1 Eichler-Shimura Isomorphism

1.1 Cohomology of Fuchsian Groups

Let G be a group, R be a given ring, M be a R[G]-module. We define the group
cohomology as

H* (G7 M) = EXtE[G}(R7 M),

where R is endowed with the trivial G-action. In this way, H*(G, M) is endowed
with natural R-module structure, while the underlying group itself is independent
of the R, as it is the derived functor of M — M.

In terms of the non-homogeneous cochain, we define C"(G, M) as the R-module

of all maps from G*" to M, here R acts on M, with differential maps given by
du(gr,+ , gn+1) == gru(g2, -+, gn1)+ Z(_l)iu<gla 01, 9iGit1s Gt ts T s Gnt)
i=1

+(_1)n+1u(glv U 7gn>-

H*(G, M) is identified with the cohomology of C*(G, M). For degree 0, we have
H°(G,M) = MC. For degree 1, we have

ZNG M) ={u:G—= M |u(g192) = gru(g2) + u(gr)},
and
BYG, M) = {dm, : g — (g — 1)m,}.

Let @ be a subset of G. We define C5(G, M) as the sub-cochain of C*(G, M) given
by
CH(G, M) :={u:G — M |u(g) € (g —1)M for all g € Q},

and C,(G,M) = CY(G,M) if i # 1. It is clear that B'(G, M) C C,H(G,M).
We define Hp (G, M) as the cohomology of Cj(G, M). In particular, Hé(G, M) =
HY (G, M) for i # 1,2, and
HY(G, M) = ker(HY(G, M) — [[ ({g), M)).
9€Q

Like the usual cohomology, Hé(G , M) has the following functoriality:
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Lemma 1. Assume ) C G is closed under conjugation and taking powers. Let
H C G be a subgroup of finite index and M be a H-module. Then the canonical iso-
morphism H'(G, Ind%(M)) = H'(H, M) induces an isomorphism H)(G, Ind% (M)) =
Hyy(H, M),

Proof. Let S be a set of representatives of H\G/K and define H, := s 'HsNK for
each s € S, and M, the H,-module whose underlying space is M and s~ 'hs(m) :=

(hm)s. Then we have the canonical isomorphism

Res | Ind§j (M) = @D Indjy (M,).

seS
To be explicit, the isomorphism is given by ¢ — (s : k +— p(sk)).

For every s € S, we have the restriction map
H*(H,M) — H*(Hg, M)
induced by the pair of maps. (s~ 'hs + h,idy;). Therefore, the map
H*(G,Ind%(M)) — H*(H, M) — H*(H,, M,)
is induced by the pair of maps
(57 hs = h, o+ ©(1)).
On the other hand, H*(K,Ind%(M)) — H*(H,, M,) is induced by the pair of maps
(s ths +— s7ths,p — ¢(s)). Hence
H*(G,Ind%(M)) — H*(K,Ind%(M)) — H*(H,, M,)
is induced by the pair of maps
(s7'hs = s hs, o > sp(1)).

Hence we have a commutative diagram

H*(G,Ind%(M)) —— H*(K,Ind$(M))

| I

H*(H,M) ——— @._ H*(H,, M,)

seS
whose vertical maps are isomorphisms. Let K runs through {(q)},cq and we get

the result. ]



Let I' € PSLy(R) be a Fuchsian group of the first kind and sy, - , s, be the
set of cusps on X(I'). For every s; we find a small open disk D; on X(I'), centered
at s;. We can make X (I') — ", D; a simplicial complex satisfying that

1. Each elliptic point is a 0-simplex.

2. For each cusp s;, 0D; is a 1-simplex.

Let M, be the preimage of X(I') — [JI", D; under the projection map H — Y (T').
Ho can be chosen so that it has trivial homology. We pull-back the simplicial
complex structure of X(I') — |J;”; D; and we make H, a simplicial complex, say
K. Let C.(K) be the simplicial chain complex with coefficient R. We have that
there is a R[[']-action on C,(K) and Cy(K), Cy(K) are free R[I'-modules. We define
C*(K, M) := Hompr)(Cy(K), M) and H*(K, M) the cohomology of C*(K, M).

For every s; we choose t; a 1-simplex of K such that ¢; is mapped to dD; and
define ¢; as the starting point of ¢;. Then 0t; = (m; — 1)[g;] where 7; is a generator
of I'y,. Let @ = {m, -+, mm}. We define C;(K, M) as the subcochain complex of
C*(K, M) given by

CoH(K, M) = {u € Hompr(C(K), M) | u(t;) € (m; — 1)M for all i},
and Ch(K, M) = C'(K,M) if i # 1. It is clear that B'(K, M) C C4(G, M). We

define Hp (K, M) as the cohomology of C%) (K, M).
If I' has no elliptic elements, Cy(K) is also free over R[I'] and

C.(K)S R

is a free R[[']-resolution of R. In this case, H*(I', M) is canonically identified with
H*(K,M). In general, we have to deal with those elliptic points of X (I'). Let
p1,--+,pr € H be a set of representatives of elliptic points of X (I'), e; := |I',[, and
E = lem{e;}. Let C.(I') be the homogeneous chain complex. We would like to

define chain maps
fo: Co(K) = CL(I), g4 : Ci(T) = Cu(K)

so that both f, o g, and g, o f, are homotopic to E -id. We define f, as follows: Let

S C Hg be a set of representatives of I'-orbits on 0-simplices. We may assume that
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S contains py, -+, Pr, q1, - 5 ¢m. We define fy: S — Co(I") = R[I'] by

folpj) == — Z [g]

e .
J gEij

and fo(s) = Ele] if s € S — {p1,---,p-}. Then fy extend uniquely to a R[[']-

homomorphism from Cy(K) to Cy(I') with the commutative diagram

0 —— Cy(K) —— C(K) —— Co(K) —— R > 0

b

- —— () —— (') —— Rl —— R > 0

Since Cy(K), C1(K) are free over R[] and C\(I') is exact, (fo, E-) extends uniquely
up to chain homotopy to a chain map f,. Similarly, we pick an arbitrary 0-simplex
p of K and define gy : R[I'] = Cy(K) by evaluation at [p]. go is extended uniquely
up to chain homotopy to a chain map g, such that g, induces identity map at H.
Now we see that f, o g, induces E- on Hy(C(I")), so it’s chain homotopic to E - id.
For g. o f, the only problem is that fy o go(p;) should be T', -invariant, which is

clear. Now we have
ff0(G,M)— C(K,M), g : C*(K, M) — C*"(G, M),

such that both f* o ¢g* and ¢* o f* induce multiplication by E on cohomology. In
particular, if F is invertible in R, H*(G, M) = H*(K, M).

To deal with the parabolic cohomology, we may assume that

1. f(t;)) = E([1,m]) and g¢.([1,7m;]) = t; + (m; — 1)b; where b; is a 1-chain with
ob; = [p] — [a]-

2. p € S but is not an elliptic point. In this way, we have that fyo gy = E-.

3. The chain homotopy U, between f,og, and E-id¢,(r) satisfies that Uy ([1, m;]) €
(mp — 1)Co(T"). We first take Uy = 0. We have that

(frog)([L,m]) = E([1,m]) + (m — 1) f1(bs).

Since df1(b;) = fo([p] — [:]) = 0, Uy can be chosen so that Uj([1,m]) €
(mi — DO~ (f1(bs).



4. The chain homotopy V, between g, o f, and E -idg,r) takes 0 on ;. Since
(g0 © fo)las] = E|p], Vo can be chosen so that V([g;]) = b;. Since

(910 fi)(t:) — Et; = Vo(0ty),
Vi can be chosen so that Vy([t;]) = 0.

Now if u € Ch(G, M), we have that
[ ) (t:) = u(fi(t:)) = Eu((l, m]) = Eu(m;) € E(m — 1)M,
and if u € C}(K, M)
9" (u)(m) = g"(w)([L, m]) = u(ti) + (m — Vu(bs) € (m — 1)M.

Hence f*: C*(G, M) — C*(K,M), g* : C*(K,M) — C*(G, M) and U,, V, remain

chain homotopies. We obtain the same result as usual cohomology case.

Remark 1. Let P be the set of all parabolic elements of I', then every element
7 € P is conjugate to a power of some m;. If u(m) = (m; — )y, u(gnlg™) =

(gn7tg~ " —=1)(g9x —u(g)). Hence Zp(I', M) = Z5(T', M) and Hp(I', M) = H,(T', M).

Let R be a ring, G be a group, M be a R[G]-module, and S be a flat R-
module endowed with trivial G-action. Then both H*(G,-)®zS and H*(G, (-)®gS)
are cohomological delta functors from Modgg to Modg, or Modg when S is a RR-
algebra. Since H*(G, ) ®g S vanishes on injective R[G|-modules, H*(G,-) ®g S is
an universal delta functor. At degree 0, we have the functorial map MY @z S —
(M ®r S)Y, which is injective. Hence we obtain a unique natural transformation
t* from H*(G,-) ®r S to H*(G, (-) ®g S). Alternatively ¢*(M) is induced by the
obvious chain map C*(G, M) ®g S — C*(G, M ®g 5).

t* may not be a natural isomorphism of delta functors as tensor product does

not commute with infinite product.
Lemma 2. If R[G] is Noetherian, or G is cyclic, t* is a natural isomorphism of
delta functors.

Proof. In both cases, R has a finite free resolution. O
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Lemma 3. If G is generated by finitely many elements, t°(M) is a natural iso-

morphism and t'(M) is injective for every M.

Proof. Let g1, -, g, be a generating set of G. Tensoring S on the exact sequence

0— MG — M 227 P M
=1

and we get the exact sequence 0 — M% ®@r S — M @z S Sl P", M ®r S,
hence the isomorphism M ®p S = (M ®z S)¢.

Consider a short exact sequence
0—-M—>M —M"—=0

with injective M’. Apply the delta functors and use that ¢° is a natural isomorphism

we have that t!(M) is injective. O

Suppose t'(M) is an isomorphism and @ C G is a finite set. Then Hb(G, M)®
S = HLH(G, M ®g S).
Let I' € PSLy(R) be a Fuchsian group of the first kind.

Lemma 4. H*(K,M)®pS = H*(K,M ® S).

Proof. We have to compare the cohomology of
HOH]R[F](C*(K), M) QR S
to
HomR[p](C*(K), M ®p S)

Consider the natural transformation Homp (-, M) ®p S — Hompgpr(-, M ®r 5).
Both functors commute with finite direct sum. If N = R[[']/(g — 1) for some g € T',
we have Hompgry(N, M) @ S = M9 ®@g S, Hompgr (N, M @5 S) = (M ®r S)?, and
the natural homomorphism is an isomorphism. Since each C,(K) is a finite direct

sum of R[I']-modules of this form, we get an isomorphism of cochain complexes. [

Proposition 1. If E- : M ®z S — M ®p S is an isomorphism and t!'(M) is
injective, H'(I', M) @z S — HY(T', M ®g S) is an isomorphism.
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Proof. Consider the commutative diagram

HY (T, M) ®5 S —-— HY(T,M ®x S)

lﬂ@l lfl

HY(K, M) ®r S —2 H'(K, M @5 S)

lgl®1 J/gl

HY(T,M)®r S —— HYT,M @5 S).

We already have that ¢! is injective, 9 is an isomorphism, and flog! = glo f! = E-.

Now (¢! ® 1) o b=t o (E~Lf1) is the inverse of t*. o

1.2 Eichler-Shimura Isomorphism

Let R = R or C, R? be endowed with the standard GL,(R)-representation, and
Sym"(R?) be the S,-fixed subspace of (R?)®" with the natural GLy(R)-action. Let
0 be the R-bilinear form on R? given by (v,w) — det <v w)- This is extended to
O, the R-bilinear form on Sym"(R?), determined by

0, (v®", w®") = O (v, w)".

We have O, (v,w) = (—=1)"0,(w,v), and O,(av,aw) = det(a)"O,(v,w). This
makes Sym"(R?) a self-dual SLy(R)-module.
Let I' C SLy(R) be a Fuchsian group of the first kind, p : I' — GL(V) be a

finite dimensional C-representation with finite image, and k be a positive integer.

Definition 1. Si(T', p) is the space of holomorphic functions f : H — V satisfying
that

1. f(az)j(a,2)7% = p(a)f(z) for all a € T

2. For every { € Homc(V,C), Lo f € Si(ker(p)).

Proposition 2.  Si(I', p1®p2) = Sk(L, p1)®Sk(L, p2). For another Fuchsian group

of the first kind IV D I" with [I" : ['] < oo, there is a natural isomorphism

Sk(F7 p) = Sk(Flu Ind? (p))



Proof. The first assertion is trivial. For the second one, we define
¢ Sk(I",Indr (p) = Sk(T', p), 2z = f(2)(1),
b1 ST, p) = ST, IndF (p), 2 = (o = flaz)jla,2) ™).
They are well-defined C-linear map that are inverse to each other. O

Let p: I' = GL(V) given by p(a)(v) := p(a)(v). For every f € Sp(I',p), we

have f(a2)j(a,2)™" =p(a) f(z) = p(a)f(2).
Suppose k > 2. For every f = (f1, f2) € Sk(T, p) ® Si(L, ), we define

w(f) € HY Q' (H,V @c Sym"™*(C?))),

w(f)(z) = fi(2)(zer + €2)®"dz + f2(2)(ze1 + €2)®7dz.
In particular, w(f) is a closed 1-form, and w(f) o @ = x(a)w(f), where y is the
representation V' ® Sym* *(C?). Let F be a primitive of w(f). Then F have the

form

P = [ wlf)+o
for some zp € H and v € V ®¢ Sym" *(C?). We define u(f) € ZYI,V ®¢c
Sym"~*(C?)) by

uumw:me—nmmw:/mwm+u—nmm

20

Let 7 € T be a parabolic element and s € P'(R) be a cusp fixed by 7. F can be

extend to s and we obtain that

=
©
I
=
A
&
I

X(m)E(s) + u(f)(m).

Hence u(f) € Z5(T', V@cSym" 2(C?)) and [u(f)] is a well-defined class in Hp(T', V@c

Sym"~%(C?)), independent of the choice of F. We therefore obtain a C-linear map
U, Sk, p) @ Si(T,p) = Hp(L,V @c Sym**(C?)), f = [u(f)].

Lemma 5. Let I" D I' be a Fuchsian group of the first kind such that [I' : I"] < oo.

Then we have the commutative diagram

s F/p ,
Se(I", IndE (p)) @® Sp(I", IndF (p)) —%" HA(I", IndF (V) @c Sym*3(C?))

J# [

R — v, _
Sk(I's p) & Si(I', p) » Hp(D,V ®c Sym*™*(C?))




Note that IndL (5) = IndY (p) and @ is induced by the natural inclusion T' — I” and
IndX' (V) ®¢ Sym*2(C?) — V @¢ Sym* %(C?), ¢ ® v — (1) ® v. Here we use the
isomorphism

Ind% (U @ Resy T) = Ind%(U) @ T.

Proof. An explicit computation shows that both ¥, 0 ¢ and ® o ¥ av () aps f

to the class represented by

U /zw(f)(z)(l)

Theorem 1.
\I/p : Sk(r7 p) D Sk(raﬁ) — H}’(Fv V ®(C Symkiz(CQ))
is an isomorphism.

Proof. By the additivity at p we may assume that p is a regular representation
Ind?0 (C), where I'y is the kernel of p, and the case is reduced to I' = I'y and p is the
trivial representation.

Now we show that
T, Sp(T) & SK(T) — HL(T, Sym"2(C?))

is an isomorphism. Since both sides have the same dimension over C, it suffices to

show the injectivity. We define

(f.9) = / e ret)

which is a nondegenerate C-bilinear form on Si(I') & Si(I'). To be explicit, if f =
(fl?ﬁ)a 9= (glag_Z)a

(f,9) = /F\H (fl(z)m - gﬂz)%) (z —2)*2dz N dz.

Let F' be a primitive of w(f). If U1(f) = 0, F can be chosen so that F(az) =
X(a)F(z) foralla € I'. Let X be a fundamental domain of X(I'). 0X = )" (a;—1)s;
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where s; are 1-simplices. Then

(f’g):/aXFAw(g):Z(/WFAM(Q)_/&FAW(Q)) = 0.

)

for all g. Hence f = 0 and we get the injectivity. ]

We similarly define

1. M (T, p) is the space of holomorphic functions from # to V' such that

flaz)jlo, 2)™ = p(a) f(2)

and for every ¢ € Homc¢(V,C), £ o f € My(ker(p)).

U, o My(T,p) @ Si(T,p) — H'(T', p @c Sym**(C?))

ol [ )]

\IIP : Mk(r7p) ® Sk(r>ﬁ) - Hl(va ®c Symk_2(C2))

given by

Corollary 1.

is an isomorphism.

Proof. By the same functoriality we reduce this to the case p = 1. Since M (") &
Si(T) and H'(T,Sym*~?(C?)) have the same dimension, it suffices to show the

injectivity. We consider the commutative diagram with exact rows:

00— Sp(T) @ Sp(T) ———— M(T") @ Si(T) > coker(r)

b b l

0 —— H}D(I‘,Symk_z(CQ)) — HN(T, Symk_2((C2)) — D, H1(<7Ti>,Symk_2((C2)).

We should show that coker(t) — @, H'((m;),Sym"*(C?)) is injective. Namely,
Mi(T) — @I, H'((m;),Sym*2(C?)) has kernel Si(T'). Let f; € SLy(R) with
BimiBit = if s; is regular, or BimB; ! = a , if s; is irregular.

01 0 -1
Let f € Mg(I') and z; := fzo. We have

T3 20 BimiBy 2 BimiBy 2
[ oen= [ ement=a [ B e + )
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Let x; := fjmﬁ;lzi FIB () (zer 4 e2)®* 2. g7 lay; € (m; — 1) Sym*~2(C?) if and
only if x; € (B;m8; 1) Sym*2(C?). Therefore, f is in the kernel if and only if for all

regular cusps s;,

BimiB; 2
/ F1187 i (2)dz = 0.

Let ¢ = €22, If s; is irregular, f|[8;']1(2) € ¢/ C[[q]]. If s; is regular, f|[8; ]x(2) €
C[[¢]], and the constant term is given by

BimiB 2
[ e e

i

Hence the kernel of M, (T') — @, H'({(m;), Sym" ?(C?)) is exactly S(T). O

1.3 Double Coset Operators

Let T';, Ty C SLy(R) be two Fuchsian groups of the first kind. Let A € GLj (R) be

1

a semi-group containing 'y, I's, and for every a € A, al'ya™" and I'y are commen-

surable. Consider the involution

v:a s det(a)at

Let X be a R[A‘]-module. We define for every o € A a R-linear map
(Tyaly)x : Hp(T'1, X) — Hp(Ty, X)

as follows: Let {a, -+, a4} be a set representatives of I';\I'jal'y. For every 5 € Ty,
we have ;8 = ~,a; (or we write a;8 = 7 a;) for some ~; € T'y. (I'jaly)x sends a
1-cocycle u to v : 3 +— 2?21 atu(7;). This double coset operator actually defines a
"corestriction” map on the category of R[A‘]-modules. We first define a chain map

a* on homogeneous chains

a": C™(I'y, X) — C™"(I'y, X)

d
a(a)(gm agn) = Za;’a(’n%, 7,75]”)
=1

Since

aigh =~ aigh = {7l g,
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A9t = v/l Therefore,

d
a(@)(gho, -+ ghn) =Y (v, - Ay Za Uy, )

= gal (e, Ak) = gol@)(ho, - s hn).

Moreover, « is clearly a chain map. Hence we obtain a* on cohomology, and clearly
is a homomorphism for delta functors.

Use u(g, -+, 9n) = u(1,91,91G2, "+ , g1 -+ - gn) and we see that for H!, o' is the
double coset operator we defined.

At degree 0 we have a® : X1 — X2 2 37 ot

Let V' be a finite dimensional C-vector space and p : A* — GL(V) be mul-
tiplicative such that p(I'y), p(T's) are finite. Then A* acts on V ®¢ Sym" ?(C?),

denoted by y. Suppose further that p(—1I,) = (=1)* if —I, € A. We define
d

fIC1aT o)k, 2 = det(@)*™ )~ p(ad) f(iz)j (o, 2) 7"

i=1
Then [['yals)k, @ Sk(I'1,p) = Sk(I'2,p) is a well-defined C-linear map. We also
define [FlaFQ]kp Sk(Fl, ) — Sk(rg, ) by

JIC1als]y, == flIT10ls]k 5
This is also C-linear.

Proposition 3. We have the commutative diagram

k(T p) ® Sp(T1,p) —— Hp(I'1,V @c Sym"~*(C?))
l[l“lal“g]km l[rlaFQ]k,p
Si (T2, p) ® Sp(T2,p) —— Hp(Ds,V ©c Sym"~*(C?))

Proof. Let f (fl,fQ) S Sk(l“l p) ) Sk(Fl, ) We have

w(fi|[T1alsk,,) ZP O filenz)j(os, 2) " det(@) ! (zey + e2)®F 2dz
_Zp 9 f1(agz) det(a) Lo, Hayzer + e9)®F2dayz
_ZX fl O &y,
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and

w(fal[D1als)k,) =w(fa|T10lok,,) = Z x(af)w(f2) o a;

d
—Zx w(fe)oa; =Y xlabw(fo) o .
=1

Therefore,
d

w(f|[T1als)k,) = Zx(ozﬁ)w(f) o Q.

We have that

Bz0 Bzo
| etfiriaral,) Z / (F)oai = 3 (@) (F(aiBz0) — Flagzo))

i=1 v %0 i=1

and we get the commutativity. O

Similarly,
My, & S, — H'

is Hecke-equivariant.

1.4 Lattices and Duality

Let I' = I'1 (V). Consider Diamond operators and Hecke operators:

a b
for some € I'y(N), and
c d




We denote by Hy(N) and hy(N) C-subalgebras of End¢(Mg(N)) and Ende(Sk(V))
generated by all Diamond operators and Hecke operators. There are both commu-
tative C-algebras.

For every Dirichlet character y : (Z/NZ)* — C* we define My(N,x) and
Sk(N,x) as M(N)[x] and Sk(N)[x], respectively. That means, (d)(f) = x(d)f for
all (d, N) =1. We take I' =T'g(N),

a b
Af = Nle (d,N)=1,,
d

C

extend x on A* by x(g) = x(d), and define

k
We define (N, x) as the orthogonal complement of Sg(N,x) in My (N, x) under
the Petersson inner product. An explicit construction of a basis for & (N, x) when
k > 2 is given as follows: Let v, ¢ be Dirichlet characters with conductor u,v,

respectively and (1¢)(—1) = (—1)*. Define

E(q) == 6()L(1 =k, ) +2) o5 (n)q",
n=1

where

oA (n) =Y d(n/d)p(d)d .

djn
Define
preciy o | B0 (k) # (21,1)
Ey'(2) —tBy'(tz) (k,,0) = (2,1,1)
Proposition 4. {E? :tuv | N, 1 = x} is a basis for E(N, x).

Let R be a subring of C containing Z[x|. We define My (N, x; R), Sk(N, x; R) as
subspaces of My (N, x), Sk(N, x) consisting of forms whose ¢g-expansions are in R][q]].
We define my (N, x; R) as the subspace of My (N, x) of forms whose g-expansions are
in Frac(R) + ¢qR|[[q]]. Note that My(N, x; R), Sk(N,x; R), and my(N, x; R) are all

contained in finite free R-modules.
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Lemma 6. Define & (NV, x) has a basis with elements in M (N, x; Q(x)).
Proof. Define (N, x; R) := E(N, x) N Mi(N, x; R). We should prove that

E(N, x; Q(x)) ®ay C = E(N, x)-

Since all E}f"p’t are in My (N, x; Q(Cy)), we already have
Ee(N, x; Q(¢N)) ®q(cn) C = E(N, x).

Let G := Gal(Q(¢n)/ Q(x)). Then E(N, x; Q((n)) is a Q(¢y)[G]-module, where G

acts on Q((y) by its natural action. Therefore,
Ex(N, X Q(CN)) = Ex(NV. x; QU¢w))© Rt Q(Cw)-

Since Ex(N, x; Q(Cn))% = Ee(N, x; Q(Cn)¥) = E(N, x; Q(X)), Er(NV, x; QX)) D
C = &(N, y). 0

We also define Hy(N, x)r, hx.(N, x)r as the R-subalgebra of Hi(N, x), hi(N, x)
generated by all Hecke operators. Then Hy (N, x)r, acts on my(N, x; R), My(N, x; R),
and hi(N, x)r acts on Sp(N, x; R). We define H,(N, x; R) and hi(N, x; R) as images
of Hy(N, X)r, hi(N, x)r in Endg(mg (N, x; R)) and Endg(Sk (N, x; R)), respectively.
Note that if h € Hi(N, x; R) with h(f) =0 for all f € My(N, x;R), h = 0. There-
fore, Hp(N, x; R) is also seen as the image of Hy(N, x)g in Endg(mg(N, x; R)).

Eichler-Shimura isomorphism gives the commutative diagram

Sk(N, x) @ Sk(N,X) —— Hp(To(N), Sym"*(C?)(x))

J | |

Sk(T1(N)) @ Sp(T1(N)) ——— Hp(I'1(N), Sym"~*(C?))

which is Hecke-equivariant. Let h be in the Hecke algebra on Hj(I'y(N), Sym*~2(C?)).
If h =0 on Sg(I'1(N)), h =0 on Si(I'y(N)). Restricts this to the y-isotypic part
and we have that hy (N, x) acts on Hb(Io(N), Sym* 2(C?)(x)). Define Lp(k — 2, x)

as the image of

Hp(To, Sym*™*(Z[x]*)(x)) = Hp(L'o, Sym"*(C*)(x)).
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Lp(k—2,x) is a Lattice of full-rank and equipped with hy(N, x)g-action. Similarly
we get a lattice of full-rank L(k — 2,x) € H' (T, Sym" *(C?)(x)) with Hy(N, x)-

action.

Theorem 2. Suppose k > 2. For all Z[x] € R C C, there are natural isomor-
phisms

Hy(N,x)r = Hi(N, x; R), hi(N,x)r = (N, x; R),
Hi (N, X)zpq @z B = Ho(N, X) Ry hie(N, X)zpg @zpg B = hie(N, X)r,
and
my(N, X; Z[x]) ®zpg B = my(N, x; R), Se(N,x; Z[x]) ®zp R = Su(N, x; R).
Moreover, we have perfect pairings
Hy(N,x; R) x mi(N, x; R) = R, (N, x; R) x Sp(N, x; R) = R
given by (h, f) +— a1 (h(f)).

Lemma 7. The duality is true if R is a field.

Proof. In this case, we are dealing with finite dimension R-vector spaces, so it
suffices to prove the nondegeneracy of this R-bilinear pairing. If (h, f) = 0 for all h,
(T, [) = a1(Tn(f)) = an(f) = 0 for all n € N. Hence f is a constant. Since k > 0,

F=0.1f(h, f) = 0forall £, (b, To(f)) = a1 (hTH(f)) = ar(T,h(f)) = T, (k(f)) = 0.
Hence h(f) =0 for all f and we get that h = 0. ]

Lemma 8. The theorem is true for R = C.

Proof. Consider the commutative diagram

0 —— hk(N, X)Z[x] ®Z[X} C — Endz[x}(Lp(k: — 2, X)) ®Z[X] C

| )

0 ———— hi(N,x) —— Endc(Hp(To(N), Sym"**(C?)(x)))
By definition, hi(N, X)zp @2z C — hi(N, X) is surjective. By diagram chasing, it is

also injective, hence an isomorphism. Similarly we have that Hy(N, X)zp) ®zp C —

Hi(N, x) is an isomorphism.
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Consider the isomorphism

Hom(C(hk(Na X)? C) = Sk(N7 X)7 ¢ = Z¢(Tn)qn
n=1

Since hk(Na X) = hk(N7 X)Z[X]®Z[X]Ca HOm@(hk<N, X)> C) = HomZ[X] (hk<N7 X)Z[)dv C)

Since hi(N, X)z[y is finite projective, it is also Homzp(hi (N, X)zpg, ZX]) @z C,

and with the identification, Homgp(hi(N, X)zn, Z[x]) is identified as the Z[x]-

submodule in Sk (N, x) of elements f satisfying that a,(f) € Z[x] for all n € N.

Hence Homyj,j (hi.(N, X)zp: Z(x]) = Sk(N, x; Z]x]). Therefore,
Sk(N, x; Z[x]) @211 C = Sk(N, x),
hie(N, X)zpg — Endzpg (Sk(N, x; Z[x])) is isomorphic onto hy (N, x; Z[x]), and
hie(N, x; Z[x]) @219 € = hi(N, X)-
For the duality part, we already have
Homgzp (he (N, x; ZIx1), Z[x]) = Sk(N, x; Z[x))-

Apply Homgy (-, Z[x]) and we have

Homgzp (Sk(N, x; Z[x]), Z[x])
= Homygpg (Homzp (b (N, x; Z[x]), Z[x]), Z[x])
=hi(N, x; Z[x])-
For modular forms, we should also prove that

Lemma 9.

mi(N,x; R) ={f € Mx(N,x) | a,(f) € R for all n > 0}.

Proof. Since both Si(N,x) and E(N, x) have base with Fourier coefficients in
Q(x), Mi(N,x) has a basis with Fourier coefficients in Q(y). Therefore, if f €

M(N, x) and a,(f) € Frac(R) for all n > 0, ao(f) € Frac(R).
Now we similarly have

mi(N, x; Z[x]) = Homgz (Hk(N, X)zp, Z[X]),
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Mk(N7 X) = HomZ[x}(Hk<N7 X)Z[X]a Z[X]) ®Z[X] C= mk(Nv X Z[X]) ®Z[X] C?

and

Hy (N, x) = Homgp (my (N, x; Z[x]), Z[x])-

Now we prove the general case. Consider the natural map
hk<N7 X)Z[X] ®Z[X} R— hk(Na X)R — hk(N7 X R)

By definition, this is surjective. If A is in the kernel, h = 0 on Sk(N, x; Z[x]). Since
Sk(V, x; Z[x]) ®zp C = Sk(N, x) and hi(N, X)zp @z B = hie(N, X)zpy @z R @R
C = hg(N, x) is injective for that C is R-flat, h = 0. Hence hy(N, X)zp ®zpg R —
hi.(N, x)r is injective. By definition, this is also surjective. We obtain that

hi(N, X)zpg ®zpg B = hi(N, X)r = hi(N, x; R).
The same argument for Hy and m; gives
Hk(N7 X)Z[X] ®Z[X] R = Hk(N7 X)R = Hk(N7 X5 R)

Since

hk(N7 X) = hk(N7 X)R ®R C?

Sk(N, x) = Homg(hi(N, x)r, C), and Homg(hr(N, x)r, R) is identified as S,(N, x; R).
On the other hand, the isomorphism Ay (N, X)zp @z B = hi(N, X)r gives that

Sk(N, x; R) = Homgzpj (hie(N, x; Z[x]), R)
= Homyp (hie(N, x; Z[x]), Z[x]) @21 R

=Sk(N, x; Z[x]) Qzly R
Similarly, My (N, x) = Homg(Hi(N, x)r, C), Homg(Hi(N, x)r, R) is identified as
{f € Mp(N,x) | an(f) € R for all n € N} = my,(N, x; R),
and

Homp(Hi(N, x)r, R) = Homg(Hk(N, X)zp, ZX]) @21 R = mi(N, x; Z]X]) @z R.
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Corollary 2. M;(N,x;Z[x]) ®zpg R = Mp(N, x; R).
Proof. Define C(R) := my(N, x; R)/Mg(N, x; R), which is identified as a submod-
ule of Frac(R)/R via ag. Consider the commutative diagram

0 —— Mi(N, x; Z[x]) ®zpg R —— muy(N, x; Z[x]) @z R —— C(Z[X]) ®zpg R —— 0

| - |

0 ———— Mi(N,x; R) > mi(N, x; R) > C(R) ————— 0

By snake lemma it suffices to show that C'(Z[x]) ®zpy R — C(R) is injective. The
map

C(Z[x]) ®zpg R — C(R) — Frac(R)/R

is the same as the map
C(Z[x]) @z R = Q(X)/ Z[x] @z B — Frac(R)/R,

which is injective. O

The same method for I';(N) yields that for every subring R C C and k > 2

there are isomorphisms
Hy(N)r = Hi(N; R), hx(N)r = hi(N; R),
Hy(N)z ®z R = Hy(N,X)r, hi(N)z ®z R = hy,(N)g,
mi(N;Z) @z R =mi(N; R), Sk(N;Z) @z R = Si(N; R),
and perfect pairings
Hy(N; R) x my(N; R) — R, hi(N;R) x Sp(N;R) — R

given by (h, f) — a1 (h(f)). In particular, My (N; Q)®oC = Mi(N). Let Aut(C/Q)
acts on My (N) by acting on coefficients of g-expansions. Then Aut(C / Q) commute
with Hy(N;Z). Therefore, for all 0 € Aut(C/Q) and f € My(N), f7 € Mi(N),
and if f € Mg(N;x), f7 € Mp(N;x?). The same result holds for Si (V).
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1.5 Dimension Computation

Let R be a field, and M be a finite dimensional R-vector space. If E is invertible in
R, we can compute the parabolic cohomology in terms of simplicial cohomology.
Proposition 5. H(%(K, M) = M%. This is easily seen by Hg(K, M) = H°(K, M)

and H, is connected.
Proposition 6. Hgg(K, M)=M/ der(g —1)M = Ho(I', M).

Now we compute Hp (K, M) via Euler characteristic. We have that
Xq(K, M) = dimg(C°(K, M)) — dimg(CH (K, M)) + dimy(C" (K, M)).

Let N; be the number of I'-orbits of ¢-simplices in K. We have that

dimp(C(K, M)) = Nodimp(M) — ) (dimp(M) — dimp(M")),

j=1

dimg(C' (K, M)) = N, dimg(M) — Z(dimR(M) — dimg((m; — 1)M)),

and dimg(C?(K, M)) = Nydimgz(M). Let g be the genus of X (I'). We have
NO—N1+N2+m:2—Qg
Let € := dimp(M%), € := dimp(M /Y- (g — 1)M). We have that

dimR(Hé(K, M)) =€y + €2 — xo(K, M) = (29 — 2) dimp(M) + €y + €2

+ ) (dimp((m; — 1)M)) + Z(dimR(M) — dimp(M"%)).

i=1
For modular forms, we should also compute dimgz(H'(K,M)). If T has cusps,
H?*(K,M) = 0. Hence

dimp(H' (K, M)) =(2g — 2+ m) dimp(M) + €g + Y _(dimp(M) — dimp(M")).

j=1
Let T be the image of " in PSLy(R). Let M be a -module. If —I, € T', we use the

Hochschild—Serre spectral sequence
HP(T, H'({£L,},M)) = HP*Y(T, M).
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Suppose 2 is invertible in R. HY({£1,}, M) = 0 for ¢ > 1, hence the isomorphism
H*(T, M") = g*(T, M).

Now M = Sym"~?(C?). If k is odd, —I, ¢ I". Hence we always have H*(T', Sym"~?(C?)) =
H*(T, Sym*~2(C?)). We have to show that

2 dime (Sk(I")) = dime(Hp(T, Sym*~2(C?)))
—(29 — 2)(k — 1) + dimc(Sym"~*(C*)") + dimc(Sym"*(C?)/ Y (g — 1) Sym*~*(C?))

gel
m

+ 3 (m — 1) Sym"3(C2)) + 3 dime(Sym*2(C?)/ Sym* 3 (C2)).

i=1 Jj=1

and that

=D _(Sym"*(C)™) — dime(Sym"*(C?)/ 3 _(g — 1) Sym"(C?)).

gel’

Theorem 3. If k=2, dimc(5:(1") =g. If & > 2,

. o 2 J 2€j
dime(Sk(I')) = k=2 k-1 k(e; — 1) !
(k=g = 1) + —5=m + —5—ma + 3, {;TJ , kis odd
J

here m1, my are numbers of regular and irregular cusps, respectively. Moreover,

m—1, k=2
dime¢ (M (T')) — dime(Sk(T')) = ¢ m, k>4, kiseven .
mq, k is odd

We first consider cusp forms.

1. k=2 C'=C, C/>gerlg—1)C=C, (m —1)C =0, C'» = C. We get
dime(Hp(T, C)) = 2g.

2. k> 2: (mp—1) Sym*?(C?) has dimension k — 1 if s, is an irregular cusp, oth-
erwise it has dimension k —2. Let 0; be a generator of I', . Let ¢/ be the order

of 0;. Then o; has tow eigenvalues wj;, wj_l where w; is a primitive €’th root
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7 w4—k w2—k'

of unity. ¢; acts on Sym* *(C?) with eigenvalues w* 2 Wy

k—4
] 7wj ’a--

Therefore, dime(Sym”*2(C?)/ Sym*2(C?)"7s) is twice the numbers of positive
integers @ € {1,--- ,k — 2} such that a« = & (mod 2) and ¢} { a. We should
show that the number of such a is Vj(e;—e_-l)J .
j
(a) If €} is even, —I, € I',,. We have that k is even and €, = 2¢;. Let ( := g
We have to verify the identity

é—1—V”J: fe = 1)

€j

or equivalently,

6_1:{5—1% 0e; — 1)

€j L &

This is true for that £ — 1+ {(e; — 1) = le; — 1.

k
(b) If e} is odd, e; = €. If k is even write { = 5 Then e; | k—2i if and only
if e; | £ —i. Hence we reduce the case to the previous one. Suppose k is

odd, say k = 2¢ + 1. We have to verify that
00 _ 1 {2@—1J B (6—1— V—lJ) _ {(25—1—1)(6]-—1)J ‘
6]' 6]' 26]'

Since L(%Jrl)(ej—l)J . L2£+eg‘J _ FJFEJ’ we have to

2€j 26j €j 2

el =)

Since / is a period of both Lﬁ + EJ + V_ 1J 2 and FK_ 1J 2

ej 2 ej €j €j Gj ’
and e; is odd, it suffices to show the equation for 1 < ¢ < ¢;/2 and

show that

e;/2 < £ < ej, both of which are clear.
Suppose z € Sym*~%(C?). Define

p(2) = Or_o(x, (ze1 + ) 72).

Then p(z) is a polynomial in z of degree at most & — 2. For every a € T,

®k—2)

p(az)j(a, 2)F2 = Ok—_a(x,a(zer + €2) = p(z).
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1 h
For every cusp sg, let gx € SLo(R) such that gkﬂkgk’l = . Then
01

pllgi Ta-r

is a polynomial in z and p|[g;, 'J2—x(2) = p|[g;, 'J2_r(z + 2h). This gives that
pllgy ok is a constant. Hence p(z) € My (T). Since 2 —k < 0, p =
0. This gives that z = 0. We use the duality between H° and H, to get

Sym*(C?)/ X yer(g — 1) Sym* (C?) = 0.

Since dim@(Symk_z(Cz)/der(g — 1)Sym*2(C%) is 0 if k > 2, is 1 if k = 2, and
S (SymF2(C?)™) is the number of regular primes, the case for modular forms

follows.

2 (@O-adic Modular Forms

2.1 Basic Definitions

Let K/Q, be a finite extension, O C K be the ring of integers, and w € O be a
uniformizer. Let g =pif p >2and ¢g=4if p=2. Let w: (Z/qZ)* — O™ be the
Teichmiiller character and x : (Z /N Z)* — O™ be a Dirichlet character. We define

Mi(N, x; O) := My(N, x; Z[x]) @21 O, Si(N,x; 0) := Sp(N, x; Z[x]) @21y O.-
We similarly have Hy(H, x; O), hp(N, x; O), and we endow all spaces with p-adic

topology.

2.2 Ordinary Forms

Lemma 10. Let A be O-algebra which is finite as a O-module. Then for every

z € A, the limit lim,,_,, 2™ exists under p-adic topology and is an idempotent.

Proof. Since A is finite over O, A is p-adically complete, and for every m € N,

A/p™A is finite. There are a(m),b(m) € N such that
xa(m) = xa(m)—‘rb(m) (mod pmA>
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Hence for every n > a(m), 2" = "™ (mod p™A). Take n(m) := max{a(m),b(m)}

and we have that for every n > n(m),
M = gt = 2200 (mod p™mA).

Hence lim,,_,,, 2™ exists in A/p™A, which is ™" (mod p™A), which is an idempo-
tent. Let e, := 2™ (mod p™A). Then (e, )men defines an element in @meN A/pmA =
A, which is an idempotent. [

Definition 2. The ordinary projector e is defined as lim,,_, T;“ € Hp(N, x;0).
By definition, e(f) = lim, o T;“(f) under p-adic topology. f € My(N,x;C,) is
called ordinary if e(f) = f. Equivalently, f € eMy(N, x;C,).

Example 1. Assume p | N, k > 2. In this case, a,(T,(f)) = apn(f). For every

t,p) = 1 we define V,, ,; as the subspace generated by
b by,
E;f,cp,t) E;f’%pt, te

in E(N,v¥,p). Assume that Vj,; # 0 and we compute eV, ;. Note that if
E¥(p1t2) € E(N, ), T,EL 2 (p™2) = BP9 (p°tz).

1. ¢(p) = 0: T,E?" = p(p)p* ' EY#". In this case, eV, = 0.
2. 1(p) # 0 but p(p) = 0: T,EL?" = (p)EY?. In this case, eV, = C EP9".

3. Y(p)p(p) # 0: Let a := v,(N) > 0. Suppose (k, ), ¢) # (2,1,1). We consider

another basis

a—lt

(B —p(p)p" B BT —p(p)pt T BT B (p) BT

E;f’“”t — cp(p)pk_lE;f"P’p t E,f’“o’t —Q/J(p)E;f’“”p " are T,-eigenvectors of eigenvalues
¥(p), p(p)p*!, respectively. Therefore, eV, = C(E}f’@’t — gp(p)pkilEZ’@’pt).
If (k, v, ) = (2,1,1), we similarly have eV, = C(EL?(t2) — 2E)?(2tz)).

e preserves Si(N, x; O) as Si(N, x; Q) is a complete subspace of My (N, x; O).
We define

HP (N, x; 0) = eHy(N, x; ), h™(N,x; 0) := ehy(N, x; 0),
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M (N, x; 0) := eM(N, x; 0), Sg(N, x; 0) = eSp(N, x; O),

and

mird(Na X5 O) = emk<N7 X5 O)
We still have the duality
Homo (Hy™(N, x; 0), 0) = mg (N, x; 0),

Home (h™(N, x; 0), 0) 2 S(N, x; O).

Note that e(f) may be a cusp form even if f is not a cusp form. The example on

Eisenstein series shows that
dim(cp(M,Srd(N, xwt)) — dimcp(S,‘;rd(N, xw®))

is independent of a and k > 2.

Lemma 11. Suppose (p, N) = 1, @ > 0, and y is a Dirichlet character modulo
Np®. Then T, sends My(Np**tt, x) to Mx(Np®, x).

Proof. It suffices to show that if f € M,(Np*™, x), T,(f) is T'1(Np®)-invariant.

a b
Let g = e I (Np*).
c d
-1
1 g a b 1 g a+cj B
0 p c d 0 p pc  d—cj

(d—a)j—cj>+b

where B € . Hence if p | b, T,,(f)|[g]x = T,(f). Since T,(f) is
1 Z
-invariant, T,,(f) has level Np®. O
0 1

Let p* be the p-part of the conductor of y. We see that if @« > 0 and f is
ordinary of Nebentypus y and tame level N, then f has level Np®.

2.3 Constant Rank

Suppose (N,p) = 1.
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Theorem 4. Let x : (Z /Np*Z)* — O™ be a Dirichlet character for some a > 0.
Let €: (Z /Np*Z)* — ppe-(O™) be a finite order character. Then

dim (M (Np®, exw ™)) = dim(Mg™(Np®, xw™?)),

dim(SP(Np®, exw ™)) = dim (S5 (Np®, xw™?)).

For I'; (Np*) we have
dim(M(Ty (V) = dim( Mg (T (Np))),
dim(S(T'y (Np®))) = dim (85" (Np™))).

Proof. Let I' := T'y(Np®) or I'\(Np®) and define L(k — 2, R) := Sym"*(R?). For
our purpose we may assume that o >> 0. Suppose that I" has a subgroup H C I" of
finite index with p 1 [[' : H| and H has no torsion elements other than {£I,}. For
example, if I' = I'y (Np®), for our purpose we may assume Np® > 3 and hence I" has
no torsion element. For Iy, if p > 3, we may take H = I'y(p) N T, and if p = 2,3,
we may assume « > 2 as ['g(4) and I'y(9) have no torsion points other than {£I5}
and take H = I". Now we have H*(H, M) = H*(I', M) for all O[I']-module M. In
particular, H2(H, M) = 0. This gives H2(T', M) = 0 for all O[T']-module M except
the case I' = I'g(IV27).
Let F be the residue field of O. Consider the short exact sequence

0— Lk —2,0)(exw™) =5 Lk —2,0)(exw™) = L(k — 2, F)(exw™) =0
and the corresponding long exact sequence. Since

T2 k=27 (exwr) = 0,

eHO(T', L(k — 2,F)(exw™")) = 0. Since the image of H(I', L(k — 2,F)(exw™")) in
HYT, L(k—2,0)(exw™")) is HY(T', L(k—2, O)(exw ™)) [@], eH (T, L(k—2, O)(exw™"))[w] =
0. Therefore,

eHY(T', L(k — 2,0)(exw™))
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is finite free, and

dimg (eH (T, L(k — 2, K)(exw™)))
= dimp(e H ([, L(k — 2, O)(exw ™)) @p F)
=dimp(e H' (T, L(k — 2,F)(xw™))).
when we are not in the case I' = T'g(N2%). If I' = I'o(N2%), we show that

eH?*(T, L(k — 2,0)(exw™")) = 0 and we also have the formula above. Consider

the spectral sequence
EY? = HP(T, HY({+ L}, M)) = HP™(T, M).

where M is a O[I']-module, which is finite free over O with trivial {1/, }-action.
Then H'({#IL}, M) = M[2] = 0. Since HP(T,-) vanishes for p > 2, the spectral
sequence gives the isomorphism H2(I', M) = H?({+1,}, M)".

Now we compute H2({£l,}, M). Let ¢y be a inhomogeneous 2-cochain. The

condition that it is a cocycle is that

902(127 12) = @2([2, —[2) = 902(—[2, [2)-

Let 1 be a 1-cocycle. Say ¢(I3) = a and ¢(—1I3) = b. Then
(0p1)(I2, I2) = (0p1)(— 12, I2) = (6p1) (L2, —I2) = a, (6p1)(— 12, —I2) = 2b — a.

Therefore,

[pa] = pa(—1a, —12) — pa(l2, I2)
induces an [-equivariant isomorphism from H?({#I}, M) to M /2M. Hence we
obtain an isomorphism H?(I', M) — H°(T', M /2M). Take M = L(k—2,0)(exw™*).
The isomorphism is compatible with Hecke operators for that a class [u] in H*(T', M)
is uniquely determined by values of w on {£I,}* and {+1,} is in the center of T.
Since e HY(T', M /2M) = 0, e H*(T', M) = 0.

Consider the I'-equivariant map

v Lk —2,F)(xw™) = F(xw™), e; = 0, ey > 1.

27



This gives the long exact sequence

eH* (T, ker(1)) — eH*(I', L(k — 2,F)(xw™)) — eH*(I',F(xw™?)) REN

1
Since P vanishes on ker(¢), eH*(I', ker(¢)) = 0 and we get
01

eHY (T, L(0,F)(xw™?)) = eH (I', F(xw™?)) =2 eH (T, L(k — 2,F)(xw™)).

3 Hida Family

3.1 A-adic Modular Forms

LetI' = Gal(Q,, / Q) = 14+¢Z, and u € ' = 14+-¢Z, be a fixed geometric generator.
Define
A = O[[T]] := lim O[T /T""] = lim O[T]/((1 + T — 1)
k

k

where the last isomorphism is given by vy — 14+7. We will show that @k O[T)/{(1+
T —1) = O[[T]].

Definition 3. Let P € O[T]. P is called a distinguished polynomial if P is non-

constant, monic, and P = T9¢") (mod w).

Proposition 7 (Division Algorithm). Suppose P = ag+a;T+--- € O[[T]], P #0
(mod w), and n = min{k € N | a, € O*}. Then for every f € O[[T]] there exists a
unique pair (@, R) where Q € O[[T]] and R € O[T has degree smaller than n, such
that

f=QP+R.

Theorem 5 (Weierstrass Preparation). For every f € O[[T]] there exists a unique
triple (u, U(T), P(T)) where u € Zxo, U € O[[T]]*, and P(T) is a distinguished
polynomial, such that

f=w"PU.
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It is easily seen that O[[T7]] is a UFD of dimension 2 and its irreducible elements

are w and all irreducible distinguished polynomials.

Theorem 6. Let P, P, --- be a sequence of distinguished polynomials such that
Py € (w,T)* and B, | Py for all k € N. We endow O[[T]] with the m-adic topology
and O[[T]]/(Px) the p-adic topology. Then the natural map

v O[[T]] = Lim O[[T1]/(Fx)

is an isomorphism both algebraically and topologically.

Proof. Since O[[T]]/(Py) is p-adically complete, it is isomorphic to lim, O[T/ (Py, =)

with each object endowed with discrete topology. Hence
lim O[[T1)/(Fy,) = lim O[[T1]/ (P, w*) = lim O[[TT]/ (P, &"),
k k k

where each O[[T]]/(Pg, ") is given discrete topology. Since (P, ") C m*, it
suffices to show that for every k € N is a £ such that m* C (P, w"). This is true as
the radical of (P, @) is m and hence O|[T]]/(P, ") is Artinian. O

Let P, := (14 T)"" — 1. Since O[T]/(P,) — O[[T]]/(F:) is an isomorphism,
lim, O[T]/{(1+T)"" — 1) = O[[T]}.

Definition 4. Let x : (Z /Np*Z)* — O be a Dirichlet character for some o > 1.
We say F € A[[g]] is a (cusp,ordinary) A-adic modular form if F(u* — 1) € O[[q]]
is a (cusp,ordinary) modular form in M(Np®, xw™", O) for all k >> 0. We define
M(x; A) (M9(x; A), S(x;A), S™(x;A)) as the space of A-adic (ordinary, cusp,

ordinary cusp) modular forms.

Example 2. Let 9, ¢ be two primitive Dirichlet characters modulo u, v, respec-
tively, with value in O*. Suppose ¥ (p) # 0. Then

1 _

5 (BLG) — et B (02))

is ordinary. The g-expansion of the ordinary Eisenstein series is

no S b0/ d)p(d)d!
din
ptd
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and the constant term is
W)L~ k)
We define A,, ., as
> w(n/d)p(d)d(d)

dln
ptd

and Aoy, as the element in Frac(A) with

Aol = 1) = 28 Ly(1 ~ 5, 0)

for all |s|, < gp™/P~Y and e any finite order character on 1+ ¢Z,. If ¢ is odd or
Vv #1, Agye =0. Ifp =1, ¢ is nontrivial and even, then Ay, € A. If = ¢ = 1,

A
Ao € T Define

Ew#’ = A0,¢,¢ + Z Anﬂp,qu.

n=1

When (i2,0) # (1, 1),
E% € M (yp; A)

with suitable level, E1't € T-IM®4(1; A), and
EY#(e(uu — 1) € MP(Np", evrgs @, )
for all £ > 2 with suitable N, a.
Definition 5. For every k£ > 2 we define
P.:=T— (ufF —1).

More generally, for every finite order character € : 1 +2pZ, — C,, we define Py as

the minimal polynomial of e(u)u* — 1 over O.

3.2 Ordinary Hida Families

Theorem 7. M°9(y;A) and S°4(x; A) are free of finite rank over A.

Proof. Let M’ be a finite free submodule of M9, say F},--- , F, be a basis. Then
there exists by,---,b, € N such that D := det(a(b;, F;)) # 0. Therefore, for
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all k >> 0, {F(u* — 1)} ¢ MP(Np®, xw*;0) and generates a free O-module
of rank n. Therefore, n < ranke(M™(Np®, xw™*;0)) for all k >> 0. Since
ranke (M(Np®, xw™"; 0)) is bounded independent of k, n is bounded indepen-
dent of M. Therefore, there is a ng € Z>( such that ng is the maximal possible rank
of free submodules of M9,

Let Fy, -, F,, C M he a basis of a free submodule M’ of rank ng of M.

Let L := Frac(A). Let F' € M. There are A\, -+, \,, € L such that
ML+ N F = FL
Consider linear equations

)\1@(7% Fy)+ -+ /\NOa(nj7 Fo) = a(nj, F)

/!

and we have that D); € A for all j. Hence % > M4 and M° is finitely
generated. Therefore, there is a @ € N such that for all & > a and F € M,
F(u* — 1) € Mg&d(Np™, xw™"; 0). Let k > a. If F(u® —1) =0, then F = P,F’ for
some ' € Al[¢]] and F'(u" — 1) = F(u" —1)/(u" — u¥) € M™4(Np, xw™"; O) for all
r > k. Hence F € P.M°. We have that

Mord/PkMord N M]Srd(Npa, Xw_k; O)

is injective. Let fi,---, f, be a O-basis of the image and F}, - - - , F}, be their liftings.
By Nakayama’s lemma, M is generated by Fy,---, F,. If A1,--- , A\, € A such that

>\1F1++)\nFn:Oa

Py | A; for all i. By infinite descent method A; = --- = A, = 0. Namely, Mo is free
and {F},---,F,} is a basis.
The proof for S is identical. O

We define Hecke operators on M as follows:

a(m, T, F) = > x(d){d)d 'a(mn/d* F).
(g,‘z(v?gl
Since (T,F)(u* — 1) = T,(F(u* — 1)) for & >> 0, T, € Ends(M), preserving

subspaces of ordinary and cusp forms.
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We would like to define an ordinary projector e : M — M, which should be

el = lim T'”'F

n—o0

under the m-adic topology. This is done circuitously. Given an F' € M. Let a € N
such that F(u* — 1) € My(Np, xw™"; O) for all k > a. We define

M, ={F € M| F(u" - 1) € My(Np, xw " 0) V¥ k € [a, j]}.

Let Q; := [[4_, Po(T) where Py(T) := T — (u* — 1). Then

J
Ma,j — @ Mk’(Np7 Xw_k; O)

k=a
has kernel €;[[g]] N M, ;. Since T, preserves M, ; and €2;[[q]] N M, ;, the image of

M,, — @f;:a My, (Np, xw™"; 0) is a Ty-invariant subspace. Hence lim, ., T is

p
defined on —a’j, denoted by e;. Then we have the commutative diagram
Q;{[ql] N M, !
Ma,jJrl N Ma:j
Qj1lal] N Mg Q[[q]] N M,
lejJrl lej
M ;41 . M,
Qi llgl] N Mg, Q{[q]] N M,
On the other hand My is a subspace of (A/€Q;)[[q]]. Therefore
n r hand, ————— 1 ubpsp i)Lall- refore,
Q;{[a]] MM !
i - (A /9,){[q] = All]
m = — all,
i & Tl oA, ©

and the image is clearly M,. We thus define e := @j e; on M,. Since @j(A/Qj)
with p-adic topology on each A/, is A with m-adic topology,

el = lim T”F

n—o0

under the m-adic topology, and (eF)(uf — 1) = e(F(u* — 1)) for all k > a. Hence e

is an idempotent from M onto M, mapping cusp forms to cusp forms.

Proposition 8. For every a > 0 and f € M,(Np®, xw % O) there is a F €
M(x; A) such that F(u*—1) = f. If f is cusp (ordinary), F' can be taken to be cusp

(ordinary).
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Proof. We first consider B € M°4(1,A). The T~ !-term of B! is

- (u' = 1)Ly(1 — s) 1/, -1
lim 2p =27 (p™ = 1)log,(u) € Z) .

Define
TEl,l
E' = e M (x; A
1~ Dlogyw) < 6N

and

E(T):=FEWw T+ (u*-1)), F:=fE.

Then for all k > a, F(u* — 1) € Mp(Np®, xw™*;0), and F(u® — 1) = fE'(0) = f.
If fis cusp, F is cusp. If f is ordinary, we take F' := e(fFE) instead. O

From this we can write down a basis for M (S°) as follows: We first take
a a € N such that F(u* — 1) € MZ(Np®, xw™; 0) (S (Np™, xw™*; 0)) for all
F e M4 (S9) and k > a. Let fi, -+, f, be a basis of M4 (Np®, xw=; O)
(S (Np®, xw™ O)) and F; := e(fE'). Then {F,---,F,} is a A-basis of M
(S°9). This shows that for all finite order characters € : 1+ ¢Z, — C, and k > a,

Fle(u)u® —1) € M (Np®, exw™; Ole]) (S (Np®, exw™; O[e])).
We define
€ : M(x; A) = M(ex; Ale]), (e.F))(T) := F(eT' + (e — 1)).
Since €, ! o €, = id, when ¢ takes value in O,
e« M(x; A) = M(ex; A).

Theorem 8. For every k > 2 and every F € M (S F(e(u)u* — 1) €
M (Np®, exw™; Ole]) (ST Np*, exw™; Ole])). Moreover, there are isomorphisms

Mord(x; A)/PMI\\/JIOM(X; A) = M,?rd(Npo‘, exw r: 0),
and
S(x; A) /P S (x; A) =2 S (Np®, exw™; 0).

for all k > 2. In particular, ranke (M™(Np®, exw™"; O)) and ranke (S¢™(Np?, exw™"; O))

are constant for all £ > 2.
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Proof. We first show the case € = 1.

From the previous proposition we have that the image of
M (x; A)/PM(x; A) < O[[g]

contains M4(Np®, xw™"; O) for all k > 0. For k >> 0, M(y; A)/B.M(x; A) C
M (Np®, xw™"; O) and the equality holds.

Since ranke (M (Np®, xw™%; 0)) is a constant for all k > 2, then M°™(y; A)/PM°™(; A)
and ranke (MP(Np®, xw™"; O)) have the same rank. Therefore,

M (Np®, xw ™ 0) = (MP(Np®, xw™; 0) ®0 K) N O[[q]]

OM (x; A)/BM (x; A) D M (Np™, xw™; 0).

For general e we first consider M°4(y; A’) where A’ := Ol¢e][[T]]. Since e, :
Mt (x; A) == M (x; e V),

M (x; M) /(T = (e(uw)u” — 1))M (x; A)
2= M (; eA') /(T — (ew)u® — 1))M™(ex; A)

= Mi(Np®, exw™"; Ole]).
for all k> 2. Every F' € M9 (x, A’) can be written as a finite sum
F = Z Fie(u)'

where each F; € M (x; A). Given k > 2. Define

utk

o= ZE(l _l_ZT) c Mord(X;A).

Then
F'(e(u)uf — 1) = Fe(u)u® — 1)

and therefore,
M (x; A) /P (s A) = M (x; ) /(T — (e(u)u® — 1))M (x; A).

The proof for cusp forms is identical. O
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3.3 Duality and Lifting

We define Hecke algebras H™(y; A) and h"d(; A) as the A-subalgebra of End, (M¢(; A))
and Ends (S (x;A)), respectively. Moreover generally, for every A-algebra A,

We define Ho"(x; A) = Endy (M (y; A)) = Hod(x; A) @5 A an similarly define

R (x; A).

Theorem 9 (Duality). The pairing
(h, f) = ai(h(f))

defines a perfect pairing between h(x; A), S™(y; A), and H"(y; A), m*d(x; A).

Proof. It suffices to prove the case A = A. The pairing gives a map h°(y; A) —
Homy (S (x; A); A). If h is in the kernel, we have for all f and n,

0= (h,T.f) = ar(hT,f) = a1(T,hf) = an(h(f)),

so h = 0. Let N be the cokernel of the map. We tensor A/(Py) on the short exact

sequence

0 — h(x; A) — Homy (S™(x; A),A) = N — 0.

Since S™(; A) is finite free, the middle term is

Homy (S (x; A), A) @a A/(Py) = Homa(S™(x; A)/Pe S (x; A), O)

= Homo (S (xw™; 0), 0) = W™ (xw™; ).

The image from the first term is the O-subalgebra generated by {T,, },en, which is
R (xw™"; O) itself. Hence N = P,N. By Nakayama’s lemma, N = 0. Hence we
have

hed (x; A) 2 Homy (S7(x; A), A).

In particular, h°*4(x; A) is finite free over A. Take dual on both sides and we have
Homy (h°™(x; A), A) = Homy (Homy (S (x; A), A), A) =2 S (y; A).

The proof for H and m are identical. [
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Now we have that for every A-algebra A, Homy (hod(x;A), A) = S (y; A).
Moreover, ¢ € Homy (h4(x;A), A) is a A-algebra homomorphism if and only if
E

b=y o o(T,)¢" is a normalized Hecke eigenform with coefficients in A.

Let £ > 2 and f € S?(xw™*;0). f induces an O-algebra homomorphism
hd(xw™;0) — O. Since hd(xw™;0) = ho(x;A) @4 A/(P;), we obtain a
unique A-algebra homomorphism from h°d(y; A) — O. Since A is a complete local
ring and hence henselian, h°*4(; A) decomposes into a finite product of A-algebras,
which are again henselian local rings. Let P; be the kernel of h{"d(xw™*;0) — O
and m; be the maximal ideal lying over P;. Then the ring homomorphism factors
through h(x; A) = h(x; A)m,-

We may lift f to an normalized Hecke eigenform over a A-algebra with better
algebraic properties. Let Q; be a minimal prime ideal of h°(x; A) contained in Py,
I' := h*"d(x; A)/Q; and define I as the integral closure of I’. Then I/A is finite.
We see that [ is a complete local ring, and the topology coincide with the my-adic
topology. Let P; be any prime ideal of I over P;CI'. Then I/ P4 is finite over O
and hence h*"!(x; A) — I/ P} defines an normalized Hecke eigenform with coefficient

in Z, which is exactly f.
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