{Q}(\chi))$.

Proof. Define $\mathcal{E}_k(N,\chi;R) := \mathcal{E}_k(N,\chi) \cap M_k(N,\chi;R)$. We should prove that

$$\mathcal{E}_k(N,\chi;\mathbb{Q}(\chi))\otimes_{\mathbb{Q}(\chi)}\mathbb{C}=\mathcal{E}_k(N,\chi).$$

Since all $E_k^{\psi,\varphi,t}$ are in $M_k(N,\chi;\mathbb{Q}(\zeta_N))$, we already have

$$\mathcal{E}_k(N,\chi;\mathbb{Q}(\zeta_N))\otimes_{\mathbb{Q}(\zeta_N)}\mathbb{C}=\mathcal{E}_k(N,\chi).$$

Let $G := \operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}(\chi))$. Then $\mathcal{E}_k(N, \chi; \mathbb{Q}(\zeta_N))$ is a $\mathbb{Q}(\zeta_N)[G]$ -module, where G acts on $\mathbb{Q}(\zeta_N)$ by its natural action. Therefore,

$$\mathcal{E}_k(N,\chi;\mathbb{Q}(\zeta_N))=\mathcal{E}_k(N,\chi;\mathbb{Q}(\zeta_N))^G\otimes_{\mathbb{Q}(\chi)}\mathbb{Q}(\zeta_N).$$

Since $\mathcal{E}_k(N,\chi;\mathbb{Q}(\zeta_N))^G = \mathcal{E}_k(N,\chi;\mathbb{Q}(\zeta_N)^G) = \mathcal{E}_k(N,\chi;\mathbb{Q}(\chi)), \ \mathcal{E}_k(N,\chi;\mathbb{Q}(\chi)) \otimes_{\mathbb{Q}(\chi)} \mathbb{C} = \mathcal{E}_k(N,\chi).$

We also define $H_k(N, \chi)_R$, $h_k(N, \chi)_R$ as the *R*-subalgebra of $H_k(N, \chi)$, $h_k(N, \chi)$ generated by all Hecke operators. Then $H_k(N, \chi)_R$, acts on $m_k(N, \chi; R)$, $M_k(N, \chi; R)$, and $h_k(N, \chi)_R$ acts on $S_k(N, \chi; R)$. We define $H_k(N, \chi; R)$ and $h_k(N, \chi; R)$ as images of $H_k(N, \chi)_R$, $h_k(N, \chi)_R$ in $\operatorname{End}_R(m_k(N, \chi; R))$ and $\operatorname{End}_R(S_k(N, \chi; R))$, respectively. Note that if $h \in H_k(N, \chi; R)$ with h(f) = 0 for all $f \in M_k(N, \chi; R)$, h = 0. Therefore, $H_k(N, \chi; R)$ is also seen as the image of $H_k(N, \chi)_R$ in $\operatorname{End}_R(m_k(N, \chi; R))$.

Eichler-Shimura isomorphism gives the commutative diagram

,

which is Hecke-equivariant. Let h be in the Hecke algebra on $H^1_P(\Gamma_1(N), \operatorname{Sym}^{k-2}(\mathbb{C}^2))$. If h = 0 on $S_k(\Gamma_1(N))$, h = 0 on $S_k(\Gamma_1(N))$. Restricts this to the χ -isotypic part and we have that $h_k(N, \chi)$ acts on $H^1_P(\Gamma_0(N), \operatorname{Sym}^{k-2}(\mathbb{C}^2)(\chi))$. Define $L_P(k-2, \chi)$ as the image of

$$H^1_P(\Gamma_0, \operatorname{Sym}^{k-2}(\mathbb{Z}[\chi]^2)(\chi)) \to H^1_P(\Gamma_0, \operatorname{Sym}^{k-2}(\mathbb{C}^2)(\chi)).$$

 $L_P(k-2,\chi)$ is a Lattice of full-rank and equipped with $h_k(N,\chi)_R$ -action. Similarly we get a lattice of full-rank $L(k-2,\chi) \subset H^1(\Gamma_0, \operatorname{Sym}^{k-2}(\mathbb{C}^2)(\chi))$ with $H_k(N,\chi)$ action.

Theorem 2. Suppose $k \geq 2$. For all $\mathbb{Z}[\chi] \subset R \subset \mathbb{C}$, there are natural isomorphisms

$$H_k(N,\chi)_R \cong H_k(N,\chi;R), \ h_k(N,\chi)_R \cong h_k(N,\chi;R),$$
$$H_k(N,\chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \cong H_k(N,\chi)_R, \ h_k(N,\chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \cong h_k(N,\chi)_R,$$

and

$$m_k(N,\chi;\mathbb{Z}[\chi])\otimes_{\mathbb{Z}[\chi]} R = m_k(N,\chi;R), \ S_k(N,\chi;\mathbb{Z}[\chi])\otimes_{\mathbb{Z}[\chi]} R = S_k(N,\chi;R).$$

Moreover, we have perfect pairings

$$H_k(N,\chi;R) \times m_k(N,\chi;R) \to R, \ h_k(N,\chi;R) \times S_k(N,\chi;R) \to R$$

given by $(h, f) \mapsto a_1(h(f))$.

Lemma 7. The duality is true if R is a field.

Proof. In this case, we are dealing with finite dimension *R*-vector spaces, so it suffices to prove the nondegeneracy of this *R*-bilinear pairing. If (h, f) = 0 for all h, $(T_n, f) = a_1(T_n(f)) = a_n(f) = 0$ for all $n \in \mathbb{N}$. Hence f is a constant. Since k > 0, f = 0. If (h, f) = 0 for all f, $(h, T_n(f)) = a_1(hT_n(f)) = a_1(T_nh(f)) = T_n(h(f)) = 0$. Hence h(f) = 0 for all f and we get that h = 0.

Lemma 8. The theorem is true for $R = \mathbb{C}$.

Proof. Consider the commutative diagram

By definition, $h_k(N,\chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} \mathbb{C} \to h_k(N,\chi)$ is surjective. By diagram chasing, it is also injective, hence an isomorphism. Similarly we have that $H_k(N,\chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} \mathbb{C} \to H_k(N,\chi)$ is an isomorphism. Consider the isomorphism

$$\operatorname{Hom}_{\mathbb{C}}(h_k(N,\chi),\mathbb{C}) \cong S_k(N,\chi), \ \phi \mapsto \sum_{n=1}^{\infty} \phi(T_n)q^n.$$

Since $h_k(N,\chi) = h_k(N,\chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} \mathbb{C}$, $\operatorname{Hom}_{\mathbb{C}}(h_k(N,\chi),\mathbb{C}) = \operatorname{Hom}_{\mathbb{Z}[\chi]}(h_k(N,\chi)_{\mathbb{Z}[\chi]},\mathbb{C})$. Since $h_k(N,\chi)_{\mathbb{Z}[\chi]}$ is finite projective, it is also $\operatorname{Hom}_{\mathbb{Z}[\chi]}(h_k(N,\chi)_{\mathbb{Z}[\chi]},\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathbb{C}$, and with the identification, $\operatorname{Hom}_{\mathbb{Z}[\chi]}(h_k(N,\chi)_{\mathbb{Z}[\chi]},\mathbb{Z}[\chi])$ is identified as the $\mathbb{Z}[\chi]$ submodule in $S_k(N,\chi)$ of elements f satisfying that $a_n(f) \in \mathbb{Z}[\chi]$ for all $n \in \mathbb{N}$. Hence $\operatorname{Hom}_{\mathbb{Z}[\chi]}(h_k(N,\chi)_{\mathbb{Z}[\chi]},\mathbb{Z}[\chi]) = S_k(N,\chi;\mathbb{Z}[\chi])$. Therefore,

$$S_k(N,\chi;\mathbb{Z}[\chi])\otimes_{\mathbb{Z}[\chi]}\mathbb{C}=S_k(N,\chi),$$

 $h_k(N,\chi)_{\mathbb{Z}[\chi]} \to \operatorname{End}_{\mathbb{Z}[\chi]}(S_k(N,\chi;\mathbb{Z}[\chi]))$ is isomorphic onto $h_k(N,\chi;\mathbb{Z}[\chi])$, and

$$h_k(N,\chi;\mathbb{Z}[\chi])\otimes_{\mathbb{Z}[\chi]}\mathbb{C}=h_k(N,\chi)$$

For the duality part, we already have

$$\operatorname{Hom}_{\mathbb{Z}[\chi]}(h_k(N,\chi;\mathbb{Z}[\chi]),\mathbb{Z}[\chi]) = S_k(N,\chi;\mathbb{Z}[\chi]).$$

Apply $\operatorname{Hom}_{\mathbb{Z}[\chi]}(\cdot, \mathbb{Z}[\chi])$ and we have

$$\operatorname{Hom}_{\mathbb{Z}[\chi]}(S_k(N,\chi;\mathbb{Z}[\chi]),\mathbb{Z}[\chi])$$

=
$$\operatorname{Hom}_{\mathbb{Z}[\chi]}(\operatorname{Hom}_{\mathbb{Z}[\chi]}(h_k(N,\chi;\mathbb{Z}[\chi]),\mathbb{Z}[\chi]),\mathbb{Z}[\chi])$$

=
$$h_k(N,\chi;\mathbb{Z}[\chi]).$$

For modular forms, we should also prove that

Lemma 9.

$$m_k(N, \chi; R) = \{ f \in M_k(N, \chi) \mid a_n(f) \in R \text{ for all } n > 0 \}.$$

Proof. Since both $S_k(N,\chi)$ and $\mathcal{E}_k(N,\chi)$ have base with Fourier coefficients in $\mathbb{Q}(\chi)$, $M_k(N,\chi)$ has a basis with Fourier coefficients in $\mathbb{Q}(\chi)$. Therefore, if $f \in M_k(N,\chi)$ and $a_n(f) \in \operatorname{Frac}(R)$ for all $n \ge 0$, $a_0(f) \in \operatorname{Frac}(R)$.

Now we similarly have

$$m_k(N, \chi; \mathbb{Z}[\chi]) = \operatorname{Hom}_{\mathbb{Z}[\chi]}(H_k(N, \chi)_{\mathbb{Z}[\chi]}, \mathbb{Z}[\chi]),$$

$$M_k(N,\chi) = \operatorname{Hom}_{\mathbb{Z}[\chi]}(H_k(N,\chi)_{\mathbb{Z}[\chi]},\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathbb{C} = m_k(N,\chi;\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathbb{C},$$

and

$$H_k(N,\chi) = \operatorname{Hom}_{\mathbb{Z}[\chi]}(m_k(N,\chi;\mathbb{Z}[\chi]),\mathbb{Z}[\chi]).$$

Now we prove the general case. Consider the natural map

$$h_k(N,\chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \to h_k(N,\chi)_R \to h_k(N,\chi;R).$$

By definition, this is surjective. If h is in the kernel, h = 0 on $S_k(N, \chi; \mathbb{Z}[\chi])$. Since $S_k(N, \chi; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathbb{C} = S_k(N, \chi)$ and $h_k(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \to h_k(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \otimes_R$ $\mathbb{C} = h_k(N, \chi)$ is injective for that \mathbb{C} is R-flat, h = 0. Hence $h_k(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \to$ $h_k(N, \chi)_R$ is injective. By definition, this is also surjective. We obtain that

$$h_k(N,\chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R = h_k(N,\chi)_R \cong h_k(N,\chi;R).$$

The same argument for H_k and m_k gives

$$H_k(N,\chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R = H_k(N,\chi)_R \cong H_k(N,\chi;R).$$

Since

$$h_k(N,\chi) = h_k(N,\chi)_R \otimes_R \mathbb{C},$$

 $S_k(N,\chi) = \operatorname{Hom}_R(h_k(N,\chi)_R,\mathbb{C})$, and $\operatorname{Hom}_R(h_k(N,\chi)_R,R)$ is identified as $S_k(N,\chi;R)$. On the other hand, the isomorphism $h_k(N,\chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R = h_k(N,\chi)_R$ gives that

$$S_k(N, \chi; R) = \operatorname{Hom}_{\mathbb{Z}[\chi]}(h_k(N, \chi; \mathbb{Z}[\chi]), R)$$
$$= \operatorname{Hom}_{\mathbb{Z}[\chi]}(h_k(N, \chi; \mathbb{Z}[\chi]), \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R$$
$$= S_k(N, \chi; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R.$$

Similarly, $M_k(N,\chi) = \operatorname{Hom}_R(H_k(N,\chi)_R,\mathbb{C})$, $\operatorname{Hom}_R(H_k(N,\chi)_R,R)$ is identified as

$$\{f \in M_k(N,\chi) \mid a_n(f) \in R \text{ for all } n \in \mathbb{N}\} = m_k(N,\chi;R),$$

and

$$\operatorname{Hom}_{R}(H_{k}(N,\chi)_{R},R) = \operatorname{Hom}_{R}(H_{k}(N,\chi)_{\mathbb{Z}[\chi]},\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R = m_{k}(N,\chi;\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R.$$

Corollary 2. $M_k(N, \chi; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R = M_k(N, \chi; R).$

Proof. Define $C(R) := m_k(N, \chi; R) / M_k(N, \chi; R)$, which is identified as a submodule of $\operatorname{Frac}(R)/R$ via a_0 . Consider the commutative diagram

By snake lemma it suffices to show that $C(\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R \to C(R)$ is injective. The map

$$C(\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R \to C(R) \to \operatorname{Frac}(R)/R$$

is the same as the map

$$C(\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R \to \mathbb{Q}(\chi) / \mathbb{Z}[\chi] \otimes_{\mathbb{Z}[\chi]} R \to \operatorname{Frac}(R) / R,$$

which is injective.

The same method for $\Gamma_1(N)$ yields that for every subring $R \subset \mathbb{C}$ and $k \geq 2$ there are isomorphisms

$$H_k(N)_R \cong H_k(N; R), \ h_k(N)_R \cong h_k(N; R),$$
$$H_k(N)_{\mathbb{Z}} \otimes_{\mathbb{Z}} R \cong H_k(N, \chi)_R, \ h_k(N)_{\mathbb{Z}} \otimes_{\mathbb{Z}} R \cong h_k(N)_R,$$
$$n_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} R = m_k(N; R), \ S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} R = S_k(N; R),$$

and perfect pairings

γ

$$H_k(N; R) \times m_k(N; R) \to R, \ h_k(N; R) \times S_k(N; R) \to R$$

given by $(h, f) \mapsto a_1(h(f))$. In particular, $M_k(N; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} = M_k(N)$. Let $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ acts on $M_k(N)$ by acting on coefficients of q-expansions. Then $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ commute with $H_k(N; \mathbb{Z})$. Therefore, for all $\sigma \in \operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ and $f \in M_k(N)$, $f^{\sigma} \in M_k(N)$, and if $f \in M_k(N; \chi)$, $f^{\sigma} \in M_k(N; \chi^{\sigma})$. The same result holds for $S_k(N)$.

1.5 Dimension Computation

Let R be a field, and M be a finite dimensional R-vector space. If E is invertible in R, we can compute the parabolic cohomology in terms of simplicial cohomology.

Proposition 5. $H^0_Q(K, M) = M^G$. This is easily seen by $H^0_Q(K, M) = H^0(K, M)$ and \mathcal{H}_0 is connected.

Proposition 6. $H^2_Q(K, M) = M / \sum_{g \in \Gamma} (g - 1)M = H_0(\Gamma, M).$

Now we compute $H^1_Q(K, M)$ via Euler characteristic. We have that

$$\chi_Q(K, M) = \dim_R(C^0(K, M)) - \dim_R(C^1_Q(K, M)) + \dim_2(C^1(K, M)).$$

Let N_i be the number of Γ -orbits of *i*-simplices in K. We have that

$$\dim_R(C^0(K,M)) = N_0 \dim_R(M) - \sum_{j=1}^r (\dim_R(M) - \dim_R(M^{\Gamma_{p_j}})),$$
$$\dim_R(C^1(K,M)) = N_1 \dim_R(M) - \sum_{i=1}^m (\dim_R(M) - \dim_R((\pi_i - 1)M)),$$

and $\dim_R(C^2(K, M)) = N_2 \dim_R(M)$. Let g be the genus of $X(\Gamma)$. We have

$$N_0 - N_1 + N_2 + m = 2 - 2g.$$

Let $\epsilon_0 := \dim_R(M^G)$, $\epsilon_2 := \dim_R(M / \sum_{g \in \Gamma} (g-1)M)$. We have that

$$\dim_R(H^1_Q(K, M)) = \epsilon_0 + \epsilon_2 - \chi_Q(K, M) = (2g - 2) \dim_R(M) + \epsilon_0 + \epsilon_2 + \sum_{i=1}^m (\dim_R((\pi_i - 1)M)) + \sum_{j=1}^r (\dim_R(M) - \dim_R(M^{\Gamma_{p_j}})).$$

For modular forms, we should also compute $\dim_R(H^1(K, M))$. If Γ has cusps, $H^2(K, M) = 0$. Hence

$$\dim_R(H^1(K,M)) = (2g - 2 + m) \dim_R(M) + \epsilon_0 + \sum_{j=1}^r (\dim_R(M) - \dim_R(M^{\Gamma_{p_j}})).$$

Let $\overline{\Gamma}$ be the image of Γ in $\mathrm{PSL}_2(\mathbb{R})$. Let M be a Γ -module. If $-I_2 \in \Gamma$, we use the Hochschild–Serre spectral sequence

$$H^p(\overline{\Gamma}, H^q(\{\pm I_2\}, M)) \Rightarrow H^{p+q}(\Gamma, M).$$

Suppose 2 is invertible in \mathbb{R} . $H^q(\{\pm I_2\}, M) = 0$ for $q \ge 1$, hence the isomorphism

$$H^*(\overline{\Gamma}, M^H) \cong H^*(\Gamma, M).$$

Now $M = \operatorname{Sym}^{k-2}(\mathbb{C}^2)$. If k is odd, $-I_2 \notin \Gamma$. Hence we always have $H^*(\overline{\Gamma}, \operatorname{Sym}^{k-2}(\mathbb{C}^2)) = H^*(\Gamma, \operatorname{Sym}^{k-2}(\mathbb{C}^2))$. We have to show that

$$2 \dim_{\mathbb{C}}(S_k(\Gamma)) = \dim_{\mathbb{C}}(H_P^1(\Gamma, \operatorname{Sym}^{k-2}(\mathbb{C}^2)))$$

=(2g-2)(k-1) + dim_{\mathbb{C}}(\operatorname{Sym}^{k-2}(\mathbb{C}^2)^{\Gamma}) + dim_{\mathbb{C}}(\operatorname{Sym}^{k-2}(\mathbb{C}^2) / \sum_{g \in \Gamma} (g-1) \operatorname{Sym}^{k-2}(\mathbb{C}^2))
+ $\sum_{i=1}^m ((\pi_i - 1) \operatorname{Sym}^{k-2}(\mathbb{C}^2)) + \sum_{j=1}^r \dim_{\mathbb{C}}(\operatorname{Sym}^{k-2}(\mathbb{C}^2) / \operatorname{Sym}^{k-2}(\mathbb{C}^2)^{\Gamma_{p_j}}).$

and that

$$\dim_{\mathbb{C}}(M_k(\Gamma)) - \dim_{\mathbb{C}}(S_k(\Gamma))$$
$$= \sum_{i=1}^m (\operatorname{Sym}^{k-2}(\mathbb{C}^2)^{\pi_i}) - \dim_{\mathbb{C}}(\operatorname{Sym}^{k-2}(\mathbb{C}^2) / \sum_{g \in \Gamma} (g-1) \operatorname{Sym}^{k-2}(\mathbb{C}^2)).$$

Theorem 3. If k = 2, $\dim_{\mathbb{C}}(S_2(\Gamma)) = g$. If k > 2,

$$\dim_{\mathbb{C}}(S_k(\Gamma)) = \begin{cases} (k-1)(g-1) + \frac{k-2}{2}m + \sum_{j=1}^r \left\lfloor \frac{k(e_j-1)}{2e_j} \right\rfloor, & k \text{ is even} \\ (k-1)(g-1) + \frac{k-2}{2}m_1 + \frac{k-1}{2}m_2 + \sum_{j=1}^r \left\lfloor \frac{k(e_j-1)}{2e_j} \right\rfloor, & k \text{ is odd} \end{cases}$$

,

here m_1, m_2 are numbers of regular and irregular cusps, respectively. Moreover,

$$\dim_{\mathbb{C}}(M_k(\Gamma)) - \dim_{\mathbb{C}}(S_k(\Gamma)) = \begin{cases} m-1, & k = 2\\ m, & k \ge 4, & k \text{ is even} \\ m_1, & k \text{ is odd} \end{cases}$$

We first consider cusp forms.

- 1. k = 2: $\mathbb{C}^{\Gamma} = \mathbb{C}$, $\mathbb{C} / \sum_{g \in \Gamma} (g 1) \mathbb{C} = \mathbb{C}$, $(\pi_k 1) \mathbb{C} = 0$, $\mathbb{C}^{\Gamma_{p_j}} = \mathbb{C}$. We get $\dim_{\mathbb{C}}(H^1_P(\Gamma, \mathbb{C})) = 2g$.
- 2. k > 2: $(\pi_k 1)$ Sym^{k-2}(\mathbb{C}^2) has dimension k 1 if s_k is an irregular cusp, otherwise it has dimension k - 2. Let σ_j be a generator of Γ_{p_j} . Let e'_j be the order of σ_j . Then σ_j has tow eigenvalues ω_j, ω_j^{-1} where ω_j is a primitive e'_j th root

of unity. σ_j acts on $\operatorname{Sym}^{k-2}(\mathbb{C}^2)$ with eigenvalues $\omega_j^{k-2}, \omega_j^{k-4}, \cdots, \omega_j^{4-k}, \omega_j^{2-k}$. Therefore, $\dim_{\mathbb{C}}(\operatorname{Sym}^{k-2}(\mathbb{C}^2)/\operatorname{Sym}^{k-2}(\mathbb{C}^2)^{\Gamma_{p_j}})$ is twice the numbers of positive integers $a \in \{1, \cdots, k-2\}$ such that $a \equiv k \pmod{2}$ and $e'_j \nmid a$. We should show that the number of such a is $\left\lfloor \frac{k(e_j-1)}{2e_j} \right\rfloor$.

(a) If e'_j is even, $-I_2 \in \Gamma_{p_j}$. We have that k is even and $e'_j = 2e_j$. Let $\ell := \frac{k}{2}$. We have to verify the identity

$$\ell - 1 - \left\lfloor \frac{\ell - 1}{e_j} \right\rfloor = \left\lfloor \frac{\ell(e_j - 1)}{e_j} \right\rfloor$$

or equivalently,

$$\ell - 1 = \left\lfloor \frac{\ell - 1}{e_j} \right\rfloor + \left\lfloor \frac{\ell(e_j - 1)}{e_j} \right\rfloor.$$

This is true for that $\ell - 1 + \ell(e_j - 1) = \ell e_j - 1$.

(b) If e'_j is odd, $e_j = e'_j$. If k is even write $\ell = \frac{k}{2}$. Then $e_j \mid k - 2i$ if and only if $e_j \mid \ell - i$. Hence we reduce the case to the previous one. Suppose k is odd, say $k = 2\ell + 1$. We have to verify that

$$2\ell - 1 - \left\lfloor \frac{2\ell - 1}{e_j} \right\rfloor - \left(\ell - 1 - \left\lfloor \frac{\ell - 1}{e_j} \right\rfloor\right) = \left\lfloor \frac{(2\ell + 1)(e_j - 1)}{2e_j} \right\rfloor.$$

Since $\left\lfloor \frac{(2\ell + 1)(e_j - 1)}{2e_j} \right\rfloor = \ell - \left\lfloor \frac{2\ell + e_j}{2e_j} \right\rfloor = \ell - \left\lfloor \frac{\ell}{e_j} + \frac{1}{2} \right\rfloor$, we have to show that
$$\left\lfloor \frac{\ell}{e_j} + \frac{1}{2} \right\rfloor + \left\lfloor \frac{\ell - 1}{e_j} \right\rfloor = \left\lfloor \frac{2\ell - 1}{e_j} \right\rfloor.$$

Since ℓ is a period of both $\left\lfloor \frac{\ell}{e_j} + \frac{1}{2} \right\rfloor + \left\lfloor \frac{\ell-1}{e_j} \right\rfloor - \frac{2\ell}{e_j}$ and $\left\lfloor \frac{2\ell-1}{e_j} \right\rfloor - \frac{2\ell}{e_j}$, and e_j is odd, it suffices to show the equation for $1 \leq \ell < e_j/2$ and $e_j/2 < \ell \leq e_j$, both of which are clear.

Suppose $x \in \text{Sym}^{k-2}(\mathbb{C}^2)$. Define

$$p(z) := \Theta_{k-2}(x, (ze_1 + e_2)^{\otimes k-2}).$$

Then p(z) is a polynomial in z of degree at most k-2. For every $\alpha \in \Gamma$,

$$p(\alpha z)j(\alpha, z)^{k-2} = \Theta_{k-2}(x, \alpha(ze_1 + e_2)^{\otimes k-2}) = p(z).$$

For every cusp s_k , let $g_k \in \mathrm{SL}_2(\mathbb{R})$ such that $g_k \pi_k g_k^{-1} = \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix}$. Then

$$p|[g_k^{-1}]_{2-k}$$

is a polynomial in z and $p|[g_k^{-1}]_{2-k}(z) = p|[g_k^{-1}]_{2-k}(z+2h)$. This gives that $p|[g_k^{-1}]_{2-k}$ is a constant. Hence $p(z) \in M_{2-k}(\Gamma)$. Since 2-k < 0, p = 0. This gives that x = 0. We use the duality between H^0 and H_0 to get $\operatorname{Sym}^{k-2}(\mathbb{C}^2) / \sum_{g \in \Gamma} (g-1) \operatorname{Sym}^{k-2}(\mathbb{C}^2) = 0$.

Since $\dim_{\mathbb{C}}(\operatorname{Sym}^{k-2}(\mathbb{C}^2)/\sum_{g\in\Gamma}(g-1)\operatorname{Sym}^{k-2}(\mathbb{C}^2))$ is 0 if k > 2, is 1 if k = 2, and $\sum_{i=1}^{m}(\operatorname{Sym}^{k-2}(\mathbb{C}^2)^{\pi_i})$ is the number of regular primes, the case for modular forms follows.

2 *O*-adic Modular Forms

2.1 Basic Definitions

Let K/\mathbb{Q}_p be a finite extension, $\mathcal{O} \subset K$ be the ring of integers, and $\varpi \in \mathcal{O}$ be a uniformizer. Let q = p if p > 2 and q = 4 if p = 2. Let $\omega : (\mathbb{Z}/q\mathbb{Z})^{\times} \to \mathcal{O}^{\times}$ be the Teichmüller character and $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathcal{O}^{\times}$ be a Dirichlet character. We define

$$M_k(N,\chi;\mathcal{O}) := M_k(N,\chi;\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathcal{O}, \ S_k(N,\chi;\mathcal{O}) := S_k(N,\chi;\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathcal{O}.$$

We similarly have $H_k(H, \chi; \mathcal{O})$, $h_k(N, \chi; \mathcal{O})$, and we endow all spaces with *p*-adic topology.

2.2 Ordinary Forms

Lemma 10. Let A be \mathcal{O} -algebra which is finite as a \mathcal{O} -module. Then for every $x \in A$, the limit $\lim_{n\to\infty} x^{n!}$ exists under p-adic topology and is an idempotent.

Proof. Since A is finite over \mathcal{O} , A is p-adically complete, and for every $m \in \mathbb{N}$, $A/p^m A$ is finite. There are $a(m), b(m) \in \mathbb{N}$ such that

$$x^{a(m)} \equiv x^{a(m)+b(m)} \pmod{p^m A}.$$

Hence for every $n \ge a(m)$, $x^n \equiv x^{n+b(m)} \pmod{p^m A}$. Take $n(m) := \max\{a(m), b(m)\}$ and we have that for every $n \ge n(m)$,

$$x^{(n+1)!} \equiv x^{n!} \equiv x^{2(n!)} \pmod{p^m A}.$$

Hence $\lim_{n\to\infty} x^{n!}$ exists in $A/p^m A$, which is $x^{n(m)!} \pmod{p^m A}$, which is an idempotent. tent. Let $e_m := x^{n(m)!} \pmod{p^m A}$. Then $(e_m)_{m\in\mathbb{N}}$ defines an element in $\varprojlim_{m\in\mathbb{N}} A/p^m A = A$, which is an idempotent.

Definition 2. The ordinary projector e is defined as $\lim_{n\to\infty} T_p^{n!} \in H_k(N, \chi; \mathcal{O})$. By definition, $e(f) = \lim_{n\to\infty} T_p^{n!}(f)$ under *p*-adic topology. $f \in M_k(N, \chi; \mathbb{C}_p)$ is called ordinary if e(f) = f. Equivalently, $f \in eM_k(N, \chi; \mathbb{C}_p)$.

Example 1. Assume $p \mid N, k \geq 2$. In this case, $a_n(T_p(f)) = a_{pn}(f)$. For every (t, p) = 1 we define $V_{\psi,\varphi,t}$ as the subspace generated by

$$E_k^{\psi,\varphi,t}, \ E_k^{\psi,\varphi,pt}, \cdots$$

in $\mathcal{E}_k(N, \psi, \varphi)$. Assume that $V_{\psi,\varphi,t} \neq 0$ and we compute $eV_{\psi,\varphi,t}$. Note that if $E_k^{\psi,\varphi}(p^{\alpha+1}tz) \in \mathcal{E}_k(N, \psi, \varphi), \ T_p E_k^{\psi,\varphi}(p^{\alpha+1}tz) = E_k^{\psi,\varphi}(p^{\alpha}tz).$

1. $\psi(p) = 0$: $T_p E_k^{\psi,\varphi,t} = \varphi(p) p^{k-1} E_k^{\psi,\varphi,t}$. In this case, $eV_{\psi,\varphi,t} = 0$.

2.
$$\psi(p) \neq 0$$
 but $\varphi(p) = 0$: $T_p E_k^{\psi,\varphi,t} = \psi(p) E_k^{\psi,\varphi,t}$. In this case, $eV_{\psi,\varphi,t} = \mathbb{C} E_k^{\psi,\varphi,t}$.

3. $\psi(p)\varphi(p) \neq 0$: Let $\alpha := v_p(N) > 0$. Suppose $(k, \psi, \varphi) \neq (2, 1, 1)$. We consider another basis

$$\{ E_k^{\psi,\varphi,t} - \varphi(p) p^{k-1} E_k^{\psi,\varphi,pt}, \cdots, E_k^{\psi,\varphi,p^{\alpha-1}t} - \varphi(p) p^{k-1} E_k^{\psi,\varphi,p^{\alpha}t}, \ E_k^{\psi,\varphi,t} - \psi(p) E_k^{\psi,\varphi,pt} \}$$

$$E_k^{\psi,\varphi,t} - \varphi(p) p^{k-1} E_k^{\psi,\varphi,pt}, \ E_k^{\psi,\varphi,t} - \psi(p) E_k^{\psi,\varphi,pt} \text{ are } T_p \text{-eigenvectors of eigenvalues}$$

 $\psi(p), \ \varphi(p)p^{k-1}, \text{ respectively. Therefore, } eV_{\psi,\varphi,t} = \mathbb{C}(E_k^{\psi,\varphi,t} - \varphi(p)p^{k-1}E_k^{\psi,\varphi,pt}).$ If $(k,\psi,\varphi) = (2,1,1)$, we similarly have $eV_{\psi,\varphi,t} = \mathbb{C}(E_k^{\psi,\varphi}(tz) - 2E_k^{\psi,\varphi}(2tz)).$

e preserves $S_k(N, \chi; \mathcal{O})$ as $S_k(N, \chi; \mathcal{O})$ is a complete subspace of $M_k(N, \chi; \mathcal{O})$. We define

$$H_k^{\text{ord}}(N,\chi;\mathcal{O}) := eH_k(N,\chi;\mathcal{O}), \ h_k^{\text{ord}}(N,\chi;\mathcal{O}) := eh_k(N,\chi;\mathcal{O}),$$

$$M_k^{\mathrm{ord}}(N,\chi;\mathcal{O}) := eM_k(N,\chi;\mathcal{O}), \ S_k^{\mathrm{ord}}(N,\chi;\mathcal{O}) := eS_k(N,\chi;\mathcal{O}),$$

and

$$m_k^{\text{ord}}(N,\chi;\mathcal{O}) := em_k(N,\chi;\mathcal{O}).$$

We still have the duality

$$\operatorname{Hom}_{\mathcal{O}}(H_k^{\operatorname{ord}}(N,\chi;\mathcal{O}),\mathcal{O}) \cong m_k^{\operatorname{ord}}(N,\chi;\mathcal{O}),$$
$$\operatorname{Hom}_{\mathcal{O}}(h_k^{\operatorname{ord}}(N,\chi;\mathcal{O}),\mathcal{O}) \cong S_k^{\operatorname{ord}}(N,\chi;\mathcal{O}).$$

Note that e(f) may be a cusp form even if f is not a cusp form. The example on Eisenstein series shows that

$$\dim_{\mathbb{C}_p}(M_k^{\mathrm{ord}}(N,\chi\omega^a)) - \dim_{\mathbb{C}_p}(S_k^{\mathrm{ord}}(N,\chi\omega^a))$$

is independent of a and $k \ge 2$.

Lemma 11. Suppose (p, N) = 1, $\alpha > 0$, and χ is a Dirichlet character modulo Np^{α} . Then T_p sends $M_k(Np^{\alpha+1}, \chi)$ to $M_k(Np^{\alpha}, \chi)$.

Proof. It suffices to show that if $f \in M_k(Np^{\alpha+1}, \chi)$, $T_p(f)$ is $\Gamma_1(Np^{\alpha})$ -invariant. Let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1(Np^{\alpha})$. $\begin{pmatrix} 1 & j \\ 0 & p \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & j \\ 0 & p \end{pmatrix}^{-1} = \begin{pmatrix} a+cj & B \\ pc & d-cj \end{pmatrix}$ where $B \in \frac{(d-a)j-cj^2+b}{p}$. Hence if $p \mid b$, $T_p(f) \mid [g]_k = T_p(f)$. Since $T_p(f)$ is $\begin{pmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{pmatrix}$ -invariant, $T_p(f)$ has level Np^{α} .

Let p^{α} be the *p*-part of the conductor of χ . We see that if $\alpha > 0$ and *f* is ordinary of Nebentypus χ and tame level *N*, then *f* has level Np^{α} .

2.3 Constant Rank

Suppose (N, p) = 1.

Theorem 4. Let $\chi : (\mathbb{Z} / Np^{\alpha} \mathbb{Z})^{\times} \to \mathcal{O}^{\times}$ be a Dirichlet character for some $\alpha > 0$. Let $\epsilon : (\mathbb{Z} / Np^{\alpha} \mathbb{Z})^{\times} \to \mu_{p^{\infty}}(\mathcal{O}^{\times})$ be a finite order character. Then

$$\dim(M_k^{\text{ord}}(Np^{\alpha}, \epsilon\chi\omega^{-k})) = \dim(M_2^{\text{ord}}(Np^{\alpha}, \chi\omega^{-2})),$$
$$\dim(S_k^{\text{ord}}(Np^{\alpha}, \epsilon\chi\omega^{-k})) = \dim(S_2^{\text{ord}}(Np^{\alpha}, \chi\omega^{-2})).$$

For $\Gamma_1(Np^{\alpha})$ we have

$$\dim(M_k^{\mathrm{ord}}(\Gamma_1(Np^{\alpha}))) = \dim(M_2^{\mathrm{ord}}(\Gamma_1(Np^{\alpha}))),$$
$$\dim(S_k^{\mathrm{ord}}(\Gamma_1(Np^{\alpha}))) = \dim(S_2^{\mathrm{ord}}(\Gamma_1(Np^{\alpha}))).$$

Proof. Let $\Gamma := \Gamma_0(Np^{\alpha})$ or $\Gamma_1(Np^{\alpha})$ and define $L(k-2, R) := \operatorname{Sym}^{k-2}(R^2)$. For our purpose we may assume that $\alpha >> 0$. Suppose that Γ has a subgroup $H \subset \Gamma$ of finite index with $p \nmid [\Gamma : H]$ and H has no torsion elements other than $\{\pm I_2\}$. For example, if $\Gamma = \Gamma_1(Np^{\alpha})$, for our purpose we may assume $Np^{\alpha} > 3$ and hence Γ has no torsion element. For Γ_0 , if p > 3, we may take $H = \Gamma_1(p) \cap \Gamma$, and if p = 2, 3, we may assume $\alpha \ge 2$ as $\Gamma_0(4)$ and $\Gamma_0(9)$ have no torsion points other than $\{\pm I_2\}$ and take $H = \Gamma$. Now we have $H^*(H, M) = H^*(\Gamma, M)$ for all $\mathcal{O}[\Gamma]$ -module M. In particular, $H^2(\overline{H}, M) = 0$. This gives $H^2(\Gamma, M) = 0$ for all $\mathcal{O}[\Gamma]$ -module M except the case $\Gamma = \Gamma_0(N2^{\alpha})$.

Let \mathbb{F} be the residue field of \mathcal{O} . Consider the short exact sequence

$$0 \to L(k-2,\mathcal{O})(\epsilon \chi \omega^{-k}) \xrightarrow{\varpi} L(k-2,\mathcal{O})(\epsilon \chi \omega^{-k}) \to L(k-2,\mathbb{F})(\epsilon \chi \omega^{-k}) \to 0$$

and the corresponding long exact sequence. Since

$$T_p^2|_{L(k-2,\mathbb{F})(\epsilon\chi\omega^{-k})} = 0,$$

 $eH^0(\Gamma, L(k-2, \mathbb{F})(\epsilon \chi \omega^{-k})) = 0.$ Since the image of $H^0(\Gamma, L(k-2, \mathbb{F})(\epsilon \chi \omega^{-k}))$ in $H^1(\Gamma, L(k-2, \mathcal{O})(\epsilon \chi \omega^{-k}))$ is $H^1(\Gamma, L(k-2, \mathcal{O})(\epsilon \chi \omega^{-k}))[\varpi], eH^1(\Gamma, L(k-2, \mathcal{O})(\epsilon \chi \omega^{-k}))[\varpi] = 0.$ Therefore,

$$eH^1(\Gamma, L(k-2, \mathcal{O})(\epsilon \chi \omega^{-k}))$$

is finite free, and

$$\dim_{K}(eH^{1}(\Gamma, L(k-2, K)(\epsilon \chi \omega^{-k})))$$

=
$$\dim_{\mathbb{F}}(eH^{1}(\Gamma, L(k-2, \mathcal{O})(\epsilon \chi \omega^{-k})) \otimes_{\mathcal{O}} \mathbb{F})$$

=
$$\dim_{\mathbb{F}}(eH^{1}(\Gamma, L(k-2, \mathbb{F})(\chi \omega^{-k}))).$$

when we are not in the case $\Gamma = \Gamma_0(N2^{\alpha})$. If $\Gamma = \Gamma_0(N2^{\alpha})$, we show that $eH^2(\Gamma, L(k-2, \mathcal{O})(\epsilon \chi \omega^{-k})) = 0$ and we also have the formula above. Consider the spectral sequence

$$E_2^{p,q} = H^p(\overline{\Gamma}, H^q(\{\pm I_2\}, M)) \Rightarrow H^{p+q}(\Gamma, M).$$

where M is a $\mathcal{O}[\Gamma]$ -module, which is finite free over \mathcal{O} with trivial $\{\pm I_2\}$ -action. Then $H^1(\{\pm I_2\}, M) = M[2] = 0$. Since $H^p(\overline{\Gamma}, \cdot)$ vanishes for $p \geq 2$, the spectral sequence gives the isomorphism $H^2(\Gamma, M) \cong H^2(\{\pm I_2\}, M)^{\overline{\Gamma}}$.

Now we compute $H^2(\{\pm I_2\}, M)$. Let φ_2 be a inhomogeneous 2-cochain. The condition that it is a cocycle is that

$$\varphi_2(I_2, I_2) = \varphi_2(I_2, -I_2) = \varphi_2(-I_2, I_2).$$

Let φ_1 be a 1-cocycle. Say $\varphi(I_2) = a$ and $\varphi(-I_2) = b$. Then

$$(\delta\varphi_1)(I_2, I_2) = (\delta\varphi_1)(-I_2, I_2) = (\delta\varphi_1)(I_2, -I_2) = a, (\delta\varphi_1)(-I_2, -I_2) = 2b - a.$$

Therefore,

$$[\varphi_2] \mapsto \overline{\varphi_2(-I_2, -I_2) - \varphi_2(I_2, I_2)}$$

induces an $\overline{\Gamma}$ -equivariant isomorphism from $H^2(\{\pm I_2\}, M)$ to M/2M. Hence we obtain an isomorphism $H^2(\Gamma, M) \to H^0(\Gamma, M/2M)$. Take $M = L(k-2, \mathcal{O})(\epsilon \chi \omega^{-k})$. The isomorphism is compatible with Hecke operators for that a class [u] in $H^2(\Gamma, M)$ is uniquely determined by values of u on $\{\pm I_2\}^2$ and $\{\pm I_2\}$ is in the center of Γ . Since $eH^0(\Gamma, M/2M) = 0$, $eH^2(\Gamma, M) = 0$.

Consider the Γ -equivariant map

$$\iota: L(k-2,\mathbb{F})(\chi\omega^{-k}) \to \mathbb{F}(\chi\omega^{-2}), \ e_1 \mapsto 0, \ e_2 \mapsto 1.$$

This gives the long exact sequence

$$eH^*(\Gamma, \ker(\iota)) \to eH^*(\Gamma, L(k-2, \mathbb{F})(\chi\omega^{-k})) \to eH^*(\Gamma, \mathbb{F}(\chi\omega^{-2})) \xrightarrow{+1} .$$

Since $\begin{pmatrix} p & i \\ 0 & 1 \end{pmatrix}$ vanishes on $\ker(\iota), eH^*(\Gamma, \ker(\iota)) = 0$ and we get
 $eH^1(\Gamma, L(0, \mathbb{F})(\chi\omega^{-2})) = eH^1(\Gamma, \mathbb{F}(\chi\omega^{-2})) \cong eH^1(\Gamma, L(k-2, \mathbb{F})(\chi\omega^{-k})).$

3 Hida Family

3.1 A-adic Modular Forms

Let $\Gamma = \operatorname{Gal}(\mathbb{Q}_{\infty} / \mathbb{Q}) = 1 + q \mathbb{Z}_p$ and $u \in \Gamma = 1 + q \mathbb{Z}_p$ be a fixed geometric generator. Define

$$\Lambda = \mathcal{O}[[\Gamma]] := \varprojlim_k \mathcal{O}[\Gamma/\Gamma^{p^k}] \cong \varprojlim_k \mathcal{O}[T]/\langle (1+T)^{p^k} - 1 \rangle$$

where the last isomorphism is given by $\gamma_0 \mapsto 1+T$. We will show that $\varprojlim_k \mathcal{O}[T]/\langle (1+T)^{p^k}-1\rangle = \mathcal{O}[[T]].$

Definition 3. Let $P \in \mathcal{O}[T]$. *P* is called a distinguished polynomial if *P* is nonconstant, monic, and $P \equiv T^{\deg(P)} \pmod{\varpi}$.

Proposition 7 (Division Algorithm). Suppose $P = a_0 + a_1T + \cdots \in \mathcal{O}[[T]], P \neq 0$ (mod ϖ), and $n = \min\{k \in \mathbb{N} \mid a_k \in \mathcal{O}^{\times}\}$. Then for every $f \in \mathcal{O}[[T]]$ there exists a unique pair (Q, R) where $Q \in \mathcal{O}[[T]]$ and $R \in \mathcal{O}[T]$ has degree smaller than n, such that

$$f = QP + R.$$

Theorem 5 (Weierstrass Preparation). For every $f \in \mathcal{O}[[T]]$ there exists a unique triple (u, U(T), P(T)) where $u \in \mathbb{Z}_{\geq 0}, U \in \mathcal{O}[[T]]^{\times}$, and P(T) is a distinguished polynomial, such that

$$f = \varpi^u P U.$$

It is easily seen that $\mathcal{O}[[T]]$ is a UFD of dimension 2 and its irreducible elements are ϖ and all irreducible distinguished polynomials.

Theorem 6. Let P_1, P_2, \cdots be a sequence of distinguished polynomials such that $P_k \in (\varpi, T)^k$ and $P_k \mid P_{k+1}$ for all $k \in \mathbb{N}$. We endow $\mathcal{O}[[T]]$ with the **m**-adic topology and $\mathcal{O}[[T]]/(P_k)$ the *p*-adic topology. Then the natural map

$$\varphi: \mathcal{O}[[T]] \to \varprojlim_k \mathcal{O}[[T]]/(P_k)$$

is an isomorphism both algebraically and topologically.

Proof. Since $\mathcal{O}[[T]]/(P_k)$ is *p*-adically complete, it is isomorphic to $\varprojlim_{\ell} \mathcal{O}[[T]]/(P_k, \varpi^{\ell})$ with each object endowed with discrete topology. Hence

$$\lim_{k \to k} \mathcal{O}[[T]]/(P_k) = \lim_{k,\ell} \mathcal{O}[[T]]/(P_k, \varpi^\ell) = \lim_{k \to k} \mathcal{O}[[T]]/(P_k, \varpi^k),$$

where each $\mathcal{O}[[T]]/(P_k, \varpi^k)$ is given discrete topology. Since $(P_k, \varpi^k) \subset \mathfrak{m}^k$, it suffices to show that for every $k \in \mathbb{N}$ is a ℓ such that $\mathfrak{m}^{\ell} \subset (P_k, \varpi^k)$. This is true as the radical of (P_k, ϖ^k) is \mathfrak{m} and hence $\mathcal{O}[[T]]/(P_k, \varpi^k)$ is Artinian.

Let $P_k := (1+T)^{p^k} - 1$. Since $\mathcal{O}[T]/(P_k) \to \mathcal{O}[[T]]/(P_k)$ is an isomorphism, $\lim_k \mathcal{O}[T]/\langle (1+T)^{p^k} - 1 \rangle = \mathcal{O}[[T]].$

Definition 4. Let $\chi : (\mathbb{Z} / Np^{\alpha} \mathbb{Z})^{\times} \to \mathcal{O}^{\times}$ be a Dirichlet character for some $\alpha \geq 1$. We say $F \in \Lambda[[q]]$ is a (cusp,ordinary) Λ -adic modular form if $F(u^k - 1) \in \mathcal{O}[[q]]$ is a (cusp,ordinary) modular form in $M_k(Np^{\alpha}, \chi \omega^{-k}, \mathcal{O})$ for all k >> 0. We define $\mathbb{M}(\chi; \Lambda)$ ($\mathbb{M}^{\mathrm{ord}}(\chi; \Lambda)$, $\mathbb{S}(\chi; \Lambda)$, $\mathbb{S}^{\mathrm{ord}}(\chi; \Lambda)$) as the space of Λ -adic (ordinary, cusp, ordinary cusp) modular forms.

Example 2. Let ψ , φ be two primitive Dirichlet characters modulo u, v, respectively, with value in \mathcal{O}^{\times} . Suppose $\psi(p) \neq 0$. Then

$$\frac{1}{2} \left(E_k^{\psi,\varphi}(z) - \varphi(p) p^{k-1} E_k^{\psi,\varphi}(pz) \right)$$

is ordinary. The q-expansion of the ordinary Eisenstein series is

$$n\mapsto \sum_{\substack{d\mid n\\p \nmid d}} \psi(n/d)\varphi(d)d^{k-1}$$

and the constant term is

$$\frac{1}{2}\delta(\psi)L_p(1-k,\varphi)$$

We define $A_{n,\psi,\varphi}$ as

$$\sum_{\substack{d|n\\p \nmid d}} \psi(n/d) \varphi(d) d^{-1} \langle d \rangle$$

and $A_{0,\psi,\varphi}$ as the element in $\operatorname{Frac}(\Lambda)$ with

$$A_{0,\psi,\varphi}(\epsilon(u)u^s - 1) = \frac{1}{2}\delta(\psi)L_p(1 - s, \epsilon\varphi)$$

for all $|s|_p < qp^{-1/(p-1)}$ and ϵ any finite order character on $1 + q \mathbb{Z}_p$. If φ is odd or $\psi \neq 1$, $A_{0,\psi,\varphi} = 0$. If $\psi = 1$, φ is nontrivial and even, then $A_{0,\psi,\varphi} \in \Lambda$. If $\psi = \varphi = 1$, $A_{0,\psi,\varphi} \in \frac{\Lambda}{T}$. Define

$$E^{\psi,\varphi} := A_{0,\psi,\varphi} + \sum_{n=1}^{\infty} A_{n,\psi,\varphi} q^n$$

When $(\varphi, \psi) \neq (1, 1)$,

$$E^{\psi,\varphi} \in \mathbb{M}^{\mathrm{ord}}(\psi\varphi;\Lambda)$$

with suitable level, $E^{1,1} \in T^{-1} \mathbb{M}^{\mathrm{ord}}(1; \Lambda)$, and

$$E^{\psi,\varphi}(\epsilon(u)u^k - 1) \in \mathcal{M}_k^{\mathrm{ord}}(Np^{\alpha}, \epsilon\psi\varphi; \mathbb{Q}_p[\epsilon])$$

for all $k \geq 2$ with suitable N, α .

Definition 5. For every $k \ge 2$ we define

$$P_k := T - (u^k - 1).$$

More generally, for every finite order character $\epsilon : 1 + 2p \mathbb{Z}_p \to \mathbb{C}_p^{\times}$, we define $P_{k,\epsilon}$ as the minimal polynomial of $\epsilon(u)u^k - 1$ over \mathcal{O} .

3.2 Ordinary Hida Families

Theorem 7. $\mathbb{M}^{\mathrm{ord}}(\chi; \Lambda)$ and $\mathbb{S}^{\mathrm{ord}}(\chi; \Lambda)$ are free of finite rank over Λ .

Proof. Let M' be a finite free submodule of \mathbb{M}^{ord} , say F_1, \dots, F_n be a basis. Then there exists $b_1, \dots, b_n \in \mathbb{N}$ such that $D := \det(a(b_j, F_i)) \neq 0$. Therefore, for all k >> 0, $\{F_i(u^k - 1)\} \subset M_k^{\text{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O})$ and generates a free \mathcal{O} -module of rank n. Therefore, $n \leq \operatorname{rank}_{\mathcal{O}}(M_k^{\text{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O}))$ for all k >> 0. Since $\operatorname{rank}_{\mathcal{O}}(M_k^{\text{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O}))$ is bounded independent of k, n is bounded independent of M. Therefore, there is a $n_0 \in \mathbb{Z}_{\geq 0}$ such that n_0 is the maximal possible rank of free submodules of \mathbb{M}^{ord} .

Let $F_1, \dots, F_{n_0} \subset \mathbb{M}^{\text{ord}}$ be a basis of a free submodule M' of rank n_0 of \mathbb{M}^{ord} . Let $L := \operatorname{Frac}(\Lambda)$. Let $F \in \mathbb{M}^{\text{ord}}$. There are $\lambda_1, \dots, \lambda_{n_0} \in L$ such that

$$\lambda_1 F_1 + \dots + \lambda_{n_0} F_{n_0} = F_1$$

Consider linear equations

$$\lambda_1 a(n_j, F_1) + \dots + \lambda_{n_0} a(n_j, F_{n_0}) = a(n_j, F)$$

and we have that $D\lambda_j \in \Lambda$ for all j. Hence $\frac{M'}{D} \supset \mathbb{M}^{\text{ord}}$, and \mathbb{M}^{ord} is finitely generated. Therefore, there is a $a \in \mathbb{N}$ such that for all $k \geq a$ and $F \in \mathbb{M}^{\text{ord}}$, $F(u^k - 1) \in M_k^{\text{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O})$. Let $k \geq a$. If $F(u^k - 1) = 0$, then $F = P_k F'$ for some $F' \in \Lambda[[q]]$ and $F'(u^r - 1) = F(u^r - 1)/(u^r - u^k) \in M_r^{\text{ord}}(Np, \chi\omega^{-r}; \mathcal{O})$ for all r > k. Hence $F \in P_k \mathbb{M}^{\text{ord}}$. We have that

$$\mathbb{M}^{\mathrm{ord}}/P_k\mathbb{M}^{\mathrm{ord}} \to M_k^{\mathrm{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O})$$

is injective. Let f_1, \dots, f_n be a \mathcal{O} -basis of the image and F_1, \dots, F_n be their liftings. By Nakayama's lemma, \mathbb{M}^{ord} is generated by F_1, \dots, F_n . If $\lambda_1, \dots, \lambda_n \in \Lambda$ such that

$$\lambda_1 F_1 + \dots + \lambda_n F_n = 0,$$

 $P_k \mid \lambda_i \text{ for all } i.$ By infinite descent method $\lambda_1 = \cdots = \lambda_n = 0$. Namely, \mathbb{M}^{ord} is free and $\{F_1, \cdots, F_n\}$ is a basis.

The proof for $\mathbb{S}^{\mathrm{ord}}$ is identical.

We define Hecke operators on \mathbb{M} as follows:

$$a(m, T_n F) := \sum_{\substack{d \mid (m,n) \\ (d,Np)=1}} \chi(d) \langle d \rangle d^{-1} a(mn/d^2, F).$$

Since $(T_nF)(u^k - 1) = T_n(F(u^k - 1))$ for $k >> 0, T_n \in \text{End}_{\Lambda}(\mathbb{M})$, preserving subspaces of ordinary and cusp forms.

We would like to define an ordinary projector $e: \mathbb{M} \to \mathbb{M}^{\text{ord}}$, which should be

$$eF = \lim_{n \to \infty} T_p^{n!} F$$

under the m-adic topology. This is done circuitously. Given an $F \in \mathbb{M}$. Let $a \in \mathbb{N}$ such that $F(u^k - 1) \in M_k(Np, \chi \omega^{-k}; \mathcal{O})$ for all $k \ge a$. We define

$$\mathbb{M}_{a,j} := \{ F \in \mathbb{M} \mid F(u^k - 1) \in M_k(Np, \chi \omega^{-k}; \mathcal{O}) \ \forall \ k \in [a, j] \}.$$

Let $\Omega_j := \prod_{k=a}^j P_k(T)$ where $P_k(T) := T - (u^k - 1)$. Then

$$\mathbb{M}_{a,j} \to \bigoplus_{k=a}^{j} M_k(Np, \chi \omega^{-k}; \mathcal{O})$$

has kernel $\Omega_j[[q]] \cap \mathbb{M}_{a,j}$. Since T_p preserves $\mathbb{M}_{a,j}$ and $\Omega_j[[q]] \cap \mathbb{M}_{a,j}$, the image of $\mathbb{M}_{a,j} \to \bigoplus_{k=a}^{j} M_k(Np, \chi \omega^{-k}; \mathcal{O})$ is a T_p -invariant subspace. Hence $\lim_{n\to\infty} T_p^{n!}$ is defined on $\frac{\mathbb{M}_{a,j}}{\Omega_j[[q]] \cap \mathbb{M}_{a,j}}$, denoted by e_j . Then we have the commutative diagram

$$\begin{array}{ccc} & \mathbb{M}_{a,j+1} & & & \mathbb{M}_{a,j} \\ & & & & & \\ & & & & \\ & & & \downarrow^{e_{j+1}} & & & \downarrow^{e_j} \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

On the other hand, $\frac{\mathbb{M}_{a,j}}{\Omega_j[[q]] \cap \mathbb{M}_{a,j}}$ is a subspace of $(\Lambda/\Omega_j)[[q]]$. Therefore,

$$\varprojlim_{j} \frac{\mathbb{M}_{a,j}}{\Omega_{j}[[q]] \cap \mathbb{M}_{a,j}} \subset \varprojlim_{j} (\Lambda/\Omega_{j})[[q]] = \Lambda[[q]]$$

and the image is clearly M_a . We thus define $e := \varprojlim_j e_j$ on M_a . Since $\varprojlim_j (\Lambda/\Omega_j)$ with *p*-adic topology on each Λ/Ω_j is Λ with **m**-adic topology,

$$eF = \lim_{n \to \infty} T_p^{n!} F$$

under the m-adic topology, and $(eF)(u^k - 1) = e(F(u^k - 1))$ for all $k \ge a$. Hence e is an idempotent from \mathbb{M} onto \mathbb{M}^{ord} , mapping cusp forms to cusp forms.

Proposition 8. For every $a \ge 0$ and $f \in M_a(Np^{\alpha}, \chi\omega^{-a}; \mathcal{O})$ there is a $F \in \mathbb{M}(\chi; \Lambda)$ such that $F(u^a - 1) = f$. If f is cusp (ordinary), F can be taken to be cusp (ordinary).

Proof. We first consider $E^{1,1} \in \mathbb{M}^{\operatorname{ord}}(1,\Lambda)$. The T^{-1} -term of $E^{1,1}$ is

$$\lim_{s \to 0} \frac{(u^s - 1)L_p(1 - s)}{2} = 2^{-1}(p^{-1} - 1)\log_p(u) \in \mathbb{Z}_p^{\times}.$$

Define

$$E':=\frac{TE^{1,1}}{2^{-1}(p^{-1}-1)\log_p(u)}\in\mathbb{M}^{\mathrm{ord}}(\chi;\Lambda)$$

and

$$E(T) := E'(u^{-a}T + (u^{-a} - 1)), \ F := fE.$$

Then for all $k \ge a$, $F(u^k - 1) \in M_k(Np^{\alpha}, \chi \omega^{-k}; \mathcal{O})$, and $F(u^a - 1) = fE'(0) = f$. If f is cusp, F is cusp. If f is ordinary, we take F := e(fE) instead.

From this we can write down a basis for \mathbb{M}^{ord} (\mathbb{S}^{ord}) as follows: We first take a $a \in \mathbb{N}$ such that $F(u^k - 1) \in M_k^{\text{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O})$ ($S_k^{\text{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O})$) for all $F \in \mathbb{M}^{\text{ord}}$ (\mathbb{S}^{ord}) and $k \geq a$. Let f_1, \dots, f_n be a basis of $M_a^{\text{ord}}(Np^{\alpha}, \chi\omega^{-a}; \mathcal{O})$ ($S_a^{\text{ord}}(Np^{\alpha}, \chi\omega^{-a}; \mathcal{O})$) and $F_i := e(fE')$. Then $\{F_1, \dots, F_n\}$ is a Λ -basis of \mathbb{M}^{ord} (\mathbb{S}^{ord}). This shows that for all finite order characters $\epsilon : 1 + q \mathbb{Z}_p \to \mathbb{C}_p^{\times}$ and $k \geq a$,

$$F(\epsilon(u)u^{k}-1) \in M_{k}^{\mathrm{ord}}(Np^{\alpha}, \epsilon \chi \omega^{-k}; \mathcal{O}[\epsilon]) \ (S_{k}^{\mathrm{ord}}(Np^{\alpha}, \epsilon \chi \omega^{-k}; \mathcal{O}[\epsilon])).$$

We define

$$\epsilon_* : \mathbb{M}(\chi; \Lambda) \to \mathbb{M}(\epsilon \chi; \Lambda[\epsilon]), \ (\epsilon_* F))(T) := F(\epsilon T + (\epsilon - 1)).$$

Since $\epsilon_*^{-1} \circ \epsilon_* = \mathrm{id}$, when ϵ takes value in \mathcal{O}^{\times} ,

$$\epsilon_*: \mathbb{M}(\chi; \Lambda) \cong \mathbb{M}(\epsilon\chi; \Lambda).$$

Theorem 8. For every $k \geq 2$ and every $F \in \mathbb{M}^{\text{ord}}(\mathbb{S}^{\text{ord}}), F(\epsilon(u)u^k - 1) \in \mathbb{M}^{\text{ord}}(Np^{\alpha}, \epsilon\chi\omega^{-k}; \mathcal{O}[\epsilon])$ ($\mathbb{S}^{\text{ord}}(Np^{\alpha}, \epsilon\chi\omega^{-k}; \mathcal{O}[\epsilon])$). Moreover, there are isomorphisms

$$\mathbb{M}^{\mathrm{ord}}(\chi;\Lambda)/P_{k,\epsilon}\mathbb{M}^{\mathrm{ord}}(\chi;\Lambda) \cong M_k^{\mathrm{ord}}(Np^{\alpha},\epsilon\chi\omega^{-k};\mathcal{O}),$$

and

$$\mathbb{S}^{\mathrm{ord}}(\chi;\Lambda)/P_{k,\epsilon}\mathbb{S}^{\mathrm{ord}}(\chi;\Lambda)\cong S_k^{\mathrm{ord}}(Np^{\alpha},\epsilon\chi\omega^{-k};\mathcal{O})$$

for all $k \geq 2$. In particular, rank_{\mathcal{O}} $(M_k^{\text{ord}}(Np^{\alpha}, \epsilon\chi\omega^{-k}; \mathcal{O}))$ and rank_{\mathcal{O}} $(S_k^{\text{ord}}(Np^{\alpha}, \epsilon\chi\omega^{-k}; \mathcal{O}))$ are constant for all $k \geq 2$.

Proof. We first show the case $\epsilon = 1$.

From the previous proposition we have that the image of

$$\mathbb{M}^{\mathrm{ord}}(\chi;\Lambda)/P_k\mathbb{M}^{\mathrm{ord}}(\chi;\Lambda) \hookrightarrow \mathcal{O}[[q]]$$

contains $M_k^{\text{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O})$ for all $k \geq 0$. For k >> 0, $\mathbb{M}^{\text{ord}}(\chi; \Lambda)/P_k \mathbb{M}^{\text{ord}}(\chi; \Lambda) \subset M_k^{\text{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O})$ and the equality holds.

Since $\operatorname{rank}_{\mathcal{O}}(M_k^{\operatorname{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O}))$ is a constant for all $k \geq 2$, then $\mathbb{M}^{\operatorname{ord}}(\chi; \Lambda)/P_k\mathbb{M}^{\operatorname{ord}}(\chi; \Lambda)$ and $\operatorname{rank}_{\mathcal{O}}(M_k^{\operatorname{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O}))$ have the same rank. Therefore,

$$M_k^{\mathrm{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O}) = (M_k^{\mathrm{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O}) \otimes_{\mathcal{O}} K) \cap \mathcal{O}[[q]]$$
$$\supset \mathbb{M}^{\mathrm{ord}}(\chi; \Lambda) / P_k \mathbb{M}^{\mathrm{ord}}(\chi; \Lambda) \supset M_k^{\mathrm{ord}}(Np^{\alpha}, \chi\omega^{-k}; \mathcal{O}).$$

For general ϵ we first consider $\mathbb{M}^{\mathrm{ord}}(\chi; \Lambda')$ where $\Lambda' := \mathcal{O}[\epsilon][[T]]$. Since $\epsilon_* : \mathbb{M}^{\mathrm{ord}}(\chi; \Lambda') \cong \mathbb{M}^{\mathrm{ord}}(\chi; \epsilon \Lambda'),$

$$\mathbb{M}^{\mathrm{ord}}(\chi;\Lambda')/(T-(\epsilon(u)u^{k}-1))\mathbb{M}^{\mathrm{ord}}(\chi;\Lambda')$$

$$\cong \mathbb{M}^{\mathrm{ord}}(\chi;\epsilon\Lambda')/(T-(\epsilon(u)u^{k}-1))\mathbb{M}^{\mathrm{ord}}(\epsilon\chi;\Lambda')$$

$$\cong M_{k}(Np^{\alpha},\epsilon\chi\omega^{-k};\mathcal{O}[\epsilon]).$$

for all $k \geq 2$. Every $F \in \mathbb{M}^{\mathrm{ord}}(\chi, \Lambda')$ can be written as a finite sum

$$F = \sum_{i} F_i \epsilon(u)^i$$

where each $F_i \in \mathbb{M}^{\mathrm{ord}}(\chi; \Lambda)$. Given $k \geq 2$. Define

$$F' := \sum_{i} F_{i} \frac{(1+T)^{i}}{u^{ik}} \in \mathbb{M}^{\mathrm{ord}}(\chi; \Lambda).$$

Then

$$F'(\epsilon(u)u^k - 1) = F(\epsilon(u)u^k - 1)$$

and therefore,

$$\mathbb{M}^{\mathrm{ord}}(\chi;\Lambda)/P_{k,\epsilon}\mathbb{M}^{\mathrm{ord}}(\chi;\Lambda) \cong \mathbb{M}^{\mathrm{ord}}(\chi;\Lambda')/(T-(\epsilon(u)u^k-1))\mathbb{M}^{\mathrm{ord}}(\chi;\Lambda').$$

The proof for cusp forms is identical.

3.3 Duality and Lifting

We define Hecke algebras $H^{\text{ord}}(\chi; \Lambda)$ and $h^{\text{ord}}(\chi; \Lambda)$ as the Λ -subalgebra of $\text{End}_{\Lambda}(\mathbb{M}^{\text{ord}}(\chi; \Lambda))$ and $\text{End}_{\Lambda}(\mathbb{S}^{\text{ord}}(\chi; \Lambda))$, respectively. Moreover generally, for every Λ -algebra A, We define $H^{\text{ord}}(\chi; A) = \text{End}_{A}(\mathbb{M}^{\text{ord}}(\chi; A)) = H^{\text{ord}}(\chi; \Lambda) \otimes_{\Lambda} A$ an similarly define $h^{\text{ord}}(\chi; A)$.

Theorem 9 (Duality). The pairing

$$(h, f) \mapsto a_1(h(f))$$

defines a perfect pairing between $h^{\text{ord}}(\chi; A)$, $\mathbb{S}^{\text{ord}}(\chi; A)$, and $H^{\text{ord}}(\chi; A)$, $m^{\text{ord}}(\chi; A)$.

Proof. It suffices to prove the case $A = \Lambda$. The pairing gives a map $h^{\text{ord}}(\chi; \Lambda) \to \text{Hom}_{\Lambda}(\mathbb{S}^{\text{ord}}(\chi; \Lambda); \Lambda)$. If h is in the kernel, we have for all f and n,

$$0 = (h, T_n f) = a_1(hT_n f) = a_1(T_n h f) = a_n(h(f)),$$

so h = 0. Let N be the cokernel of the map. We tensor $\Lambda/(P_k)$ on the short exact sequence

$$0 \to h^{\operatorname{ord}}(\chi; \Lambda) \to \operatorname{Hom}_{\Lambda}(\mathbb{S}^{\operatorname{ord}}(\chi; \Lambda), \Lambda) \to N \to 0.$$

Since $\mathbb{S}^{\operatorname{ord}}(\chi; \Lambda)$ is finite free, the middle term is

$$\operatorname{Hom}_{\Lambda}(\mathbb{S}^{\operatorname{ord}}(\chi;\Lambda),\Lambda) \otimes_{\Lambda} \Lambda/(P_k) \cong \operatorname{Hom}_{\Lambda}(\mathbb{S}^{\operatorname{ord}}(\chi;\Lambda)/P_k \mathbb{S}^{\operatorname{ord}}(\chi;\Lambda),\mathcal{O})$$
$$\cong \operatorname{Hom}_{\mathcal{O}}(S_k^{\operatorname{ord}}(\chi\omega^{-k};\mathcal{O}),\mathcal{O}) \cong h_k^{\operatorname{ord}}(\chi\omega^{-k};\mathcal{O}).$$

The image from the first term is the \mathcal{O} -subalgebra generated by $\{T_n\}_{n\in N}$, which is $h_k^{\text{ord}}(\chi\omega^{-k};\mathcal{O})$ itself. Hence $N = P_k N$. By Nakayama's lemma, N = 0. Hence we have

$$h^{\operatorname{ord}}(\chi;\Lambda) \cong \operatorname{Hom}_{\Lambda}(\mathbb{S}^{\operatorname{ord}}(\chi;\Lambda),\Lambda).$$

In particular, $h^{\text{ord}}(\chi; \Lambda)$ is finite free over Λ . Take dual on both sides and we have

$$\operatorname{Hom}_{\Lambda}(h^{\operatorname{ord}}(\chi;\Lambda),\Lambda) = \operatorname{Hom}_{\Lambda}(\operatorname{Hom}_{\Lambda}(\mathbb{S}^{\operatorname{ord}}(\chi;\Lambda),\Lambda),\Lambda) \cong \mathbb{S}^{\operatorname{ord}}(\chi;\Lambda).$$

The proof for H and m are identical.

Now we have that for every Λ -algebra A, $\operatorname{Hom}_{\Lambda}(h^{\operatorname{ord}}(\chi;\Lambda),A) \cong \mathbb{S}^{\operatorname{ord}}(\chi;A)$. Moreover, $\varphi \in \operatorname{Hom}_{\Lambda}(h^{\operatorname{ord}}(\chi;\Lambda),A)$ is a Λ -algebra homomorphism if and only if $F_{\varphi} := \sum_{n=1}^{\infty} \varphi(T_n) q^n$ is a normalized Hecke eigenform with coefficients in A.

Let $k \geq 2$ and $f \in S_k^{\text{ord}}(\chi \omega^{-k}; \mathcal{O})$. f induces an \mathcal{O} -algebra homomorphism $h_k^{\text{ord}}(\chi \omega^{-k}; \mathcal{O}) \to \mathcal{O}$. Since $h_k^{\text{ord}}(\chi \omega^{-k}; \mathcal{O}) \cong h^{\text{ord}}(\chi; \Lambda) \otimes_{\Lambda} \Lambda/(P_k)$, we obtain a unique Λ -algebra homomorphism from $h^{\text{ord}}(\chi; \Lambda) \to \mathcal{O}$. Since Λ is a complete local ring and hence henselian, $h^{\text{ord}}(\chi; \Lambda)$ decomposes into a finite product of Λ -algebras, which are again henselian local rings. Let P_f be the kernel of $h_k^{\text{ord}}(\chi \omega^{-k}; \mathcal{O}) \to \mathcal{O}$ and \mathfrak{m}_f be the maximal ideal lying over P_f . Then the ring homomorphism factors through $h^{\text{ord}}(\chi; \Lambda) \to h^{\text{ord}}(\chi; \Lambda)_{\mathfrak{m}_f}$.

We may lift f to an normalized Hecke eigenform over a Λ -algebra with better algebraic properties. Let Q_f be a minimal prime ideal of $h^{\text{ord}}(\chi;\Lambda)$ contained in P_f , $I' := h^{\text{ord}}(\chi;\Lambda)/Q_f$ and define I as the integral closure of I'. Then I/Λ is finite. We see that I is a complete local ring, and the topology coincide with the \mathfrak{m}_{Λ} -adic topology. Let P'_f be any prime ideal of I over $\overline{P_f} \subset I'$. Then I/P'_f is finite over \mathcal{O} and hence $h^{\text{ord}}(\chi;\Lambda) \to I/P'_f$ defines an normalized Hecke eigenform with coefficient in $\overline{\mathbb{Z}_p}$ which is exactly f.

References

- [H] H. Hida, Elementary Theory of L-functions and Eisenstein Series, London Mathematical Society Student Texts 26, Cambridge University Press, 1993.
- [S] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, 1971.