1 Eichler-Shimura Isomorphism

1.1 Cohomology of Fuchsian Groups

Let G be a group, R be a given ring, M be a $R[G]$-module. We define the group cohomology as

$$
H^{*}(G, M):=\operatorname{Ext}_{R[G]}^{*}(R, M),
$$

where R is endowed with the trivial G-action. In this way, $H^{*}(G, M)$ is endowed with natural R-module structure, while the underlying group itself is independent of the R, as it is the derived functor of $M \mapsto M^{G}$.

In terms of the non-homogeneous cochain, we define $C^{n}(G, M)$ as the R-module of all maps from $G^{\times n}$ to M, here R acts on M, with differential maps given by

$$
\begin{aligned}
d u\left(g_{1}, \cdots, g_{n+1}\right):=g_{1} u\left(g_{2}, \cdots, g_{n+1}\right) & +\sum_{i=1}^{n}(-1)^{i} u\left(g_{1}, \cdots, g_{i-1}, g_{i} g_{i+1}, g_{i+1}, \cdots, g_{n+1}\right) \\
+ & (-1)^{n+1} u\left(g_{1}, \cdots, g_{n}\right) .
\end{aligned}
$$

$H^{*}(G, M)$ is identified with the cohomology of $C^{*}(G, M)$. For degree 0 , we have $H^{0}(G, M)=M^{G}$. For degree 1, we have

$$
Z^{1}(G, M)=\left\{u: G \rightarrow M \mid u\left(g_{1} g_{2}\right)=g_{1} u\left(g_{2}\right)+u\left(g_{1}\right)\right\},
$$

and

$$
B^{1}(G, M)=\left\{d m_{v}: g \mapsto(g-1) m_{v}\right\}
$$

Let Q be a subset of G. We define $C_{Q}^{*}(G, M)$ as the sub-cochain of $C^{*}(G, M)$ given by

$$
C_{Q}^{1}(G, M):=\{u: G \rightarrow M \mid u(g) \in(g-1) M \text { for all } g \in Q\},
$$

and $C_{Q}^{i}(G, M)=C^{i}(G, M)$ if $i \neq 1$. It is clear that $B^{1}(G, M) \subset C_{Q}^{1}(G, M)$. We define $H_{Q}^{*}(G, M)$ as the cohomology of $C_{Q}^{*}(G, M)$. In particular, $H_{Q}^{i}(G, M)=$ $H^{i}(G, M)$ for $i \neq 1,2$, and

$$
H_{Q}^{1}(G, M)=\operatorname{ker}\left(H^{1}(G, M) \rightarrow \prod_{g \in Q}(\langle g\rangle, M)\right) .
$$

Like the usual cohomology, $H_{Q}^{1}(G, M)$ has the following functoriality:

Lemma 1. Assume $Q \subset G$ is closed under conjugation and taking powers. Let $H \subset G$ be a subgroup of finite index and M be a H-module. Then the canonical isomorphism $H^{1}\left(G, \operatorname{Ind}_{H}^{G}(M)\right) \cong H^{1}(H, M)$ induces an isomorphism $H_{Q}^{1}\left(G, \operatorname{Ind}_{H}^{G}(M)\right) \cong$ $H_{Q \cap H}^{1}(H, M)$.

Proof. Let S be a set of representatives of $H \backslash G / K$ and define $H_{s}:=s^{-1} H s \cap K$ for each $s \in S$, and M_{s} the H_{s}-module whose underlying space is M and $s^{-1} h s\left(m_{s}\right):=$ $(h m)_{s}$. Then we have the canonical isomorphism

$$
\left.\operatorname{Res}\right|_{K} \operatorname{Ind}_{H}^{G}(M) \cong \bigoplus_{s \in S} \operatorname{Ind}_{H_{s}}^{K}\left(M_{s}\right) .
$$

To be explicit, the isomorphism is given by $\varphi \mapsto\left(\varphi_{s}: k \mapsto \varphi(s k)\right)$.
For every $s \in S$, we have the restriction map

$$
H^{*}(H, M) \rightarrow H^{*}\left(H_{s}, M_{s}\right)
$$

induced by the pair of maps. $\left(s^{-1} h s \mapsto h, \mathrm{id}_{M}\right)$. Therefore, the map

$$
H^{*}\left(G, \operatorname{Ind}_{H}^{G}(M)\right) \rightarrow H^{*}(H, M) \rightarrow H^{*}\left(H_{s}, M_{s}\right)
$$

is induced by the pair of maps

$$
\left(s^{-1} h s \mapsto h, \varphi \mapsto \varphi(1)\right) .
$$

On the other hand, $H^{*}\left(K, \operatorname{Ind}_{H}^{G}(M)\right) \rightarrow H^{*}\left(H_{s}, M_{s}\right)$ is induced by the pair of maps $\left(s^{-1} h s \mapsto s^{-1} h s, \varphi \mapsto \varphi(s)\right)$. Hence

$$
H^{*}\left(G, \operatorname{Ind}_{H}^{G}(M)\right) \rightarrow H^{*}\left(K, \operatorname{Ind}_{H}^{G}(M)\right) \rightarrow H^{*}\left(H_{s}, M_{s}\right)
$$

is induced by the pair of maps

$$
\left(s^{-1} h s \mapsto s^{-1} h s, \varphi \mapsto s \varphi(1)\right) .
$$

Hence we have a commutative diagram

whose vertical maps are isomorphisms. Let K runs through $\{\langle q\rangle\}_{q \in Q}$ and we get the result.

Let $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ be a Fuchsian group of the first kind and s_{1}, \cdots, s_{m} be the set of cusps on $X(\Gamma)$. For every s_{i} we find a small open disk D_{i} on $X(\Gamma)$, centered at s_{i}. We can make $X(\Gamma)-\bigcup_{i=1}^{m} D_{i}$ a simplicial complex satisfying that

1. Each elliptic point is a 0 -simplex.
2. For each cusp $s_{i}, \partial D_{i}$ is a 1 -simplex.

Let \mathcal{H}_{0} be the preimage of $X(\Gamma)-\bigcup_{i=1}^{m} D_{i}$ under the projection map $\mathcal{H} \rightarrow Y(\Gamma)$. \mathcal{H}_{0} can be chosen so that it has trivial homology. We pull-back the simplicial complex structure of $X(\Gamma)-\bigcup_{i=1}^{m} D_{i}$ and we make \mathcal{H}_{0} a simplicial complex, say K. Let $C_{*}(K)$ be the simplicial chain complex with coefficient R. We have that there is a $R[\Gamma]$-action on $C_{*}(K)$ and $C_{2}(K), C_{1}(K)$ are free $R[\Gamma]$-modules. We define $C^{*}(K, M):=\operatorname{Hom}_{R[\Gamma]}\left(C_{*}(K), M\right)$ and $H^{*}(K, M)$ the cohomology of $C^{*}(K, M)$.

For every s_{i} we choose t_{i} a 1 -simplex of K such that t_{i} is mapped to ∂D_{i} and define q_{i} as the starting point of t_{i}. Then $\partial t_{i}=\left(\pi_{i}-1\right)\left[q_{i}\right]$ where π_{i} is a generator of $\Gamma_{s_{i}}$. Let $Q=\left\{\pi_{1}, \cdots, \pi_{m}\right\}$. We define $C_{Q}^{*}(K, M)$ as the subcochain complex of $C^{*}(K, M)$ given by

$$
C_{Q}^{1}(K, M):=\left\{u \in \operatorname{Hom}_{R[\Gamma]}\left(C_{1}(K), M\right) \mid u\left(t_{i}\right) \in\left(\pi_{i}-1\right) M \text { for all } i\right\},
$$

and $C_{Q}^{1}(K, M)=C^{i}(K, M)$ if $i \neq 1$. It is clear that $B^{1}(K, M) \subset C_{Q}^{1}(G, M)$. We define $H_{Q}^{*}(K, M)$ as the cohomology of $C_{Q}^{*}(K, M)$.

If Γ has no elliptic elements, $C_{0}(K)$ is also free over $R[\Gamma]$ and

$$
C_{*}(K) \xrightarrow{a} R
$$

is a free $R[\Gamma]$-resolution of R. In this case, $H^{*}(\Gamma, M)$ is canonically identified with $H^{*}(K, M)$. In general, we have to deal with those elliptic points of $X(\Gamma)$. Let $p_{1}, \cdots, p_{r} \in \mathcal{H}$ be a set of representatives of elliptic points of $X(\Gamma), e_{j}:=\left|\Gamma_{p_{j}}\right|$, and $E:=\operatorname{lcm}\left\{e_{j}\right\}$. Let $C_{*}(\Gamma)$ be the homogeneous chain complex. We would like to define chain maps

$$
f_{*}: C_{*}(K) \rightarrow C_{*}(\Gamma), g_{*}: C_{*}(\Gamma) \rightarrow C_{*}(K)
$$

so that both $f_{*} \circ g_{*}$ and $g_{*} \circ f_{*}$ are homotopic to $E \cdot \mathrm{id}$. We define f_{*} as follows: Let $S \subset \mathcal{H}_{0}$ be a set of representatives of Γ-orbits on 0 -simplices. We may assume that
S contains $p_{1}, \cdots, p_{r}, q_{1}, \cdots, q_{m}$. We define $f_{0}: S \rightarrow C_{0}(\Gamma)=R[\Gamma]$ by

$$
f_{0}\left(p_{j}\right):=\frac{E}{e_{j}} \sum_{g \in \Gamma_{p_{j}}}[g]
$$

and $f_{0}(s)=E[e]$ if $s \in S-\left\{p_{1}, \cdots, p_{r}\right\}$. Then f_{0} extend uniquely to a $R[\Gamma]$ homomorphism from $C_{0}(K)$ to $C_{0}(\Gamma)$ with the commutative diagram

Since $C_{2}(K), C_{1}(K)$ are free over $R[\Gamma]$ and $C_{*}(\Gamma)$ is exact, ($f_{0}, E \cdot$) extends uniquely up to chain homotopy to a chain map f_{*}. Similarly, we pick an arbitrary 0 -simplex p of K and define $g_{0}: R[\Gamma] \rightarrow C_{0}(K)$ by evaluation at $[p] . g_{0}$ is extended uniquely up to chain homotopy to a chain map g_{*} such that g_{*} induces identity map at H_{0}. Now we see that $f_{*} \circ g_{*}$ induces E. on $H_{0}\left(C_{*}(\Gamma)\right)$, so it's chain homotopic to $E \cdot \mathrm{id}$. For $g_{*} \circ f_{*}$, the only problem is that $f_{0} \circ g_{0}\left(p_{j}\right)$ should be $\Gamma_{p_{j}}$-invariant, which is clear. Now we have

$$
f^{*}: C^{*}(G, M) \rightarrow C^{*}(K, M), g^{*}: C^{*}(K, M) \rightarrow C^{*}(G, M)
$$

such that both $f^{*} \circ g^{*}$ and $g^{*} \circ f^{*}$ induce multiplication by E on cohomology. In particular, if E is invertible in $R, H^{*}(G, M) \cong H^{*}(K, M)$.

To deal with the parabolic cohomology, we may assume that

1. $f_{*}\left(t_{i}\right)=E\left(\left[1, \pi_{i}\right]\right)$ and $g_{*}\left(\left[1, \pi_{i}\right]\right)=t_{i}+\left(\pi_{i}-1\right) b_{i}$ where b_{i} is a 1 -chain with $\partial b_{i}=[p]-\left[q_{i}\right]$.
2. $p \in S$ but is not an elliptic point. In this way, we have that $f_{0} \circ g_{0}=E \cdot$.
3. The chain homotopy U_{*} between $f_{*} \circ g_{*}$ and $E \cdot \mathrm{id}_{C_{0}(\Gamma)}$ satisfies that $U_{1}\left(\left[1, \pi_{i}\right]\right) \in$ $\left(\pi_{k}-1\right) C_{2}(\Gamma)$. We first take $U_{0}=0$. We have that

$$
\left(f_{1} \circ g_{1}\right)\left(\left[1, \pi_{i}\right]\right)=E\left(\left[1, \pi_{i}\right]\right)+\left(\pi_{i}-1\right) f_{1}\left(b_{i}\right) .
$$

Since $\partial f_{1}\left(b_{i}\right)=f_{0}\left([p]-\left[q_{i}\right]\right)=0, U_{1}$ can be chosen so that $U_{1}\left(\left[1, \pi_{i}\right]\right) \in$ $\left(\pi_{i}-1\right) \partial^{-1}\left(f_{1}\left(b_{i}\right)\right)$.
4. The chain homotopy V_{*} between $g_{*} \circ f_{*}$ and $E \cdot \mathrm{id}_{C_{0}(\Gamma)}$ takes 0 on t_{i}. Since $\left(g_{0} \circ f_{0}\right)\left[q_{i}\right]=E[p], V_{0}$ can be chosen so that $V_{0}\left(\left[q_{i}\right]\right)=b_{i}$. Since

$$
\left(g_{1} \circ f_{1}\right)\left(t_{i}\right)-E t_{i}=V_{0}\left(\partial t_{i}\right),
$$

V_{1} can be chosen so that $V_{0}\left(\left[t_{i}\right]\right)=0$.
Now if $u \in C_{Q}^{1}(G, M)$, we have that

$$
f^{*}(u)\left(t_{i}\right)=u\left(f_{*}\left(t_{i}\right)\right)=E u\left(\left[1, \pi_{i}\right]\right)=E u\left(\pi_{i}\right) \in E\left(\pi_{i}-1\right) M,
$$

and if $u \in C_{Q}^{1}(K, M)$

$$
g^{*}(u)\left(\pi_{k}\right)=g^{*}(u)\left(\left[1, \pi_{i}\right]\right)=u\left(t_{i}\right)+\left(\pi_{i}-1\right) u\left(b_{i}\right) \in\left(\pi_{i}-1\right) M .
$$

Hence $f^{*}: C^{*}(G, M) \rightarrow C^{*}(K, M), g^{*}: C^{*}(K, M) \rightarrow C^{*}(G, M)$ and U_{*}, V_{*} remain chain homotopies. We obtain the same result as usual cohomology case.

Remark 1. Let P be the set of all parabolic elements of Γ, then every element $\pi \in P$ is conjugate to a power of some π_{i}. If $u\left(\pi_{i}\right)=\left(\pi_{i}-1\right) x_{i}, u\left(g \pi_{i}^{n} g^{-1}\right)=$ $\left(g \pi_{i}^{n} g^{-1}-1\right)(g x-u(g))$. Hence $Z_{P}^{1}(\Gamma, M)=Z_{Q}^{1}(\Gamma, M)$ and $H_{P}^{1}(\Gamma, M)=H_{Q}^{1}(\Gamma, M)$.

Let R be a ring, G be a group, M be a $R[G]$-module, and S be a flat R module endowed with trivial G-action. Then both $H^{*}(G, \cdot) \otimes_{R} S$ and $H^{*}\left(G,(\cdot) \otimes_{R} S\right)$ are cohomological delta functors from $\operatorname{Mod}_{R[G]}$ to Mod_{R}, or Mod_{S} when S is a R algebra. Since $H^{*}(G, \cdot) \otimes_{R} S$ vanishes on injective $R[G]$-modules, $H^{*}(G, \cdot) \otimes_{R} S$ is an universal delta functor. At degree 0, we have the functorial map $M^{G} \otimes_{R} S \rightarrow$ $\left(M \otimes_{R} S\right)^{G}$, which is injective. Hence we obtain a unique natural transformation t^{*} from $H^{*}(G, \cdot) \otimes_{R} S$ to $H^{*}\left(G,(\cdot) \otimes_{R} S\right)$. Alternatively $t^{*}(M)$ is induced by the obvious chain map $C^{*}(G, M) \otimes_{R} S \rightarrow C^{*}\left(G, M \otimes_{R} S\right)$.
t^{*} may not be a natural isomorphism of delta functors as tensor product does not commute with infinite product.

Lemma 2. If $R[G]$ is Noetherian, or G is cyclic, t^{*} is a natural isomorphism of delta functors.

Proof. In both cases, R has a finite free resolution.

Lemma 3. If G is generated by finitely many elements, $t^{0}(M)$ is a natural isomorphism and $t^{1}(M)$ is injective for every M.

Proof. Let g_{1}, \cdots, g_{m} be a generating set of G. Tensoring S on the exact sequence

$$
0 \rightarrow M^{G} \rightarrow M \xrightarrow{\oplus g_{i}-1} \bigoplus_{i=1}^{m} M
$$

and we get the exact sequence $0 \rightarrow M^{G} \otimes_{R} S \rightarrow M \otimes_{R} S \xrightarrow{\oplus g_{i}-1} \bigoplus_{i=1}^{m} M \otimes_{R} S$, hence the isomorphism $M^{G} \otimes_{R} S \cong\left(M \otimes_{R} S\right)^{G}$.

Consider a short exact sequence

$$
0 \rightarrow M \rightarrow M^{\prime} \rightarrow M^{\prime \prime} \rightarrow 0
$$

with injective M^{\prime}. Apply the delta functors and use that t^{0} is a natural isomorphism we have that $t^{1}(M)$ is injective.

Suppose $t^{1}(M)$ is an isomorphism and $Q \subset G$ is a finite set. Then $H_{Q}^{1}(G, M) \otimes$ $S=H_{Q}^{1}\left(G, M \otimes_{R} S\right)$.

Let $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ be a Fuchsian group of the first kind.
Lemma 4. $H^{*}(K, M) \otimes_{R} S \cong H^{*}\left(K, M \otimes_{R} S\right)$.

Proof. We have to compare the cohomology of

$$
\operatorname{Hom}_{R[\Gamma]}\left(C_{*}(K), M\right) \otimes_{R} S
$$

to

$$
\operatorname{Hom}_{R[\Gamma]}\left(C_{*}(K), M \otimes_{R} S\right) .
$$

Consider the natural transformation $\operatorname{Hom}_{R[\Gamma]}(\cdot, M) \otimes_{R} S \rightarrow \operatorname{Hom}_{R[\Gamma]}\left(\cdot, M \otimes_{R} S\right)$. Both functors commute with finite direct sum. If $N \cong R[\Gamma] /(g-1)$ for some $g \in \Gamma$, we have $\operatorname{Hom}_{R[\Gamma]}(N, M) \otimes_{R} S=M^{g} \otimes_{R} S, \operatorname{Hom}_{R[\Gamma]}\left(N, M \otimes_{R} S\right)=\left(M \otimes_{R} S\right)^{g}$, and the natural homomorphism is an isomorphism. Since each $C_{*}(K)$ is a finite direct sum of $R[\Gamma]$-modules of this form, we get an isomorphism of cochain complexes.

Proposition 1. If E. : $M \otimes_{R} S \rightarrow M \otimes_{R} S$ is an isomorphism and $t^{1}(M)$ is injective, $H^{1}(\Gamma, M) \otimes_{R} S \rightarrow H^{1}\left(\Gamma, M \otimes_{R} S\right)$ is an isomorphism.

Proof. Consider the commutative diagram

We already have that t^{1} is injective, ψ is an isomorphism, and $f^{1} \circ g^{1}=g^{1} \circ f^{1}=E$. Now $\left(g^{1} \otimes 1\right) \circ \psi^{-1} \circ\left(E^{-1} f^{1}\right)$ is the inverse of t^{*}.

1.2 Eichler-Shimura Isomorphism

Let $R=\mathbb{R}$ or \mathbb{C}, R^{2} be endowed with the standard $\mathrm{GL}_{2}(R)$-representation, and $\operatorname{Sym}^{n}\left(R^{2}\right)$ be the S_{n}-fixed subspace of $\left(R^{2}\right)^{\otimes n}$ with the natural $\mathrm{GL}_{2}(R)$-action. Let θ be the R-bilinear form on R^{2} given by $(v, w) \rightarrow \operatorname{det}\left(\begin{array}{ll}v & w\end{array}\right)$. This is extended to Θ_{n}, the R-bilinear form on $\operatorname{Sym}^{n}\left(R^{2}\right)$, determined by

$$
\Theta_{n}\left(v^{\otimes n}, w^{\otimes n}\right)=\Theta(v, w)^{n} .
$$

We have $\Theta_{n}(v, w)=(-1)^{n} \Theta_{n}(w, v)$, and $\Theta_{n}(\alpha v, \alpha w)=\operatorname{det}(\alpha)^{n} \Theta_{n}(v, w)$. This makes $\operatorname{Sym}^{n}\left(R^{2}\right)$ a self-dual $\mathrm{SL}_{2}(R)$-module.

Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{R})$ be a Fuchsian group of the first kind, $\rho: \Gamma \rightarrow \mathrm{GL}(V)$ be a finite dimensional \mathbb{C}-representation with finite image, and k be a positive integer.

Definition 1. $\quad S_{k}(\Gamma, \rho)$ is the space of holomorphic functions $f: \mathcal{H} \rightarrow V$ satisfying that

1. $f(\alpha z) j(\alpha, z)^{-k}=\rho(\alpha) f(z)$ for all $\alpha \in \Gamma$.
2. For every $\ell \in \operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$, $\ell \circ f \in S_{k}(\operatorname{ker}(\rho))$.

Proposition 2. $\quad S_{k}\left(\Gamma, \rho_{1} \oplus \rho_{2}\right)=S_{k}\left(\Gamma, \rho_{1}\right) \oplus S_{k}\left(\Gamma, \rho_{2}\right)$. For another Fuchsian group of the first kind $\Gamma^{\prime} \supset \Gamma$ with $\left[\Gamma: \Gamma^{\prime}\right]<\infty$, there is a natural isomorphism

$$
S_{k}(\Gamma, \rho) \cong S_{k}\left(\Gamma^{\prime}, \operatorname{Ind}_{\Gamma}^{\Gamma^{\prime}}(\rho)\right) .
$$

Proof. The first assertion is trivial. For the second one, we define

$$
\begin{gathered}
\phi: S_{k}\left(\Gamma^{\prime}, \operatorname{Ind}_{\Gamma}^{\Gamma^{\prime}}(\rho)\right) \rightarrow S_{k}(\Gamma, \rho), z \mapsto f(z)(1), \\
\psi: S_{k}(\Gamma, \rho) \rightarrow S_{k}\left(\Gamma^{\prime}, \operatorname{Ind}_{\Gamma}^{\Gamma^{\prime}}(\rho)\right), z \mapsto\left(\alpha \mapsto f(\alpha z) j(\alpha, z)^{-k}\right) .
\end{gathered}
$$

They are well-defined \mathbb{C}-linear map that are inverse to each other.
Let $\bar{\rho}: \Gamma \rightarrow \operatorname{GL}(V)$ given by $\bar{\rho}(\alpha)(\bar{v}):=\overline{\rho(\alpha)(v)}$. For every $f \in S_{k}(\Gamma, \bar{\rho})$, we have $\overline{f(\alpha z)} j(\alpha, \bar{z})^{-k}=\overline{\bar{\rho}(\alpha) f(z)}=\rho(\alpha) \overline{f(z)}$.

Suppose $k \geq 2$. For every $f=\left(f_{1}, \overline{f_{2}}\right) \in S_{k}(\Gamma, \rho) \oplus \overline{S_{k}(\Gamma, \bar{\rho})}$, we define

$$
\begin{gathered}
\omega(f) \in H^{0}\left(\Omega^{1}\left(\mathcal{H}, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)\right) \\
\omega(f)(z):=f_{1}(z)\left(z e_{1}+e_{2}\right)^{\otimes n} d z+\overline{f_{2}(z)\left(z e_{1}+e_{2}\right)^{\otimes n} d z}
\end{gathered}
$$

In particular, $\omega(f)$ is a closed 1-form, and $\omega(f) \circ \alpha=\chi(\alpha) \omega(f)$, where χ is the representation $V \otimes \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)$. Let F be a primitive of $\omega(f)$. Then F have the form

$$
F(z)=\int_{z_{0}}^{z} \omega(f)+v
$$

for some $z_{0} \in \mathcal{H}$ and $v \in V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)$. We define $u(f) \in Z^{1}\left(\Gamma, V \otimes_{\mathbb{C}}\right.$ $\left.\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$ by

$$
u(f)(\alpha):=F(\alpha z)-\chi(\alpha) F(z)=\int_{z_{0}}^{\alpha z_{0}} \omega(f)+(1-\chi(\alpha)) v
$$

Let $\pi \in \Gamma$ be a parabolic element and $s \in \mathbb{P}^{1}(\mathbb{R})$ be a cusp fixed by $\pi . F$ can be extend to s and we obtain that

$$
F(s)=F(\pi(s))=\chi(\pi) F(s)+u(f)(\pi) .
$$

Hence $u(f) \in Z_{P}^{1}\left(\Gamma, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$ and $[u(f)]$ is a well-defined class in $H_{P}^{1}\left(\Gamma, V \otimes_{\mathbb{C}}\right.$ $\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)$), independent of the choice of F. We therefore obtain a \mathbb{C}-linear map

$$
\Psi_{\rho}: S_{k}(\Gamma, \rho) \oplus \overline{S_{k}(\Gamma, \bar{\rho})} \rightarrow H_{P}^{1}\left(\Gamma, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right), f \mapsto[u(f)] .
$$

Lemma 5. Let $\Gamma^{\prime} \supset \Gamma$ be a Fuchsian group of the first kind such that $\left[\Gamma: \Gamma^{\prime}\right]<\infty$. Then we have the commutative diagram

Note that $\operatorname{Ind}_{\Gamma}^{\Gamma^{\prime}}(\bar{\rho})=\overline{\operatorname{Ind}_{\Gamma}^{\Gamma^{\prime}}(\rho)}$ and Φ is induced by the natural inclusion $\Gamma \rightarrow \Gamma^{\prime}$ and $\operatorname{Ind}_{\Gamma}^{\Gamma^{\prime}}(V) \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right) \rightarrow V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right), \varphi \otimes v \mapsto \varphi(1) \otimes v$. Here we use the isomorphism

$$
\operatorname{Ind}_{H}^{G}\left(U \otimes \operatorname{Res}_{H} T\right) \cong \operatorname{Ind}_{H}^{G}(U) \otimes T
$$

Proof. An explicit computation shows that both $\Psi_{\rho} \circ \phi$ and $\Phi \circ \Psi_{\operatorname{Ind}_{\Gamma^{\prime}}^{\Gamma^{\prime}(\bar{\rho})}}$ maps f to the class represented by

$$
u: \alpha \mapsto \int_{z_{0}}^{z} \omega(f)(z)(1) .
$$

Theorem 1.

$$
\Psi_{\rho}: S_{k}(\Gamma, \rho) \oplus \overline{S_{k}(\Gamma, \bar{\rho})} \rightarrow H_{P}^{1}\left(\Gamma, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)
$$

is an isomorphism.

Proof. By the additivity at ρ we may assume that ρ is a regular representation $\operatorname{Ind}_{\Gamma_{0}}^{\Gamma}(\mathbb{C})$, where Γ_{0} is the kernel of ρ, and the case is reduced to $\Gamma=\Gamma_{0}$ and ρ is the trivial representation.

Now we show that

$$
\Psi_{1}: S_{k}(\Gamma) \oplus \overline{S_{k}(\Gamma)} \rightarrow H_{P}^{1}\left(\Gamma, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)
$$

is an isomorphism. Since both sides have the same dimension over \mathbb{C}, it suffices to show the injectivity. We define

$$
(f, g):=\int_{\Gamma \backslash \mathcal{H}} \omega(f) \wedge \omega(g),
$$

which is a nondegenerate \mathbb{C}-bilinear form on $S_{k}(\Gamma) \oplus \overline{S_{k}(\Gamma)}$. To be explicit, if $f=$ $\left(f_{1}, \overline{f_{2}}\right), g=\left(g_{1}, \overline{g_{2}}\right)$,

$$
(f, g)=\int_{\Gamma \backslash \mathcal{H}}\left(f_{1}(z) \overline{g_{2}(z)}-g_{1}(z) \overline{f_{2}(z)}\right)(z-\bar{z})^{k-2} d z \wedge d \bar{z}
$$

Let F be a primitive of $\omega(f)$. If $\Psi_{1}(f)=0, F$ can be chosen so that $F(\alpha z)=$ $\chi(\alpha) F(z)$ for all $\alpha \in \Gamma$. Let X be a fundamental domain of $X(\Gamma) . \partial X=\sum_{i}\left(\alpha_{i}-1\right) s_{i}$
where s_{i} are 1 -simplices. Then

$$
(f, g)=\int_{\partial X} F \wedge \omega(g)=\sum_{i}\left(\int_{\alpha_{i} s_{i}} F \wedge \omega(g)-\int_{s_{i}} F \wedge \omega(g)\right)=0 .
$$

for all g. Hence $f=0$ and we get the injectivity.
We similarly define

1. $M_{k}(\Gamma, \rho)$ is the space of holomorphic functions from \mathcal{H} to V such that

$$
f(\alpha z) j(\alpha, z)^{-k}=\rho(\alpha) f(z)
$$

and for every $\ell \in \operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C}), \ell \circ f \in M_{k}(\operatorname{ker}(\rho))$.
2.

$$
\Psi_{\rho}: M_{k}(\Gamma, \rho) \oplus \overline{S_{k}(\Gamma, \bar{\rho})} \rightarrow H^{1}\left(\Gamma, \rho \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)
$$

given by

$$
f \mapsto\left[\left(\alpha \mapsto \int_{z_{0}}^{\alpha z_{0}} \omega(f)\right)\right] .
$$

Corollary 1.

$$
\Psi_{\rho}: M_{k}(\Gamma, \rho) \oplus \overline{S_{k}(\Gamma, \bar{\rho})} \rightarrow H^{1}\left(\Gamma, \rho \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)
$$

is an isomorphism.

Proof. By the same functoriality we reduce this to the case $\rho=1$. Since $M_{k}(\Gamma) \oplus$ $\overline{S_{k}(\Gamma)}$ and $H^{1}\left(\Gamma, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$ have the same dimension, it suffices to show the injectivity. We consider the commutative diagram with exact rows:

We should show that coker $(\iota) \rightarrow \bigoplus_{i=1}^{m} H^{1}\left(\left\langle\pi_{i}\right\rangle, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$ is injective. Namely, $M_{k}(\Gamma) \rightarrow \bigoplus_{i=1}^{m} H^{1}\left(\left\langle\pi_{i}\right\rangle, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$ has kernel $S_{k}(\Gamma)$. Let $\beta_{i} \in \mathrm{SL}_{2}(\mathbb{R})$ with $\beta_{i} \pi_{i} \beta_{i}^{-1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ if s_{i} is regular, or $\beta_{i} \pi_{i} \beta_{i}^{-1}=\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right)$, if s_{i} is irregular.
Let $f \in M_{k}(\Gamma)$ and $z_{i}:=\beta z_{0}$. We have

$$
\int_{z_{0}}^{\pi_{i} z_{0}} \omega(f)=\int_{z_{i}}^{\beta_{i} \pi_{i} \beta_{i}^{-1} z_{i}} \omega(f) \circ \beta_{i}^{-1}=\beta_{i}^{-1} \int_{z_{i}}^{\beta_{i} \pi_{i} \beta_{i}^{-1} z_{i}} f \mid\left[\beta^{-1}\right]_{k}(z)\left(z e_{1}+e_{2}\right)^{\otimes k-2} d z
$$

Let $x_{i}:=\int_{z_{i}}^{\beta_{i} \pi_{i} \beta_{i}^{-1} z_{i}} f \mid\left[\beta^{-1}\right]_{k}(z)\left(z e_{1}+e_{2}\right)^{\otimes k-2} . \beta_{i}^{-1} x_{i} \in\left(\pi_{i}-1\right) \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)$ if and only if $x_{i} \in\left(\beta_{i} \pi_{i} \beta_{i}^{-1}\right) \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)$. Therefore, f is in the kernel if and only if for all regular cusps s_{i},

$$
\int_{z_{i}}^{\beta_{i} \pi_{i} \beta_{i}^{-1} z_{i}} f \mid\left[\beta_{i}^{-1}\right]_{k}(z) d z=0 .
$$

Let $q=e^{2 \pi i z}$. If s_{i} is irregular, $f \mid\left[\beta_{i}^{-1}\right]_{k}(z) \in q^{1 / 2} \mathbb{C}[[q]]$. If s_{i} is regular, $f \mid\left[\beta_{i}^{-1}\right]_{k}(z) \in$ $\mathbb{C}[[q]]$, and the constant term is given by

$$
\int_{z_{i}}^{\beta_{i} \pi_{i} \beta_{i}^{-1} z_{i}} f \mid\left[\beta_{i}^{-1}\right]_{k}(z) d z
$$

Hence the kernel of $M_{k}(\Gamma) \rightarrow \bigoplus_{i=1}^{m} H^{1}\left(\left\langle\pi_{i}\right\rangle, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$ is exactly $S_{k}(\Gamma)$.

1.3 Double Coset Operators

Let $\Gamma_{1}, \Gamma_{2} \subset \mathrm{SL}_{2}(\mathbb{R})$ be two Fuchsian groups of the first kind. Let $\Delta \subset \mathrm{GL}_{2}^{+}(\mathbb{R})$ be a semi-group containing Γ_{1}, Γ_{2}, and for every $\alpha \in \Delta, \alpha \Gamma_{1} \alpha^{-1}$ and Γ_{2} are commensurable. Consider the involution

$$
\iota: \alpha \mapsto \operatorname{det}(\alpha) \alpha^{-1} .
$$

Let X be a $R\left[\Delta^{\iota}\right]$-module. We define for every $\alpha \in \Delta$ a R-linear map

$$
\left(\Gamma_{1} \alpha \Gamma_{2}\right)_{X}: H_{P}^{1}\left(\Gamma_{1}, X\right) \rightarrow H_{P}^{1}\left(\Gamma_{2}, X\right)
$$

as follows: Let $\left\{\alpha_{1}, \cdots, \alpha_{d}\right\}$ be a set representatives of $\Gamma_{1} \backslash \Gamma_{1} \alpha \Gamma_{2}$. For every $\beta \in \Gamma_{2}$, we have $\alpha_{i} \beta=\gamma_{i} \alpha_{j}$ (or we write $\alpha_{i} \beta=\gamma_{i}^{\beta} \alpha_{j}$) for some $\gamma_{i} \in \Gamma_{1}$. $\left(\Gamma_{1} \alpha \Gamma_{2}\right)_{X}$ sends a 1-cocycle u to $v: \beta \mapsto \sum_{i=1}^{d} \alpha_{i}^{L} u\left(\gamma_{i}\right)$. This double coset operator actually defines a "corestriction" map on the category of $R\left[\Delta^{c}\right]$-modules. We first define a chain map α^{*} on homogeneous chains

$$
\alpha^{n}: \widetilde{C}^{n}\left(\Gamma_{1}, X\right) \rightarrow \widetilde{C}^{n}\left(\Gamma_{2}, X\right)
$$

by

$$
\alpha(\widetilde{u})\left(g_{0}, \cdots, g_{n}\right):=\sum_{i=1}^{d} \alpha_{i}^{\prime} \widetilde{u}\left(\gamma_{i}^{g_{0}}, \cdots, \gamma_{i}^{g_{n}}\right) .
$$

Since

$$
\alpha_{i} g h=\gamma_{i}^{g} \alpha_{i g} h=\gamma_{i}^{g} \gamma_{i g}^{h} \alpha_{i g h},
$$

$\gamma_{i}^{g h}=\gamma_{i}^{g} \gamma_{i g}^{h}$. Therefore,

$$
\begin{aligned}
\alpha(\widetilde{u})\left(g h_{0}, \cdots, g h_{n}\right) & =\sum_{i=1}^{d} \alpha_{i}^{\iota} \widetilde{u}\left(\gamma_{i}^{g} \gamma_{i g}^{h_{0}}, \cdots, \gamma_{i}^{g} \gamma_{i g}^{h_{n}}\right)=\sum_{i=1}^{d} \alpha_{i}^{\iota} \gamma_{i}^{g} \widetilde{u}\left(\gamma_{i g}^{h_{0}}, \cdots, \gamma_{i g}^{h_{n}}\right) \\
& =\sum_{i=1}^{d} g \alpha_{i g}^{\iota} \widetilde{u}\left(\gamma_{i g}^{h_{0}}, \cdots, \gamma_{i g}^{h_{n}}\right)=g \alpha(\widetilde{u})\left(h_{0}, \cdots, h_{n}\right) .
\end{aligned}
$$

Moreover, α is clearly a chain map. Hence we obtain α^{*} on cohomology, and clearly is a homomorphism for delta functors.

Use $u\left(g_{1}, \cdots, g_{n}\right)=\widetilde{u}\left(1, g_{1}, g_{1} g_{2}, \cdots, g_{1} \cdots g_{n}\right)$ and we see that for H^{1}, α^{1} is the double coset operator we defined.

At degree 0 we have $\alpha^{0}: X^{\Gamma_{1}} \rightarrow X^{\Gamma_{2}}, x \mapsto \sum_{i=1}^{d} \alpha_{i}^{L} x$.
Let V be a finite dimensional \mathbb{C}-vector space and $\rho: \Delta^{\iota} \rightarrow \mathrm{GL}(V)$ be multiplicative such that $\rho\left(\Gamma_{1}\right), \rho\left(\Gamma_{2}\right)$ are finite. Then Δ^{ι} acts on $V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)$, denoted by χ. Suppose further that $\rho\left(-I_{2}\right)=(-1)^{k}$ if $-I_{2} \in \Delta$. We define

$$
f \mid\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k, \rho}: z \mapsto \operatorname{det}(\alpha)^{k-1} \sum_{i=1}^{d} \rho\left(\alpha_{i}^{\iota}\right) f\left(\alpha_{i} z\right) j\left(\alpha_{i}, z\right)^{-k} .
$$

Then $\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k, \rho}: S_{k}\left(\Gamma_{1}, \rho\right) \rightarrow S_{k}\left(\Gamma_{2}, \rho\right)$ is a well-defined \mathbb{C}-linear map. We also define $\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k, \rho}: \overline{S_{k}\left(\Gamma_{1}, \bar{\rho}\right)} \rightarrow \overline{S_{k}\left(\Gamma_{2}, \bar{\rho}\right)}$ by

$$
\bar{f} \mid\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k, \rho}:=\overline{f \mid\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k, \bar{\rho}}} .
$$

This is also \mathbb{C}-linear.
Proposition 3. We have the commutative diagram

$$
\begin{gathered}
S_{k}\left(\Gamma_{1}, \rho\right) \oplus \overline{S_{k}\left(\Gamma_{1}, \bar{\rho}\right)} \longrightarrow H_{P}^{1}\left(\Gamma_{1}, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right) \\
\left.\right|_{\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k, \rho}} \\
S_{k}\left(\Gamma_{2}, \rho\right) \oplus \overline{S_{k}\left(\Gamma_{2}, \bar{\rho}\right)} \longrightarrow H_{P}^{1}\left(\Gamma_{2}, V \otimes_{\mathbb{C}} \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)
\end{gathered} .
$$

Proof. Let $f=\left(f_{1}, \overline{f_{2}}\right) \in S_{k}\left(\Gamma_{1}, \rho\right) \oplus \overline{S_{k}\left(\Gamma_{1}, \bar{\rho}\right)}$. We have

$$
\begin{aligned}
\omega\left(f_{1} \mid\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k, \rho}\right) & =\sum_{i=1}^{d} \rho\left(\alpha_{i}^{\iota}\right) f_{1}\left(\alpha_{i} z\right) j\left(\alpha_{i}, z\right)^{-k} \operatorname{det}(\alpha)^{k-1}\left(z e_{1}+e_{2}\right)^{\otimes k-2} d z \\
& =\sum_{i=1}^{d} \rho\left(\alpha_{i}^{\iota}\right) f_{1}\left(\alpha_{i} z\right) \operatorname{det}(\alpha)^{k-1} \alpha_{i}^{-1}\left(\alpha_{i} z e_{1}+e_{2}\right)^{\otimes k-2} d \alpha_{i} z \\
& =\sum_{i=1}^{d} \chi\left(\alpha_{i}^{\iota}\right) \omega\left(f_{1}\right) \circ \alpha_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
\omega\left(\overline{f_{2}} \mid\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k, \rho}\right) & =\overline{\omega\left(f_{2} \mid\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k, \rho}\right)}=\overline{\sum_{i=1}^{d} \overline{\chi\left(\alpha_{i}^{\iota}\right)} \omega\left(f_{2}\right) \circ \alpha_{i}} \\
& =\overline{\sum_{i=1}^{d} \overline{\chi\left(\alpha_{i}^{\iota}\right)} \omega\left(f_{2}\right) \circ \alpha_{i}}=\sum_{i=1}^{d} \chi\left(\alpha_{i}^{\iota}\right) \omega\left(\overline{f_{2}}\right) \circ \alpha_{i} .
\end{aligned}
$$

Therefore,

$$
\omega\left(f \mid\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k, \rho}\right)=\sum_{i=1}^{d} \chi\left(\alpha_{i}^{t}\right) \omega(f) \circ \alpha_{i} .
$$

We have that

$$
\begin{aligned}
\int_{z_{0}}^{\beta z_{0}} \omega\left(f \mid\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k, \rho}\right) & =\sum_{i=1}^{d} \int_{z_{0}}^{\beta z_{0}} \chi\left(\alpha_{i}^{\iota}\right) \omega(f) \circ \alpha_{i}=\sum_{i=1}^{d} \chi\left(\alpha_{i}^{\iota}\right)\left(F\left(\alpha_{i} \beta z_{0}\right)-F\left(\alpha_{i} z_{0}\right)\right) \\
& =\sum_{i=1}^{d} \chi\left(\alpha_{i}^{\iota}\right)\left(F\left(\gamma_{i} \alpha_{j} z_{0}\right)-F\left(\alpha_{i} z_{0}\right)\right) \\
& =\sum_{i=1}^{d} \chi\left(\alpha_{i}^{\iota}\right)\left(u(f)\left(\gamma_{i}\right)+\chi\left(\beta_{i}\right) F\left(\alpha_{j} z_{0}\right)-F\left(\alpha_{i} z_{0}\right)\right) \\
& =\sum_{i=1}^{d} \chi\left(\alpha_{i}^{\iota}\right) u(f)\left(\gamma_{i}\right)+\sum_{i=1}^{d}\left[\chi(\beta) \chi\left(\alpha_{j}^{\iota}\right) F\left(\alpha_{j} z_{0}\right)-\chi\left(\alpha_{i}\right) F\left(\alpha_{i} z_{0}\right)\right]
\end{aligned}
$$

and we get the commutativity.
Similarly,

$$
M_{k} \oplus \overline{S_{k}} \rightarrow H^{1}
$$

is Hecke-equivariant.

1.4 Lattices and Duality

Let $\Gamma=\Gamma_{1}(N)$. Consider Diamond operators and Hecke operators:

$$
\langle d\rangle:=\left[\Gamma\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Gamma\right]_{k}
$$

for some $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$, and

$$
T_{p}:=\left[\Gamma\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma\right]_{k} .
$$

We denote by $H_{k}(N)$ and $h_{k}(N) \mathbb{C}$-subalgebras of $\operatorname{End}_{\mathbb{C}}\left(M_{k}(N)\right)$ and $\operatorname{End}_{\mathbb{C}}\left(S_{k}(N)\right)$ generated by all Diamond operators and Hecke operators. There are both commutative \mathbb{C}-algebras.

For every Dirichlet character $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$we define $M_{k}(N, \chi)$ and $S_{k}(N, \chi)$ as $M_{k}(N)[\chi]$ and $S_{k}(N)[\chi]$, respectively. That means, $\langle d\rangle(f)=\chi(d) f$ for all $(d, N)=1$. We take $\Gamma=\Gamma_{0}(N)$,

$$
\Delta^{\iota}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)|N| c,(d, N)=1\right\}
$$

extend χ on Δ^{ι} by $\chi(g)=\chi(d)$, and define

$$
T_{p}:=\left[\Gamma\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma\right]_{k} .
$$

We define $\mathcal{E}_{k}(N, \chi)$ as the orthogonal complement of $S_{k}(N, \chi)$ in $M_{k}(N, \chi)$ under the Petersson inner product. An explicit construction of a basis for $\mathcal{E}_{k}(N, \chi)$ when $k \geq 2$ is given as follows: Let ψ, φ be Dirichlet characters with conductor u, v, respectively and $(\psi \varphi)(-1)=(-1)^{k}$. Define

$$
E_{k}^{\psi, \varphi}(q):=\delta(\psi) L(1-k, \varphi)+2 \sum_{n=1}^{\infty} \sigma_{k-1}^{\psi, \varphi}(n) q^{n}
$$

where

$$
\sigma_{k-1}^{\psi, \varphi}(n):=\sum_{d \mid n} \psi(n / d) \varphi(d) d^{k-1}
$$

Define

$$
E_{k}^{\psi, \varphi, t}(z):= \begin{cases}E_{k}^{\psi, \varphi}(t z), & (k, \psi, \varphi) \neq(2,1,1) \\ E_{2}^{1,1}(z)-t E_{2}^{1,1}(t z) & (k, \psi, \varphi)=(2,1,1)\end{cases}
$$

Proposition 4. $\quad\left\{E_{k}^{\psi, \varphi}: t u v \mid N, \psi \varphi=\chi\right\}$ is a basis for $\mathcal{E}_{k}(N, \chi)$.

Let R be a subring of \mathbb{C} containing $\mathbb{Z}[\chi]$. We define $M_{k}(N, \chi ; R), S_{k}(N, \chi ; R)$ as subspaces of $M_{k}(N, \chi), S_{k}(N, \chi)$ consisting of forms whose q-expansions are in $R[[q]]$. We define $m_{k}(N, \chi ; R)$ as the subspace of $M_{k}(N, \chi)$ of forms whose q-expansions are in $\operatorname{Frac}(R)+q R[[q]]$. Note that $M_{k}(N, \chi ; R), S_{k}(N, \chi ; R)$, and $m_{k}(N, \chi ; R)$ are all contained in finite free R-modules.

Lemma 6. Define $\mathcal{E}_{k}(N, \chi)$ has a basis with elements in $M_{k}(N, \chi ; \mathbb{Q}(\chi))$.

Proof. Define $\mathcal{E}_{k}(N, \chi ; R):=\mathcal{E}_{k}(N, \chi) \cap M_{k}(N, \chi ; R)$. We should prove that

$$
\mathcal{E}_{k}(N, \chi ; \mathbb{Q}(\chi)) \otimes_{\mathbb{Q}(\chi)} \mathbb{C}=\mathcal{E}_{k}(N, \chi) .
$$

Since all $E_{k}^{\psi, \varphi, t}$ are in $M_{k}\left(N, \chi ; \mathbb{Q}\left(\zeta_{N}\right)\right)$, we already have

$$
\mathcal{E}_{k}\left(N, \chi ; \mathbb{Q}\left(\zeta_{N}\right)\right) \otimes_{\mathbb{Q}\left(\zeta_{N}\right)} \mathbb{C}=\mathcal{E}_{k}(N, \chi) .
$$

Let $G:=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}(\chi)\right)$. Then $\mathcal{E}_{k}\left(N, \chi ; \mathbb{Q}\left(\zeta_{N}\right)\right)$ is a $\mathbb{Q}\left(\zeta_{N}\right)[G]$-module, where G acts on $\mathbb{Q}\left(\zeta_{N}\right)$ by its natural action. Therefore,

$$
\mathcal{E}_{k}\left(N, \chi ; \mathbb{Q}\left(\zeta_{N}\right)\right)=\mathcal{E}_{k}\left(N, \chi ; \mathbb{Q}\left(\zeta_{N}\right)\right)^{G} \otimes_{\mathbb{Q}}(\chi) \mathbb{Q}\left(\zeta_{N}\right)
$$

Since $\mathcal{E}_{k}\left(N, \chi ; \mathbb{Q}\left(\zeta_{N}\right)\right)^{G}=\mathcal{E}_{k}\left(N, \chi ; \mathbb{Q}\left(\zeta_{N}\right)^{G}\right)=\mathcal{E}_{k}(N, \chi ; \mathbb{Q}(\chi)), \mathcal{E}_{k}(N, \chi ; \mathbb{Q}(\chi)) \otimes_{\mathbb{Q}(\chi)}$ $\mathbb{C}=\mathcal{E}_{k}(N, \chi)$.

We also define $H_{k}(N, \chi)_{R}, h_{k}(N, \chi)_{R}$ as the R-subalgebra of $H_{k}(N, \chi), h_{k}(N, \chi)$ generated by all Hecke operators. Then $H_{k}(N, \chi)_{R}$, acts on $m_{k}(N, \chi ; R), M_{k}(N, \chi ; R)$, and $h_{k}(N, \chi)_{R}$ acts on $S_{k}(N, \chi ; R)$. We define $H_{k}(N, \chi ; R)$ and $h_{k}(N, \chi ; R)$ as images of $H_{k}(N, \chi)_{R}, h_{k}(N, \chi)_{R}$ in $\operatorname{End}_{R}\left(m_{k}(N, \chi ; R)\right)$ and $\operatorname{End}_{R}\left(S_{k}(N, \chi ; R)\right)$, respectively. Note that if $h \in H_{k}(N, \chi ; R)$ with $h(f)=0$ for all $f \in M_{k}(N, \chi ; R), h=0$. Therefore, $H_{k}(N, \chi ; R)$ is also seen as the image of $H_{k}(N, \chi)_{R}$ in $\operatorname{End}_{R}\left(m_{k}(N, \chi ; R)\right)$.

Eichler-Shimura isomorphism gives the commutative diagram

which is Hecke-equivariant. Let h be in the Hecke algebra on $H_{P}^{1}\left(\Gamma_{1}(N), \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$. If $h=0$ on $S_{k}\left(\Gamma_{1}(N)\right), h=0$ on $S_{k}\left(\Gamma_{1}(N)\right)$. Restricts this to the χ-isotypic part and we have that $h_{k}(N, \chi)$ acts on $H_{P}^{1}\left(\Gamma_{0}(N), \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)(\chi)\right)$. Define $L_{P}(k-2, \chi)$ as the image of

$$
H_{P}^{1}\left(\Gamma_{0}, \operatorname{Sym}^{k-2}\left(\mathbb{Z}[\chi]^{2}\right)(\chi)\right) \rightarrow H_{P}^{1}\left(\Gamma_{0}, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)(\chi)\right)
$$

$L_{P}(k-2, \chi)$ is a Lattice of full-rank and equipped with $h_{k}(N, \chi)_{R^{-}}$-action. Similarly we get a lattice of full-rank $L(k-2, \chi) \subset H^{1}\left(\Gamma_{0}, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)(\chi)\right)$ with $H_{k}(N, \chi)$ action.

Theorem 2. Suppose $k \geq 2$. For all $\mathbb{Z}[\chi] \subset R \subset \mathbb{C}$, there are natural isomorphisms

$$
\begin{gathered}
H_{k}(N, \chi)_{R} \cong H_{k}(N, \chi ; R), h_{k}(N, \chi)_{R} \cong h_{k}(N, \chi ; R), \\
H_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \cong H_{k}(N, \chi)_{R}, h_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \cong h_{k}(N, \chi)_{R},
\end{gathered}
$$

and

$$
m_{k}(N, \chi ; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R=m_{k}(N, \chi ; R), S_{k}(N, \chi ; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R=S_{k}(N, \chi ; R)
$$

Moreover, we have perfect pairings

$$
H_{k}(N, \chi ; R) \times m_{k}(N, \chi ; R) \rightarrow R, h_{k}(N, \chi ; R) \times S_{k}(N, \chi ; R) \rightarrow R
$$

given by $(h, f) \mapsto a_{1}(h(f))$.

Lemma 7. The duality is true if R is a field.

Proof. In this case, we are dealing with finite dimension R-vector spaces, so it suffices to prove the nondegeneracy of this R-bilinear pairing. If $(h, f)=0$ for all h, $\left(T_{n}, f\right)=a_{1}\left(T_{n}(f)\right)=a_{n}(f)=0$ for all $n \in \mathbb{N}$. Hence f is a constant. Since $k>0$, $f=0$. If $(h, f)=0$ for all $f,\left(h, T_{n}(f)\right)=a_{1}\left(h T_{n}(f)\right)=a_{1}\left(T_{n} h(f)\right)=T_{n}(h(f))=0$. Hence $h(f)=0$ for all f and we get that $h=0$.

Lemma 8. The theorem is true for $R=\mathbb{C}$.

Proof. Consider the commutative diagram

By definition, $h_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} \mathbb{C} \rightarrow h_{k}(N, \chi)$ is surjective. By diagram chasing, it is also injective, hence an isomorphism. Similarly we have that $H_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} \mathbb{C} \rightarrow$ $H_{k}(N, \chi)$ is an isomorphism.

Consider the isomorphism

$$
\operatorname{Hom}_{\mathbb{C}}\left(h_{k}(N, \chi), \mathbb{C}\right) \cong S_{k}(N, \chi), \phi \mapsto \sum_{n=1}^{\infty} \phi\left(T_{n}\right) q^{n}
$$

Since $h_{k}(N, \chi)=h_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} \mathbb{C}, \operatorname{Hom}_{\mathbb{C}}\left(h_{k}(N, \chi), \mathbb{C}\right)=\operatorname{Hom}_{\mathbb{Z}[\chi]}\left(h_{k}(N, \chi)_{\mathbb{Z}[\chi]}, \mathbb{C}\right)$. Since $h_{k}(N, \chi)_{\mathbb{Z}[\chi]}$ is finite projective, it is also $\operatorname{Hom}_{\mathbb{Z}[\chi]}\left(h_{k}(N, \chi)_{\mathbb{Z}[\chi]}, \mathbb{Z}[\chi]\right) \otimes_{\mathbb{Z}[\chi]} \mathbb{C}$, and with the identification, $\operatorname{Hom}_{\mathbb{Z}[\chi]}\left(h_{k}(N, \chi)_{\mathbb{Z}[\chi]}, \mathbb{Z}[\chi]\right)$ is identified as the $\mathbb{Z}[\chi]$ submodule in $S_{k}(N, \chi)$ of elements f satisfying that $a_{n}(f) \in \mathbb{Z}[\chi]$ for all $n \in \mathbb{N}$. Hence $\operatorname{Hom}_{\mathbb{Z}[\chi]}\left(h_{k}(N, \chi)_{\mathbb{Z}[\chi]}, \mathbb{Z}[\chi]\right)=S_{k}(N, \chi ; \mathbb{Z}[\chi])$. Therefore,

$$
S_{k}(N, \chi ; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathbb{C}=S_{k}(N, \chi)
$$

$h_{k}(N, \chi)_{\mathbb{Z}[\chi]} \rightarrow \operatorname{End}_{\mathbb{Z}[\chi]}\left(S_{k}(N, \chi ; \mathbb{Z}[\chi])\right)$ is isomorphic onto $h_{k}(N, \chi ; \mathbb{Z}[\chi])$, and

$$
h_{k}(N, \chi ; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathbb{C}=h_{k}(N, \chi)
$$

For the duality part, we already have

$$
\operatorname{Hom}_{\mathbb{Z}[\chi]}\left(h_{k}(N, \chi ; \mathbb{Z}[\chi]), \mathbb{Z}[\chi]\right)=S_{k}(N, \chi ; \mathbb{Z}[\chi])
$$

Apply $\operatorname{Hom}_{\mathbb{Z}[\chi]}(\cdot, \mathbb{Z}[\chi])$ and we have

$$
\begin{aligned}
& \operatorname{Hom}_{\mathbb{Z}[\chi]}\left(S_{k}(N, \chi ; \mathbb{Z}[\chi]), \mathbb{Z}[\chi]\right) \\
= & \operatorname{Hom}_{\mathbb{Z}[\chi]}\left(\operatorname{Hom}_{\mathbb{Z}[\chi]}\left(h_{k}(N, \chi ; \mathbb{Z}[\chi]), \mathbb{Z}[\chi]\right), \mathbb{Z}[\chi]\right) \\
= & h_{k}(N, \chi ; \mathbb{Z}[\chi]) .
\end{aligned}
$$

For modular forms, we should also prove that

Lemma 9.

$$
m_{k}(N, \chi ; R)=\left\{f \in M_{k}(N, \chi) \mid a_{n}(f) \in R \text { for all } n>0\right\}
$$

Proof. Since both $S_{k}(N, \chi)$ and $\mathcal{E}_{k}(N, \chi)$ have base with Fourier coefficients in $\mathbb{Q}(\chi), M_{k}(N, \chi)$ has a basis with Fourier coefficients in $\mathbb{Q}(\chi)$. Therefore, if $f \in$ $M_{k}(N, \chi)$ and $a_{n}(f) \in \operatorname{Frac}(R)$ for all $n \geq 0, a_{0}(f) \in \operatorname{Frac}(R)$.

Now we similarly have

$$
m_{k}(N, \chi ; \mathbb{Z}[\chi])=\operatorname{Hom}_{\mathbb{Z}[\chi]}\left(H_{k}(N, \chi)_{\mathbb{Z}[\chi]}, \mathbb{Z}[\chi]\right)
$$

$$
M_{k}(N, \chi)=\operatorname{Hom}_{\mathbb{Z}[\chi]}\left(H_{k}(N, \chi)_{\mathbb{Z}[\chi]}, \mathbb{Z}[\chi]\right) \otimes_{\mathbb{Z}[\chi]} \mathbb{C}=m_{k}(N, \chi ; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathbb{C},
$$

and

$$
H_{k}(N, \chi)=\operatorname{Hom}_{\mathbb{Z}[\chi]}\left(m_{k}(N, \chi ; \mathbb{Z}[\chi]), \mathbb{Z}[\chi]\right) .
$$

Now we prove the general case. Consider the natural map

$$
h_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \rightarrow h_{k}(N, \chi)_{R} \rightarrow h_{k}(N, \chi ; R) .
$$

By definition, this is surjective. If h is in the kernel, $h=0$ on $S_{k}(N, \chi ; \mathbb{Z}[\chi])$. Since $S_{k}(N, \chi ; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathbb{C}=S_{k}(N, \chi)$ and $h_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \rightarrow h_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \otimes_{R}$ $\mathbb{C}=h_{k}(N, \chi)$ is injective for that \mathbb{C} is R-flat, $h=0$. Hence $h_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R \rightarrow$ $h_{k}(N, \chi)_{R}$ is injective. By definition, this is also surjective. We obtain that

$$
h_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R=h_{k}(N, \chi)_{R} \cong h_{k}(N, \chi ; R)
$$

The same argument for H_{k} and m_{k} gives

$$
H_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R=H_{k}(N, \chi)_{R} \cong H_{k}(N, \chi ; R)
$$

Since

$$
h_{k}(N, \chi)=h_{k}(N, \chi)_{R} \otimes_{R} \mathbb{C},
$$

$S_{k}(N, \chi)=\operatorname{Hom}_{R}\left(h_{k}(N, \chi)_{R}, \mathbb{C}\right)$, and $\operatorname{Hom}_{R}\left(h_{k}(N, \chi)_{R}, R\right)$ is identified as $S_{k}(N, \chi ; R)$.
On the other hand, the isomorphism $h_{k}(N, \chi)_{\mathbb{Z}[\chi]} \otimes_{\mathbb{Z}[\chi]} R=h_{k}(N, \chi)_{R}$ gives that

$$
\begin{aligned}
& S_{k}(N, \chi ; R)=\operatorname{Hom}_{\mathbb{Z}[\chi]}\left(h_{k}(N, \chi ; \mathbb{Z}[\chi]), R\right) \\
= & \operatorname{Hom}_{\mathbb{Z}[\chi]}\left(h_{k}(N, \chi ; \mathbb{Z}[\chi]), \mathbb{Z}[\chi]\right) \otimes_{\mathbb{Z}[\chi]} R \\
= & S_{k}(N, \chi ; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R .
\end{aligned}
$$

Similarly, $M_{k}(N, \chi)=\operatorname{Hom}_{R}\left(H_{k}(N, \chi)_{R}, \mathbb{C}\right), \operatorname{Hom}_{R}\left(H_{k}(N, \chi)_{R}, R\right)$ is identified as

$$
\left\{f \in M_{k}(N, \chi) \mid a_{n}(f) \in R \text { for all } n \in \mathbb{N}\right\}=m_{k}(N, \chi ; R)
$$

and
$\operatorname{Hom}_{R}\left(H_{k}(N, \chi)_{R}, R\right)=\operatorname{Hom}_{R}\left(H_{k}(N, \chi)_{\mathbb{Z}[\chi]}, \mathbb{Z}[\chi]\right) \otimes_{\mathbb{Z}[\chi]} R=m_{k}(N, \chi ; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R$.

Corollary 2. $\quad M_{k}(N, \chi ; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R=M_{k}(N, \chi ; R)$.

Proof. Define $C(R):=m_{k}(N, \chi ; R) / M_{k}(N, \chi ; R)$, which is identified as a submodule of $\operatorname{Frac}(R) / R$ via a_{0}. Consider the commutative diagram

By snake lemma it suffices to show that $C(\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R \rightarrow C(R)$ is injective. The map

$$
C(\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R \rightarrow C(R) \rightarrow \operatorname{Frac}(R) / R
$$

is the same as the map

$$
C(\mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} R \rightarrow \mathbb{Q}(\chi) / \mathbb{Z}[\chi] \otimes_{\mathbb{Z}[\chi]} R \rightarrow \operatorname{Frac}(R) / R
$$

which is injective.

The same method for $\Gamma_{1}(N)$ yields that for every subring $R \subset \mathbb{C}$ and $k \geq 2$ there are isomorphisms

$$
\begin{aligned}
& H_{k}(N)_{R} \cong H_{k}(N ; R), h_{k}(N)_{R} \cong h_{k}(N ; R), \\
& H_{k}(N)_{\mathbb{Z}} \otimes_{\mathbb{Z}} R \cong H_{k}(N, \chi)_{R}, h_{k}(N)_{\mathbb{Z}} \otimes_{\mathbb{Z}} R \cong h_{k}(N)_{R}, \\
& m_{k}(N ; \mathbb{Z}) \otimes_{\mathbb{Z}} R=m_{k}(N ; R), S_{k}(N ; \mathbb{Z}) \otimes_{\mathbb{Z}} R=S_{k}(N ; R),
\end{aligned}
$$

and perfect pairings

$$
H_{k}(N ; R) \times m_{k}(N ; R) \rightarrow R, h_{k}(N ; R) \times S_{k}(N ; R) \rightarrow R
$$

given by $(h, f) \mapsto a_{1}(h(f))$. In particular, $M_{k}(N ; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}=M_{k}(N)$. Let $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ acts on $M_{k}(N)$ by acting on coefficients of q-expansions. Then $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ commute with $H_{k}(N ; \mathbb{Z})$. Therefore, for all $\sigma \in \operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ and $f \in M_{k}(N), f^{\sigma} \in M_{k}(N)$, and if $f \in M_{k}(N ; \chi), f^{\sigma} \in M_{k}\left(N ; \chi^{\sigma}\right)$. The same result holds for $S_{k}(N)$.

1.5 Dimension Computation

Let R be a field, and M be a finite dimensional R-vector space. If E is invertible in R, we can compute the parabolic cohomology in terms of simplicial cohomology.

Proposition 5. $\quad H_{Q}^{0}(K, M)=M^{G}$. This is easily seen by $H_{Q}^{0}(K, M)=H^{0}(K, M)$ and \mathcal{H}_{0} is connected.

Proposition 6. $\quad H_{Q}^{2}(K, M)=M / \sum_{g \in \Gamma}(g-1) M=H_{0}(\Gamma, M)$.

Now we compute $H_{Q}^{1}(K, M)$ via Euler characteristic. We have that

$$
\chi_{Q}(K, M)=\operatorname{dim}_{R}\left(C^{0}(K, M)\right)-\operatorname{dim}_{R}\left(C_{Q}^{1}(K, M)\right)+\operatorname{dim}_{2}\left(C^{1}(K, M)\right) .
$$

Let N_{i} be the number of Γ-orbits of i-simplices in K. We have that

$$
\begin{gathered}
\operatorname{dim}_{R}\left(C^{0}(K, M)\right)=N_{0} \operatorname{dim}_{R}(M)-\sum_{j=1}^{r}\left(\operatorname{dim}_{R}(M)-\operatorname{dim}_{R}\left(M^{\Gamma_{p_{j}}}\right)\right), \\
\operatorname{dim}_{R}\left(C^{1}(K, M)\right)=N_{1} \operatorname{dim}_{R}(M)-\sum_{i=1}^{m}\left(\operatorname{dim}_{R}(M)-\operatorname{dim}_{R}\left(\left(\pi_{i}-1\right) M\right)\right),
\end{gathered}
$$

and $\operatorname{dim}_{R}\left(C^{2}(K, M)\right)=N_{2} \operatorname{dim}_{R}(M)$. Let g be the genus of $X(\Gamma)$. We have

$$
N_{0}-N_{1}+N_{2}+m=2-2 g .
$$

Let $\epsilon_{0}:=\operatorname{dim}_{R}\left(M^{G}\right), \epsilon_{2}:=\operatorname{dim}_{R}\left(M / \sum_{g \in \Gamma}(g-1) M\right)$. We have that

$$
\begin{aligned}
\operatorname{dim}_{R}\left(H_{Q}^{1}(K, M)\right) & =\epsilon_{0}+\epsilon_{2}-\chi_{Q}(K, M)=(2 g-2) \operatorname{dim}_{R}(M)+\epsilon_{0}+\epsilon_{2} \\
& +\sum_{i=1}^{m}\left(\operatorname{dim}_{R}\left(\left(\pi_{i}-1\right) M\right)\right)+\sum_{j=1}^{r}\left(\operatorname{dim}_{R}(M)-\operatorname{dim}_{R}\left(M^{\Gamma_{p_{j}}}\right)\right) .
\end{aligned}
$$

For modular forms, we should also compute $\operatorname{dim}_{R}\left(H^{1}(K, M)\right)$. If Γ has cusps, $H^{2}(K, M)=0$. Hence

$$
\operatorname{dim}_{R}\left(H^{1}(K, M)\right)=(2 g-2+m) \operatorname{dim}_{R}(M)+\epsilon_{0}+\sum_{j=1}^{r}\left(\operatorname{dim}_{R}(M)-\operatorname{dim}_{R}\left(M^{\Gamma_{p_{j}}}\right)\right) .
$$

Let $\bar{\Gamma}$ be the image of Γ in $\operatorname{PSL}_{2}(\mathbb{R})$. Let M be a Γ-module. If $-I_{2} \in \Gamma$, we use the Hochschild-Serre spectral sequence

$$
H^{p}\left(\bar{\Gamma}, H^{q}\left(\left\{ \pm I_{2}\right\}, M\right)\right) \Rightarrow H^{p+q}(\Gamma, M) .
$$

Suppose 2 is invertible in $\mathbb{R} . H^{q}\left(\left\{ \pm I_{2}\right\}, M\right)=0$ for $q \geq 1$, hence the isomorphism

$$
H^{*}\left(\bar{\Gamma}, M^{H}\right) \cong H^{*}(\Gamma, M)
$$

Now $M=\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)$. If k is odd, $-I_{2} \notin \Gamma$. Hence we always have $H^{*}\left(\bar{\Gamma}, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)=$ $H^{*}\left(\Gamma, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$. We have to show that

$$
\begin{aligned}
& 2 \operatorname{dim}_{\mathbb{C}}\left(S_{k}(\Gamma)\right)=\operatorname{dim}_{\mathbb{C}}\left(H_{P}^{1}\left(\Gamma, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)\right) \\
= & (2 g-2)(k-1)+\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)^{\Gamma}\right)+\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right) / \sum_{g \in \Gamma}(g-1) \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right) \\
+ & \sum_{i=1}^{m}\left(\left(\pi_{i}-1\right) \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)+\sum_{j=1}^{r} \operatorname{dim}_{\mathbb{C}}\left(\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right) / \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)^{\Gamma_{p_{j}}}\right) .
\end{aligned}
$$

and that

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{C}}\left(M_{k}(\Gamma)\right)-\operatorname{dim}_{\mathbb{C}}\left(S_{k}(\Gamma)\right) \\
= & \sum_{i=1}^{m}\left(\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)^{\pi_{i}}\right)-\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right) / \sum_{g \in \Gamma}(g-1) \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right) .
\end{aligned}
$$

Theorem 3. If $k=2, \operatorname{dim}_{\mathbb{C}}\left(S_{2}(\Gamma)\right)=g$. If $k>2$,
$\operatorname{dim}_{\mathbb{C}}\left(S_{k}(\Gamma)\right)=\left\{\begin{array}{ll}(k-1)(g-1)+\frac{k-2}{2} m+\sum_{j=1}^{r}\left\lfloor\frac{k\left(e_{j}-1\right)}{2 e_{j}}\right\rfloor, & k \text { is even } \\ (k-1)(g-1)+\frac{k-2}{2} m_{1}+\frac{k-1}{2} m_{2}+\sum_{j=1}^{r}\left\lfloor\frac{k\left(e_{j}-1\right)}{2 e_{j}}\right\rfloor, & k \text { is odd }\end{array}\right.$,
here m_{1}, m_{2} are numbers of regular and irregular cusps, respectively. Moreover,

$$
\operatorname{dim}_{\mathbb{C}}\left(M_{k}(\Gamma)\right)-\operatorname{dim}_{\mathbb{C}}\left(S_{k}(\Gamma)\right)= \begin{cases}m-1, & k=2 \\ m, & k \geq 4, k \text { is even } . \\ m_{1}, & k \text { is odd }\end{cases}
$$

We first consider cusp forms.

1. $k=2: \mathbb{C}^{\Gamma}=\mathbb{C}, \mathbb{C} / \sum_{g \in \Gamma}(g-1) \mathbb{C}=\mathbb{C},\left(\pi_{k}-1\right) \mathbb{C}=0, \mathbb{C}^{\Gamma_{p_{j}}}=\mathbb{C}$. We get $\operatorname{dim}_{\mathbb{C}}\left(H_{P}^{1}(\Gamma, \mathbb{C})\right)=2 g$.
2. $k>2:\left(\pi_{k}-1\right) \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)$ has dimension $k-1$ if s_{k} is an irregular cusp, otherwise it has dimension $k-2$. Let σ_{j} be a generator of $\Gamma_{p_{j}}$. Let e_{j}^{\prime} be the order of σ_{j}. Then σ_{j} has tow eigenvalues $\omega_{j}, \omega_{j}^{-1}$ where ω_{j} is a primitive e_{j}^{\prime} th root
of unity. σ_{j} acts on $\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)$ with eigenvalues $\omega_{j}^{k-2}, \omega_{j}^{k-4}, \cdots, \omega_{j}^{4-k}, \omega_{j}^{2-k}$. Therefore, $\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right) / \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)^{\Gamma_{p_{j}}}\right)$ is twice the numbers of positive integers $a \in\{1, \cdots, k-2\}$ such that $a \equiv k(\bmod 2)$ and $e_{j}^{\prime} \nmid a$. We should show that the number of such a is $\left\lfloor\frac{k\left(e_{j}-1\right)}{2 e_{j}}\right\rfloor$.
(a) If e_{j}^{\prime} is even, $-I_{2} \in \Gamma_{p_{j}}$. We have that k is even and $e_{j}^{\prime}=2 e_{j}$. Let $\ell:=\frac{k}{2}$. We have to verify the identity

$$
\ell-1-\left\lfloor\frac{\ell-1}{e_{j}}\right\rfloor=\left\lfloor\frac{\ell\left(e_{j}-1\right)}{e_{j}}\right\rfloor,
$$

or equivalently,

$$
\ell-1=\left\lfloor\frac{\ell-1}{e_{j}}\right\rfloor+\left\lfloor\frac{\ell\left(e_{j}-1\right)}{e_{j}}\right\rfloor .
$$

This is true for that $\ell-1+\ell\left(e_{j}-1\right)=\ell e_{j}-1$.
(b) If e_{j}^{\prime} is odd, $e_{j}=e_{j}^{\prime}$. If k is even write $\ell=\frac{k}{2}$. Then $e_{j} \mid k-2 i$ if and only if $e_{j} \mid \ell-i$. Hence we reduce the case to the previous one. Suppose k is odd, say $k=2 \ell+1$. We have to verify that

$$
2 \ell-1-\left\lfloor\frac{2 \ell-1}{e_{j}}\right\rfloor-\left(\ell-1-\left\lfloor\frac{\ell-1}{e_{j}}\right\rfloor\right)=\left\lfloor\frac{(2 \ell+1)\left(e_{j}-1\right)}{2 e_{j}}\right\rfloor .
$$

Since $\left\lfloor\frac{(2 \ell+1)\left(e_{j}-1\right)}{2 e_{j}}\right\rfloor=\ell-\left\lfloor\frac{2 \ell+e_{j}}{2 e_{j}}\right\rfloor=\ell-\left\lfloor\frac{\ell}{e_{j}}+\frac{1}{2}\right\rfloor$, we have to show that

$$
\left\lfloor\frac{\ell}{e_{j}}+\frac{1}{2}\right\rfloor+\left\lfloor\frac{\ell-1}{e_{j}}\right\rfloor=\left\lfloor\frac{2 \ell-1}{e_{j}}\right\rfloor .
$$

Since ℓ is a period of both $\left\lfloor\frac{\ell}{e_{j}}+\frac{1}{2}\right\rfloor+\left\lfloor\frac{\ell-1}{e_{j}}\right\rfloor-\frac{2 \ell}{e_{j}}$ and $\left\lfloor\frac{2 \ell-1}{e_{j}}\right\rfloor-\frac{2 \ell}{e_{j}}$, and e_{j} is odd, it suffices to show the equation for $1 \leq \ell<e_{j} / 2$ and $e_{j} / 2<\ell \leq e_{j}$, both of which are clear.

Suppose $x \in \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)$. Define

$$
p(z):=\Theta_{k-2}\left(x,\left(z e_{1}+e_{2}\right)^{\otimes k-2}\right) .
$$

Then $p(z)$ is a polynomial in z of degree at most $k-2$. For every $\alpha \in \Gamma$,

$$
p(\alpha z) j(\alpha, z)^{k-2}=\Theta_{k-2}\left(x, \alpha\left(z e_{1}+e_{2}\right)^{\otimes k-2}\right)=p(z) .
$$

For every cusp s_{k}, let $g_{k} \in \mathrm{SL}_{2}(\mathbb{R})$ such that $g_{k} \pi_{k} g_{k}^{-1}=\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)$. Then

$$
p \mid\left[g_{k}^{-1}\right]_{2-k}
$$

is a polynomial in z and $p\left|\left[g_{k}^{-1}\right]_{2-k}(z)=p\right|\left[g_{k}^{-1}\right]_{2-k}(z+2 h)$. This gives that $p \mid\left[g_{k}^{-1}\right]_{2-k}$ is a constant. Hence $p(z) \in M_{2-k}(\Gamma)$. Since $2-k<0, p=$ 0 . This gives that $x=0$. We use the duality between H^{0} and H_{0} to get $\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right) / \sum_{g \in \Gamma}(g-1) \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)=0$.

Since $\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right) / \sum_{g \in \Gamma}(g-1) \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$ is 0 if $k>2$, is 1 if $k=2$, and $\sum_{i=1}^{m}\left(\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)^{\pi_{i}}\right)$ is the number of regular primes, the case for modular forms follows.

$2 \mathcal{O}$-adic Modular Forms

2.1 Basic Definitions

Let K / \mathbb{Q}_{p} be a finite extension, $\mathcal{O} \subset K$ be the ring of integers, and $\varpi \in \mathcal{O}$ be a uniformizer. Let $q=p$ if $p>2$ and $q=4$ if $p=2$. Let $\omega:(\mathbb{Z} / q \mathbb{Z})^{\times} \rightarrow \mathcal{O}^{\times}$be the Teichmüller character and $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathcal{O}^{\times}$be a Dirichlet character. We define

$$
M_{k}(N, \chi ; \mathcal{O}):=M_{k}(N, \chi ; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathcal{O}, S_{k}(N, \chi ; \mathcal{O}):=S_{k}(N, \chi ; \mathbb{Z}[\chi]) \otimes_{\mathbb{Z}[\chi]} \mathcal{O}
$$

We similarly have $H_{k}(H, \chi ; \mathcal{O}), h_{k}(N, \chi ; \mathcal{O})$, and we endow all spaces with p-adic topology.

2.2 Ordinary Forms

Lemma 10. Let A be \mathcal{O}-algebra which is finite as a \mathcal{O}-module. Then for every $x \in A$, the limit $\lim _{n \rightarrow \infty} x^{n!}$ exists under p-adic topology and is an idempotent.

Proof. Since A is finite over \mathcal{O}, A is p-adically complete, and for every $m \in \mathbb{N}$, $A / p^{m} A$ is finite. There are $a(m), b(m) \in \mathbb{N}$ such that

$$
x^{a(m)} \equiv x^{a(m)+b(m)} \quad\left(\bmod p^{m} A\right)
$$

Hence for every $n \geq a(m), x^{n} \equiv x^{n+b(m)}\left(\bmod p^{m} A\right)$. Take $n(m):=\max \{a(m), b(m)\}$ and we have that for every $n \geq n(m)$,

$$
x^{(n+1)!} \equiv x^{n!} \equiv x^{2(n!)} \quad\left(\bmod p^{m} A\right)
$$

Hence $\lim _{n \rightarrow \infty} x^{n!}$ exists in $A / p^{m} A$, which is $x^{n(m)!}\left(\bmod p^{m} A\right)$, which is an idempotent. Let $e_{m}:=x^{n(m)!}\left(\bmod p^{m} A\right)$. Then $\left(e_{m}\right)_{m \in \mathbb{N}}$ defines an element in $\lim _{\leftarrow}^{\leftarrow}{ }_{m \in \mathbb{N}} A / p^{m} A=$ A, which is an idempotent.

Definition 2. The ordinary projector e is defined as $\lim _{n \rightarrow \infty} T_{p}^{n!} \in H_{k}(N, \chi ; \mathcal{O})$. By definition, $e(f)=\lim _{n \rightarrow \infty} T_{p}^{n!}(f)$ under p-adic topology. $f \in M_{k}\left(N, \chi ; \mathbb{C}_{p}\right)$ is called ordinary if $e(f)=f$. Equivalently, $f \in e M_{k}\left(N, \chi ; \mathbb{C}_{p}\right)$.

Example 1. Assume $p \mid N, k \geq 2$. In this case, $a_{n}\left(T_{p}(f)\right)=a_{p n}(f)$. For every $(t, p)=1$ we define $V_{\psi, \varphi, t}$ as the subspace generated by

$$
E_{k}^{\psi, \varphi, t}, E_{k}^{\psi, \varphi, p t}, \cdots
$$

in $\mathcal{E}_{k}(N, \psi, \varphi)$. Assume that $V_{\psi, \varphi, t} \neq 0$ and we compute $e V_{\psi, \varphi, t}$. Note that if $E_{k}^{\psi, \varphi}\left(p^{\alpha+1} t z\right) \in \mathcal{E}_{k}(N, \psi, \varphi), T_{p} E_{k}^{\psi, \varphi}\left(p^{\alpha+1} t z\right)=E_{k}^{\psi, \varphi}\left(p^{\alpha} t z\right)$.

1. $\psi(p)=0: T_{p} E_{k}^{\psi, \varphi, t}=\varphi(p) p^{k-1} E_{k}^{\psi, \varphi, t}$. In this case, $e V_{\psi, \varphi, t}=0$.
2. $\psi(p) \neq 0$ but $\varphi(p)=0: T_{p} E_{k}^{\psi, \varphi, t}=\psi(p) E_{k}^{\psi, \varphi, t}$. In this case, $e V_{\psi, \varphi, t}=\mathbb{C} E_{k}^{\psi, \varphi, t}$.
3. $\psi(p) \varphi(p) \neq 0$: Let $\alpha:=v_{p}(N)>0$. Suppose $(k, \psi, \varphi) \neq(2,1,1)$. We consider another basis
$\left\{E_{k}^{\psi, \varphi, t}-\varphi(p) p^{k-1} E_{k}^{\psi, \varphi, p t}, \cdots, E_{k}^{\psi, \varphi, p^{\alpha-1} t}-\varphi(p) p^{k-1} E_{k}^{\psi, \varphi, p^{\alpha} t}, E_{k}^{\psi, \varphi, t}-\psi(p) E_{k}^{\psi, \varphi, p t}\right\}$.
$E_{k}^{\psi, \varphi, t}-\varphi(p) p^{k-1} E_{k}^{\psi, \varphi, p t}, E_{k}^{\psi, \varphi, t}-\psi(p) E_{k}^{\psi, \varphi, p t}$ are T_{p}-eigenvectors of eigenvalues $\psi(p), \varphi(p) p^{k-1}$, respectively. Therefore, $e V_{\psi, \varphi, t}=\mathbb{C}\left(E_{k}^{\psi, \varphi, t}-\varphi(p) p^{k-1} E_{k}^{\psi, \varphi, p t}\right)$. If $(k, \psi, \varphi)=(2,1,1)$, we similarly have $e V_{\psi, \varphi, t}=\mathbb{C}\left(E_{k}^{\psi, \varphi}(t z)-2 E_{k}^{\psi, \varphi}(2 t z)\right)$.
e preserves $S_{k}(N, \chi ; \mathcal{O})$ as $S_{k}(N, \chi ; \mathcal{O})$ is a complete subspace of $M_{k}(N, \chi ; \mathcal{O})$.
We define

$$
H_{k}^{\text {ord }}(N, \chi ; \mathcal{O}):=e H_{k}(N, \chi ; \mathcal{O}), h_{k}^{\text {ord }}(N, \chi ; \mathcal{O}):=e h_{k}(N, \chi ; \mathcal{O}),
$$

$$
M_{k}^{\text {ord }}(N, \chi ; \mathcal{O}):=e M_{k}(N, \chi ; \mathcal{O}), S_{k}^{\text {ord }}(N, \chi ; \mathcal{O}):=e S_{k}(N, \chi ; \mathcal{O}),
$$

and

$$
m_{k}^{\text {ord }}(N, \chi ; \mathcal{O}):=e m_{k}(N, \chi ; \mathcal{O})
$$

We still have the duality

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{O}}\left(H_{k}^{\text {ord }}(N, \chi ; \mathcal{O}), \mathcal{O}\right) \cong m_{k}^{\text {ord }}(N, \chi ; \mathcal{O}) \\
\operatorname{Hom}_{\mathcal{O}}\left(h_{k}^{\text {ord }}(N, \chi ; \mathcal{O}), \mathcal{O}\right) \cong S_{k}^{\text {ord }}(N, \chi ; \mathcal{O})
\end{aligned}
$$

Note that $e(f)$ may be a cusp form even if f is not a cusp form. The example on Eisenstein series shows that

$$
\operatorname{dim}_{\mathbb{C}_{p}}\left(M_{k}^{\text {ord }}\left(N, \chi \omega^{a}\right)\right)-\operatorname{dim}_{\mathbb{C}_{p}}\left(S_{k}^{\text {ord }}\left(N, \chi \omega^{a}\right)\right)
$$

is independent of a and $k \geq 2$.
Lemma 11. Suppose $(p, N)=1, \alpha>0$, and χ is a Dirichlet character modulo $N p^{\alpha}$. Then T_{p} sends $M_{k}\left(N p^{\alpha+1}, \chi\right)$ to $M_{k}\left(N p^{\alpha}, \chi\right)$.

Proof. It suffices to show that if $f \in M_{k}\left(N p^{\alpha+1}, \chi\right), T_{p}(f)$ is $\Gamma_{1}\left(N p^{\alpha}\right)$-invariant. Let $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1}\left(N p^{\alpha}\right)$.

$$
\left(\begin{array}{ll}
1 & j \\
0 & p
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & j \\
0 & p
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a+c j & B \\
p c & d-c j
\end{array}\right)
$$

where $B \in \frac{(d-a) j-c j^{2}+b}{p}$. Hence if $p\left|b, T_{p}(f)\right|[g]_{k}=T_{p}(f)$. Since $T_{p}(f)$ is $\left(\begin{array}{ll}1 & \mathbb{Z} \\ 0 & 1\end{array}\right)$-invariant, $T_{p}(f)$ has level $N p^{\alpha}$.

Let p^{α} be the p-part of the conductor of χ. We see that if $\alpha>0$ and f is ordinary of Nebentypus χ and tame level N, then f has level $N p^{\alpha}$.

2.3 Constant Rank

Suppose $(N, p)=1$.

Theorem 4. Let $\chi:\left(\mathbb{Z} / N p^{\alpha} \mathbb{Z}\right)^{\times} \rightarrow \mathcal{O}^{\times}$be a Dirichlet character for some $\alpha>0$. Let $\epsilon:\left(\mathbb{Z} / N p^{\alpha} \mathbb{Z}\right)^{\times} \rightarrow \mu_{p^{\infty}}\left(\mathcal{O}^{\times}\right)$be a finite order character. Then

$$
\begin{gathered}
\operatorname{dim}\left(M_{k}^{\text {ord }}\left(N p^{\alpha}, \epsilon \chi \omega^{-k}\right)\right)=\operatorname{dim}\left(M_{2}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-2}\right)\right), \\
\operatorname{dim}\left(S_{k}^{\text {ord }}\left(N p^{\alpha}, \epsilon \chi \omega^{-k}\right)\right)=\operatorname{dim}\left(S_{2}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-2}\right)\right) .
\end{gathered}
$$

For $\Gamma_{1}\left(N p^{\alpha}\right)$ we have

$$
\begin{gathered}
\operatorname{dim}\left(M_{k}^{\text {ord }}\left(\Gamma_{1}\left(N p^{\alpha}\right)\right)\right)=\operatorname{dim}\left(M_{2}^{\text {ord }}\left(\Gamma_{1}\left(N p^{\alpha}\right)\right)\right), \\
\operatorname{dim}\left(S_{k}^{\text {ord }}\left(\Gamma_{1}\left(N p^{\alpha}\right)\right)\right)=\operatorname{dim}\left(S_{2}^{\text {ord }}\left(\Gamma_{1}\left(N p^{\alpha}\right)\right)\right) .
\end{gathered}
$$

Proof. Let $\Gamma:=\Gamma_{0}\left(N p^{\alpha}\right)$ or $\Gamma_{1}\left(N p^{\alpha}\right)$ and define $L(k-2, R):=\operatorname{Sym}^{k-2}\left(R^{2}\right)$. For our purpose we may assume that $\alpha \gg 0$. Suppose that Γ has a subgroup $H \subset \Gamma$ of finite index with $p \nmid[\Gamma: H]$ and H has no torsion elements other than $\left\{ \pm I_{2}\right\}$. For example, if $\Gamma=\Gamma_{1}\left(N p^{\alpha}\right)$, for our purpose we may assume $N p^{\alpha}>3$ and hence Γ has no torsion element. For Γ_{0}, if $p>3$, we may take $H=\Gamma_{1}(p) \cap \Gamma$, and if $p=2,3$, we may assume $\alpha \geq 2$ as $\Gamma_{0}(4)$ and $\Gamma_{0}(9)$ have no torsion points other than $\left\{ \pm I_{2}\right\}$ and take $H=\Gamma$. Now we have $H^{*}(H, M)=H^{*}(\Gamma, M)$ for all $\mathcal{O}[\Gamma]$-module M. In particular, $H^{2}(\bar{H}, M)=0$. This gives $H^{2}(\Gamma, M)=0$ for all $\mathcal{O}[\Gamma]$-module M except the case $\Gamma=\Gamma_{0}\left(N 2^{\alpha}\right)$.

Let \mathbb{F} be the residue field of \mathcal{O}. Consider the short exact sequence

$$
0 \rightarrow L(k-2, \mathcal{O})\left(\epsilon \chi \omega^{-k}\right) \xrightarrow{\varpi \cdot} L(k-2, \mathcal{O})\left(\epsilon \chi \omega^{-k}\right) \rightarrow L(k-2, \mathbb{F})\left(\epsilon \chi \omega^{-k}\right) \rightarrow 0
$$

and the corresponding long exact sequence. Since

$$
\left.T_{p}^{2}\right|_{L(k-2, \mathbb{F})\left(\epsilon \chi \omega^{-k}\right)}=0,
$$

$e H^{0}\left(\Gamma, L(k-2, \mathbb{F})\left(\epsilon \chi \omega^{-k}\right)\right)=0$. Since the image of $H^{0}\left(\Gamma, L(k-2, \mathbb{F})\left(\epsilon \chi \omega^{-k}\right)\right)$ in $H^{1}\left(\Gamma, L(k-2, \mathcal{O})\left(\epsilon \chi \omega^{-k}\right)\right)$ is $H^{1}\left(\Gamma, L(k-2, \mathcal{O})\left(\epsilon \chi \omega^{-k}\right)\right)[\varpi], e H^{1}\left(\Gamma, L(k-2, \mathcal{O})\left(\epsilon \chi \omega^{-k}\right)\right)[\varpi]=$

0 . Therefore,

$$
e H^{1}\left(\Gamma, L(k-2, \mathcal{O})\left(\epsilon \chi \omega^{-k}\right)\right)
$$

is finite free, and

$$
\begin{aligned}
& \operatorname{dim}_{K}\left(e H^{1}\left(\Gamma, L(k-2, K)\left(\epsilon \chi \omega^{-k}\right)\right)\right) \\
= & \operatorname{dim}_{\mathbb{F}}\left(e H^{1}\left(\Gamma, L(k-2, \mathcal{O})\left(\epsilon \chi \omega^{-k}\right)\right) \otimes_{\mathcal{O}} \mathbb{F}\right) \\
= & \operatorname{dim}_{\mathbb{F}}\left(e H^{1}\left(\Gamma, L(k-2, \mathbb{F})\left(\chi \omega^{-k}\right)\right)\right) .
\end{aligned}
$$

when we are not in the case $\Gamma=\Gamma_{0}\left(N 2^{\alpha}\right)$. If $\Gamma=\Gamma_{0}\left(N 2^{\alpha}\right)$, we show that $e H^{2}\left(\Gamma, L(k-2, \mathcal{O})\left(\epsilon \chi \omega^{-k}\right)\right)=0$ and we also have the formula above. Consider the spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(\bar{\Gamma}, H^{q}\left(\left\{ \pm I_{2}\right\}, M\right)\right) \Rightarrow H^{p+q}(\Gamma, M)
$$

where M is a $\mathcal{O}[\Gamma]$-module, which is finite free over \mathcal{O} with trivial $\left\{ \pm I_{2}\right\}$-action. Then $H^{1}\left(\left\{ \pm I_{2}\right\}, M\right)=M[2]=0$. Since $H^{p}(\bar{\Gamma}, \cdot)$ vanishes for $p \geq 2$, the spectral sequence gives the isomorphism $H^{2}(\Gamma, M) \cong H^{2}\left(\left\{ \pm I_{2}\right\}, M\right)^{\bar{\Gamma}}$.

Now we compute $H^{2}\left(\left\{ \pm I_{2}\right\}, M\right)$. Let φ_{2} be a inhomogeneous 2-cochain. The condition that it is a cocycle is that

$$
\varphi_{2}\left(I_{2}, I_{2}\right)=\varphi_{2}\left(I_{2},-I_{2}\right)=\varphi_{2}\left(-I_{2}, I_{2}\right)
$$

Let φ_{1} be a 1-cocycle. Say $\varphi\left(I_{2}\right)=a$ and $\varphi\left(-I_{2}\right)=b$. Then

$$
\left(\delta \varphi_{1}\right)\left(I_{2}, I_{2}\right)=\left(\delta \varphi_{1}\right)\left(-I_{2}, I_{2}\right)=\left(\delta \varphi_{1}\right)\left(I_{2},-I_{2}\right)=a,\left(\delta \varphi_{1}\right)\left(-I_{2},-I_{2}\right)=2 b-a
$$

Therefore,

$$
\left[\varphi_{2}\right] \mapsto \overline{\varphi_{2}\left(-I_{2},-I_{2}\right)-\varphi_{2}\left(I_{2}, I_{2}\right)}
$$

induces an $\bar{\Gamma}$-equivariant isomorphism from $H^{2}\left(\left\{ \pm I_{2}\right\}, M\right)$ to $M / 2 M$. Hence we obtain an isomorphism $H^{2}(\Gamma, M) \rightarrow H^{0}(\Gamma, M / 2 M)$. Take $M=L(k-2, \mathcal{O})\left(\epsilon \chi \omega^{-k}\right)$. The isomorphism is compatible with Hecke operators for that a class $[u]$ in $H^{2}(\Gamma, M)$ is uniquely determined by values of u on $\left\{ \pm I_{2}\right\}^{2}$ and $\left\{ \pm I_{2}\right\}$ is in the center of Γ. Since $e H^{0}(\Gamma, M / 2 M)=0, e H^{2}(\Gamma, M)=0$.

Consider the Γ-equivariant map

$$
\iota: L(k-2, \mathbb{F})\left(\chi \omega^{-k}\right) \rightarrow \mathbb{F}\left(\chi \omega^{-2}\right), e_{1} \mapsto 0, e_{2} \mapsto 1
$$

This gives the long exact sequence

$$
e H^{*}(\Gamma, \operatorname{ker}(\iota)) \rightarrow e H^{*}\left(\Gamma, L(k-2, \mathbb{F})\left(\chi \omega^{-k}\right)\right) \rightarrow e H^{*}\left(\Gamma, \mathbb{F}\left(\chi \omega^{-2}\right)\right) \xrightarrow{+1} .
$$

Since $\left(\begin{array}{ll}p & i \\ 0 & 1\end{array}\right)$ vanishes on $\operatorname{ker}(\iota), e H^{*}(\Gamma, \operatorname{ker}(\iota))=0$ and we get

$$
e H^{1}\left(\Gamma, L(0, \mathbb{F})\left(\chi \omega^{-2}\right)\right)=e H^{1}\left(\Gamma, \mathbb{F}\left(\chi \omega^{-2}\right)\right) \cong e H^{1}\left(\Gamma, L(k-2, \mathbb{F})\left(\chi \omega^{-k}\right)\right) .
$$

3 Hida Family

$3.1 \quad \Lambda$-adic Modular Forms

Let $\Gamma=\operatorname{Gal}\left(\mathbb{Q}_{\infty} / \mathbb{Q}\right)=1+q \mathbb{Z}_{p}$ and $u \in \Gamma=1+q \mathbb{Z}_{p}$ be a fixed geometric generator. Define

$$
\Lambda=\mathcal{O}[[\Gamma]]:=\lim _{\underset{k}{ }} \mathcal{O}\left[\Gamma / \Gamma^{p^{k}}\right] \cong \lim _{\underset{k}{ }} \mathcal{O}[T] /\left\langle(1+T)^{p^{k}}-1\right\rangle
$$

where the last isomorphism is given by $\gamma_{0} \mapsto 1+T$. We will show that $\lim _{\leftrightarrows_{k}} \mathcal{O}[T] /\langle(1+$ $\left.T)^{p^{k}}-1\right\rangle=\mathcal{O}[[T]]$.

Definition 3. Let $P \in \mathcal{O}[T] . P$ is called a distinguished polynomial if P is nonconstant, monic, and $P \equiv T^{\operatorname{deg}(P)}(\bmod \varpi)$.

Proposition 7 (Division Algorithm). Suppose $P=a_{0}+a_{1} T+\cdots \in \mathcal{O}[[T]], P \not \equiv 0$ $(\bmod \varpi)$, and $n=\min \left\{k \in \mathbb{N} \mid a_{k} \in \mathcal{O}^{\times}\right\}$. Then for every $f \in \mathcal{O}[[T]]$ there exists a unique pair (Q, R) where $Q \in \mathcal{O}[[T]]$ and $R \in \mathcal{O}[T]$ has degree smaller than n, such that

$$
f=Q P+R .
$$

Theorem 5 (Weierstrass Preparation). For every $f \in \mathcal{O}[[T]]$ there exists a unique triple $(u, U(T), P(T))$ where $u \in \mathbb{Z}_{\geq 0}, U \in \mathcal{O}[[T]]^{\times}$, and $P(T)$ is a distinguished polynomial, such that

$$
f=\varpi^{u} P U .
$$

It is easily seen that $\mathcal{O}[[T]]$ is a UFD of dimension 2 and its irreducible elements are ϖ and all irreducible distinguished polynomials.

Theorem 6. Let P_{1}, P_{2}, \cdots be a sequence of distinguished polynomials such that $P_{k} \in(\varpi, T)^{k}$ and $P_{k} \mid P_{k+1}$ for all $k \in \mathbb{N}$. We endow $\mathcal{O}[[T]]$ with the \mathfrak{m}-adic topology and $\mathcal{O}[[T]] /\left(P_{k}\right)$ the p-adic topology. Then the natural map

$$
\varphi: \mathcal{O}[[T]] \rightarrow \underset{k}{\lim _{k}} \mathcal{O}[[T]] /\left(P_{k}\right)
$$

is an isomorphism both algebraically and topologically.

Proof. Since $\mathcal{O}[[T]] /\left(P_{k}\right)$ is p-adically complete, it is isomorphic to ${\underset{\longleftarrow}{\longleftarrow}}_{\ell} \mathcal{O}[[T]] /\left(P_{k}, \varpi^{\ell}\right)$ with each object endowed with discrete topology. Hence

$$
{\underset{\overleftarrow{~}}{\overleftarrow{k}}} \mathcal{O}[[T]] /\left(P_{k}\right)=\underset{\overleftarrow{k}_{k, \ell}}{\lim } \mathcal{O}[[T]] /\left(P_{k}, \varpi^{\ell}\right)=\lim _{\overleftarrow{k}} \mathcal{O}[[T]] /\left(P_{k}, \varpi^{k}\right)
$$

where each $\mathcal{O}[[T]] /\left(P_{k}, \varpi^{k}\right)$ is given discrete topology. Since $\left(P_{k}, \varpi^{k}\right) \subset \mathfrak{m}^{k}$, it suffices to show that for every $k \in \mathbb{N}$ is a ℓ such that $\mathfrak{m}^{\ell} \subset\left(P_{k}, \varpi^{k}\right)$. This is true as the radical of $\left(P_{k}, \varpi^{k}\right)$ is \mathfrak{m} and hence $\mathcal{O}[[T]] /\left(P_{k}, \varpi^{k}\right)$ is Artinian.

Let $P_{k}:=(1+T)^{p^{k}}-1$. Since $\mathcal{O}[T] /\left(P_{k}\right) \rightarrow \mathcal{O}[[T]] /\left(P_{k}\right)$ is an isomorphism, $\lim _{\leftarrow} \mathcal{O}[T] /\left\langle(1+T)^{p^{k}}-1\right\rangle=\mathcal{O}[[T]]$.

Definition 4. Let $\chi:\left(\mathbb{Z} / N p^{\alpha} \mathbb{Z}\right)^{\times} \rightarrow \mathcal{O}^{\times}$be a Dirichlet character for some $\alpha \geq 1$. We say $F \in \Lambda[[q]]$ is a (cusp,ordinary) Λ-adic modular form if $F\left(u^{k}-1\right) \in \mathcal{O}[[q]]$ is a (cusp,ordinary) modular form in $M_{k}\left(N p^{\alpha}, \chi \omega^{-k}, \mathcal{O}\right)$ for all $k \gg 0$. We define $\mathbb{M}(\chi ; \Lambda)\left(\mathbb{M}^{\text {ord }}(\chi ; \Lambda), \mathbb{S}(\chi ; \Lambda), \mathbb{S}^{\text {ord }}(\chi ; \Lambda)\right)$ as the space of Λ-adic (ordinary, cusp, ordinary cusp) modular forms.

Example 2. Let ψ, φ be two primitive Dirichlet characters modulo u, v, respectively, with value in \mathcal{O}^{\times}. Suppose $\psi(p) \neq 0$. Then

$$
\frac{1}{2}\left(E_{k}^{\psi, \varphi}(z)-\varphi(p) p^{k-1} E_{k}^{\psi, \varphi}(p z)\right)
$$

is ordinary. The q-expansion of the ordinary Eisenstein series is

$$
n \mapsto \sum_{\substack{d \mid n \\ p \nmid d}} \psi(n / d) \varphi(d) d^{k-1}
$$

and the constant term is

$$
\frac{1}{2} \delta(\psi) L_{p}(1-k, \varphi)
$$

We define $A_{n, \psi, \varphi}$ as

$$
\sum_{\substack{d \mid n \\ p \nmid d}} \psi(n / d) \varphi(d) d^{-1}\langle d\rangle
$$

and $A_{0, \psi, \varphi}$ as the element in $\operatorname{Frac}(\Lambda)$ with

$$
A_{0, \psi, \varphi}\left(\epsilon(u) u^{s}-1\right)=\frac{1}{2} \delta(\psi) L_{p}(1-s, \epsilon \varphi)
$$

for all $|s|_{p}<q p^{-1 /(p-1)}$ and ϵ any finite order character on $1+q \mathbb{Z}_{p}$. If φ is odd or $\psi \neq 1, A_{0, \psi, \varphi}=0$. If $\psi=1, \varphi$ is nontrivial and even, then $A_{0, \psi, \varphi} \in \Lambda$. If $\psi=\varphi=1$, $A_{0, \psi, \varphi} \in \frac{\Lambda}{T}$. Define

$$
E^{\psi, \varphi}:=A_{0, \psi, \varphi}+\sum_{n=1}^{\infty} A_{n, \psi, \varphi} q^{n}
$$

When $(\varphi, \psi) \neq(1,1)$,

$$
E^{\psi, \varphi} \in \mathbb{M}^{\text {ord }}(\psi \varphi ; \Lambda)
$$

with suitable level, $E^{1,1} \in T^{-1} \mathbb{M}^{\text {ord }}(1 ; \Lambda)$, and

$$
E^{\psi, \varphi}\left(\epsilon(u) u^{k}-1\right) \in \mathcal{M}_{k}^{\text {ord }}\left(N p^{\alpha}, \epsilon \psi \varphi ; \mathbb{Q}_{p}[\epsilon]\right)
$$

for all $k \geq 2$ with suitable N, α.

Definition 5. For every $k \geq 2$ we define

$$
P_{k}:=T-\left(u^{k}-1\right) .
$$

More generally, for every finite order character $\epsilon: 1+2 p \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}^{\times}$, we define $P_{k, \epsilon}$ as the minimal polynomial of $\epsilon(u) u^{k}-1$ over \mathcal{O}.

3.2 Ordinary Hida Families

Theorem 7. $\mathbb{M}^{\text {ord }}(\chi ; \Lambda)$ and $\mathbb{S}^{\text {ord }}(\chi ; \Lambda)$ are free of finite rank over Λ.

Proof. Let M^{\prime} be a finite free submodule of $\mathbb{M}^{\text {ord }}$, say F_{1}, \cdots, F_{n} be a basis. Then there exists $b_{1}, \cdots, b_{n} \in \mathbb{N}$ such that $D:=\operatorname{det}\left(a\left(b_{j}, F_{i}\right)\right) \neq 0$. Therefore, for
all $k \gg 0,\left\{F_{i}\left(u^{k}-1\right)\right\} \subset M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)$ and generates a free \mathcal{O}-module of rank n. Therefore, $n \leq \operatorname{rank}_{\mathcal{O}}\left(M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)\right)$ for all $k \gg 0$. Since $\operatorname{rank}_{\mathcal{O}}\left(M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)\right)$ is bounded independent of k, n is bounded independent of M. Therefore, there is a $n_{0} \in \mathbb{Z}_{\geq 0}$ such that n_{0} is the maximal possible rank of free submodules of $\mathbb{M}^{\text {ord }}$.

Let $F_{1}, \cdots, F_{n_{0}} \subset \mathbb{M}^{\text {ord }}$ be a basis of a free submodule M^{\prime} of rank n_{0} of $\mathbb{M}^{\text {ord }}$. Let $L:=\operatorname{Frac}(\Lambda)$. Let $F \in \mathbb{M}^{\text {ord }}$. There are $\lambda_{1}, \cdots, \lambda_{n_{0}} \in L$ such that

$$
\lambda_{1} F_{1}+\cdots+\lambda_{n_{0}} F_{n_{0}}=F
$$

Consider linear equations

$$
\lambda_{1} a\left(n_{j}, F_{1}\right)+\cdots+\lambda_{n_{0}} a\left(n_{j}, F_{n_{0}}\right)=a\left(n_{j}, F\right)
$$

and we have that $D \lambda_{j} \in \Lambda$ for all j. Hence $\frac{M^{\prime}}{D} \supset \mathbb{M}^{\text {ord }}$, and $\mathbb{M}^{\text {ord }}$ is finitely generated. Therefore, there is a $a \in \mathbb{N}$ such that for all $k \geq a$ and $F \in \mathbb{M}^{\text {ord }}$, $F\left(u^{k}-1\right) \in M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)$. Let $k \geq a$. If $F\left(u^{k}-1\right)=0$, then $F=P_{k} F^{\prime}$ for some $F^{\prime} \in \Lambda[[q]]$ and $F^{\prime}\left(u^{r}-1\right)=F\left(u^{r}-1\right) /\left(u^{r}-u^{k}\right) \in M_{r}^{\text {ord }}\left(N p, \chi \omega^{-r} ; \mathcal{O}\right)$ for all $r>k$. Hence $F \in P_{k} \mathbb{M}^{\text {ord }}$. We have that

$$
\mathbb{M}^{\text {ord }} / P_{k} \mathbb{M}^{\text {ord }} \rightarrow M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)
$$

is injective. Let f_{1}, \cdots, f_{n} be a \mathcal{O}-basis of the image and F_{1}, \cdots, F_{n} be their liftings. By Nakayama's lemma, $\mathbb{M}^{\text {ord }}$ is generated by F_{1}, \cdots, F_{n}. If $\lambda_{1}, \cdots, \lambda_{n} \in \Lambda$ such that

$$
\lambda_{1} F_{1}+\cdots+\lambda_{n} F_{n}=0,
$$

$P_{k} \mid \lambda_{i}$ for all i. By infinite descent method $\lambda_{1}=\cdots=\lambda_{n}=0$. Namely, $\mathbb{M}^{\text {ord }}$ is free and $\left\{F_{1}, \cdots, F_{n}\right\}$ is a basis.

The proof for $\mathbb{S}^{\text {ord }}$ is identical.
We define Hecke operators on \mathbb{M} as follows:

$$
a\left(m, T_{n} F\right):=\sum_{\substack{d \mid(m, n) \\(d, N p)=1}} \chi(d)\langle d\rangle d^{-1} a\left(m n / d^{2}, F\right)
$$

Since $\left(T_{n} F\right)\left(u^{k}-1\right)=T_{n}\left(F\left(u^{k}-1\right)\right)$ for $k \gg 0, T_{n} \in \operatorname{End}_{\Lambda}(\mathbb{M})$, preserving subspaces of ordinary and cusp forms.

We would like to define an ordinary projector $e: \mathbb{M} \rightarrow \mathbb{M}^{\text {ord }}$, which should be

$$
e F=\lim _{n \rightarrow \infty} T_{p}^{n!} F
$$

under the \mathfrak{m}-adic topology. This is done circuitously. Given an $F \in \mathbb{M}$. Let $a \in \mathbb{N}$ such that $F\left(u^{k}-1\right) \in M_{k}\left(N p, \chi \omega^{-k} ; \mathcal{O}\right)$ for all $k \geq a$. We define

$$
\mathbb{M}_{a, j}:=\left\{F \in \mathbb{M} \mid F\left(u^{k}-1\right) \in M_{k}\left(N p, \chi \omega^{-k} ; \mathcal{O}\right) \forall k \in[a, j]\right\} .
$$

Let $\Omega_{j}:=\prod_{k=a}^{j} P_{k}(T)$ where $P_{k}(T):=T-\left(u^{k}-1\right)$. Then

$$
\mathbb{M}_{a, j} \rightarrow \bigoplus_{k=a}^{j} M_{k}\left(N p, \chi \omega^{-k} ; \mathcal{O}\right)
$$

has kernel $\Omega_{j}[[q]] \cap \mathbb{M}_{a, j}$. Since T_{p} preserves $\mathbb{M}_{a, j}$ and $\Omega_{j}[[q]] \cap \mathbb{M}_{a, j}$, the image of $\mathbb{M}_{a, j} \rightarrow \bigoplus_{k=a}^{j} M_{k}\left(N p, \chi \omega^{-k} ; \mathcal{O}\right)$ is a T_{p}-invariant subspace. Hence $\lim _{n \rightarrow \infty} T_{p}^{n!}$ is defined on $\frac{\mathbb{M}_{a, j}}{\Omega_{j}[[q]] \cap \mathbb{M}_{a, j}}$, denoted by e_{j}. Then we have the commutative diagram

$$
\begin{array}{cc}
\frac{\mathbb{M}_{a, j+1}}{\Omega_{j+1}[[q]] \cap \mathbb{M}_{a, j+1}} \longrightarrow \frac{\mathbb{M}_{a, j}}{\Omega_{j}[[q]] \cap \mathbb{M}_{a, j}} \\
\downarrow^{\text {e }_{j+1}} & \downarrow_{a, j+1} \\
\frac{\mathbb{M}_{j+1}}{\Omega_{j+1}[[q]] \cap \mathbb{M}_{a, j+1}} \longrightarrow \frac{\mathbb{M}_{a, j}}{\Omega_{j}[[q]] \cap \mathbb{M}_{a, j}} .
\end{array}
$$

On the other hand, $\frac{\mathbb{M}_{a, j}}{\Omega_{j}[[q]] \cap \mathbb{M}_{a, j}}$ is a subspace of $\left(\Lambda / \Omega_{j}\right)[[q]]$. Therefore,

$$
\lim _{\underset{j}{ }} \frac{\mathbb{M}_{a, j}}{\Omega_{j}[[q]] \cap \mathbb{M}_{a, j}} \subset{\underset{j}{j}}_{\lim _{j}}\left(\Lambda / \Omega_{j}\right)[[q]]=\Lambda[[q]],
$$

and the image is clearly M_{a}. We thus define $e:=\lim _{\varlimsup_{j}} e_{j}$ on M_{a}. Since $\lim _{\varlimsup_{j}}\left(\Lambda / \Omega_{j}\right)$ with p-adic topology on each Λ / Ω_{j} is Λ with \mathfrak{m}-adic topology,

$$
e F=\lim _{n \rightarrow \infty} T_{p}^{n!} F
$$

under the \mathfrak{m}-adic topology, and $(e F)\left(u^{k}-1\right)=e\left(F\left(u^{k}-1\right)\right)$ for all $k \geq a$. Hence e is an idempotent from \mathbb{M} onto $\mathbb{M}^{\text {ord }}$, mapping cusp forms to cusp forms.

Proposition 8. For every $a \geq 0$ and $f \in M_{a}\left(N p^{\alpha}, \chi \omega^{-a} ; \mathcal{O}\right)$ there is a $F \in$ $\mathbb{M}(\chi ; \Lambda)$ such that $F\left(u^{a}-1\right)=f$. If f is cusp (ordinary), F can be taken to be cusp (ordinary).

Proof. We first consider $E^{1,1} \in \mathbb{M}^{\text {ord }}(1, \Lambda)$. The T^{-1}-term of $E^{1,1}$ is

$$
\lim _{s \rightarrow 0} \frac{\left(u^{s}-1\right) L_{p}(1-s)}{2}=2^{-1}\left(p^{-1}-1\right) \log _{p}(u) \in \mathbb{Z}_{p}^{\times} .
$$

Define

$$
E^{\prime}:=\frac{T E^{1,1}}{2^{-1}\left(p^{-1}-1\right) \log _{p}(u)} \in \mathbb{M}^{\text {ord }}(\chi ; \Lambda)
$$

and

$$
E(T):=E^{\prime}\left(u^{-a} T+\left(u^{-a}-1\right)\right), F:=f E .
$$

Then for all $k \geq a, F\left(u^{k}-1\right) \in M_{k}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)$, and $F\left(u^{a}-1\right)=f E^{\prime}(0)=f$.
If f is cusp, F is cusp. If f is ordinary, we take $F:=e(f E)$ instead.
From this we can write down a basis for $\mathbb{M}^{\text {ord }}\left(\mathbb{S}^{\text {ord }}\right.$) as follows: We first take a $a \in \mathbb{N}$ such that $F\left(u^{k}-1\right) \in M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)\left(S_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)\right)$ for all $F \in \mathbb{M}^{\text {ord }}\left(\mathbb{S}^{\text {ord }}\right)$ and $k \geq a$. Let f_{1}, \cdots, f_{n} be a basis of $M_{a}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-a} ; \mathcal{O}\right)$ $\left(S_{a}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-a} ; \mathcal{O}\right)\right)$ and $F_{i}:=e\left(f E^{\prime}\right)$. Then $\left\{F_{1}, \cdots, F_{n}\right\}$ is a Λ-basis of $\mathbb{M}^{\text {ord }}$ $\left(\mathbb{S}^{\text {ord }}\right)$. This shows that for all finite order characters $\epsilon: 1+q \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}^{\times}$and $k \geq a$,

$$
F\left(\epsilon(u) u^{k}-1\right) \in M_{k}^{\text {ord }}\left(N p^{\alpha}, \epsilon \chi \omega^{-k} ; \mathcal{O}[\epsilon]\right)\left(S_{k}^{\text {ord }}\left(N p^{\alpha}, \epsilon \chi \omega^{-k} ; \mathcal{O}[\epsilon]\right)\right) .
$$

We define

$$
\left.\epsilon_{*}: \mathbb{M}(\chi ; \Lambda) \rightarrow \mathbb{M}(\epsilon \chi ; \Lambda[\epsilon]),\left(\epsilon_{*} F\right)\right)(T):=F(\epsilon T+(\epsilon-1)) .
$$

Since $\epsilon_{*}^{-1} \circ \epsilon_{*}=$ id, when ϵ takes value in \mathcal{O}^{\times},

$$
\epsilon_{*}: \mathbb{M}(\chi ; \Lambda) \cong \mathbb{M}(\epsilon \chi ; \Lambda)
$$

Theorem 8. For every $k \geq 2$ and every $F \in \mathbb{M}^{\text {ord }}$ ($\left.\mathbb{S}^{\text {ord }}\right), F\left(\epsilon(u) u^{k}-1\right) \in$ $\mathbb{M}^{\text {ord }}\left(N p^{\alpha}, \epsilon \chi \omega^{-k} ; \mathcal{O}[\epsilon]\right)\left(\mathbb{S}^{\text {ord }}\left(N p^{\alpha}, \epsilon \chi \omega^{-k} ; \mathcal{O}[\epsilon]\right)\right)$. Moreover, there are isomorphisms

$$
\mathbb{M}^{\text {ord }}(\chi ; \Lambda) / P_{k, \epsilon} \mathbb{M}^{\text {ord }}(\chi ; \Lambda) \cong M_{k}^{\text {ord }}\left(N p^{\alpha}, \epsilon \chi \omega^{-k} ; \mathcal{O}\right)
$$

and

$$
\mathbb{S}^{\text {ord }}(\chi ; \Lambda) / P_{k, \epsilon} \mathbb{S}^{\text {ord }}(\chi ; \Lambda) \cong S_{k}^{\text {ord }}\left(N p^{\alpha}, \epsilon \chi \omega^{-k} ; \mathcal{O}\right)
$$

for all $k \geq 2$. In particular, $\operatorname{rank}_{\mathcal{O}}\left(M_{k}^{\text {ord }}\left(N p^{\alpha}, \epsilon \chi \omega^{-k} ; \mathcal{O}\right)\right)$ and $\operatorname{rank}_{\mathcal{O}}\left(S_{k}^{\text {ord }}\left(N p^{\alpha}, \epsilon \chi \omega^{-k} ; \mathcal{O}\right)\right)$ are constant for all $k \geq 2$.

Proof. We first show the case $\epsilon=1$.
From the previous proposition we have that the image of

$$
\mathbb{M}^{\text {ord }}(\chi ; \Lambda) / P_{k} \mathbb{M}^{\text {ord }}(\chi ; \Lambda) \hookrightarrow \mathcal{O}[[q]]
$$

contains $M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)$ for all $k \geq 0$. For $k \gg 0, \mathbb{M}^{\text {ord }}(\chi ; \Lambda) / P_{k} \mathbb{M}^{\text {ord }}(\chi ; \Lambda) \subset$ $M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)$ and the equality holds.

Since $\operatorname{rank}_{\mathcal{O}}\left(M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)\right)$ is a constant for all $k \geq 2$, then $\mathbb{M}^{\text {ord }}(\chi ; \Lambda) / P_{k} \mathbb{M}^{\text {ord }}(\chi ; \Lambda)$ and $\operatorname{rank}_{\mathcal{O}}\left(M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)\right)$ have the same rank. Therefore,

$$
\begin{aligned}
& M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right)=\left(M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right) \otimes_{\mathcal{O}} K\right) \cap \mathcal{O}[[q]] \\
& \supset \mathbb{M}^{\text {ord }}(\chi ; \Lambda) / P_{k} \mathbb{M}^{\text {ord }}(\chi ; \Lambda) \supset M_{k}^{\text {ord }}\left(N p^{\alpha}, \chi \omega^{-k} ; \mathcal{O}\right) .
\end{aligned}
$$

For general ϵ we first consider $\mathbb{M}^{\text {ord }}\left(\chi ; \Lambda^{\prime}\right)$ where $\Lambda^{\prime}:=\mathcal{O}[\epsilon][[T]]$. Since ϵ_{*} : $\mathbb{M}^{\text {ord }}\left(\chi ; \Lambda^{\prime}\right) \cong \mathbb{M}^{\text {ord }}\left(\chi ; \epsilon \Lambda^{\prime}\right)$,

$$
\begin{aligned}
& \mathbb{M}^{\text {ord }}\left(\chi ; \Lambda^{\prime}\right) /\left(T-\left(\epsilon(u) u^{k}-1\right)\right) \mathbb{M}^{\text {ord }}\left(\chi ; \Lambda^{\prime}\right) \\
& \cong \mathbb{M}^{\text {ord }}\left(\chi ; \epsilon \Lambda^{\prime}\right) /\left(T-\left(\epsilon(u) u^{k}-1\right)\right) \mathbb{M}^{\text {ord }}\left(\epsilon \chi ; \Lambda^{\prime}\right) \\
& \cong M_{k}\left(N p^{\alpha}, \epsilon \chi \omega^{-k} ; \mathcal{O}[\epsilon]\right)
\end{aligned}
$$

for all $k \geq 2$. Every $F \in \mathbb{M}^{\text {ord }}\left(\chi, \Lambda^{\prime}\right)$ can be written as a finite sum

$$
F=\sum_{i} F_{i} \epsilon(u)^{i}
$$

where each $F_{i} \in \mathbb{M}^{\text {ord }}(\chi ; \Lambda)$. Given $k \geq 2$. Define

$$
F^{\prime}:=\sum_{i} F_{i} \frac{(1+T)^{i}}{u^{i k}} \in \mathbb{M}^{\mathrm{ord}}(\chi ; \Lambda) .
$$

Then

$$
F^{\prime}\left(\epsilon(u) u^{k}-1\right)=F\left(\epsilon(u) u^{k}-1\right)
$$

and therefore,

$$
\mathbb{M}^{\text {ord }}(\chi ; \Lambda) / P_{k, \epsilon} \mathbb{M}^{\text {ord }}(\chi ; \Lambda) \cong \mathbb{M}^{\text {ord }}\left(\chi ; \Lambda^{\prime}\right) /\left(T-\left(\epsilon(u) u^{k}-1\right)\right) \mathbb{M}^{\text {ord }}\left(\chi ; \Lambda^{\prime}\right)
$$

The proof for cusp forms is identical.

3.3 Duality and Lifting

We define Hecke algebras $H^{\text {ord }}(\chi ; \Lambda)$ and $h^{\text {ord }}(\chi ; \Lambda)$ as the Λ-subalgebra of $\operatorname{End}_{\Lambda}\left(\mathbb{M}^{\text {ord }}(\chi ; \Lambda)\right)$ and $\operatorname{End}_{\Lambda}\left(\mathbb{S}^{\text {ord }}(\chi ; \Lambda)\right)$, respectively. Moreover generally, for every Λ-algebra A, We define $H^{\text {ord }}(\chi ; A)=\operatorname{End}_{A}\left(\mathbb{M}^{\text {ord }}(\chi ; A)\right)=H^{\text {ord }}(\chi ; \Lambda) \otimes_{\Lambda} A$ an similarly define $h^{\text {ord }}(\chi ; A)$.

Theorem 9 (Duality). The pairing

$$
(h, f) \mapsto a_{1}(h(f))
$$

defines a perfect pairing between $h^{\text {ord }}(\chi ; A), \mathbb{S}^{\text {ord }}(\chi ; A)$, and $H^{\text {ord }}(\chi ; A), m^{\text {ord }}(\chi ; A)$.

Proof. It suffices to prove the case $A=\Lambda$. The pairing gives a map $h^{\text {ord }}(\chi ; \Lambda) \rightarrow$ $\operatorname{Hom}_{\Lambda}\left(\mathbb{S}^{\text {ord }}(\chi ; \Lambda) ; \Lambda\right)$. If h is in the kernel, we have for all f and n,

$$
0=\left(h, T_{n} f\right)=a_{1}\left(h T_{n} f\right)=a_{1}\left(T_{n} h f\right)=a_{n}(h(f)),
$$

so $h=0$. Let N be the cokernel of the map. We tensor $\Lambda /\left(P_{k}\right)$ on the short exact sequence

$$
0 \rightarrow h^{\text {ord }}(\chi ; \Lambda) \rightarrow \operatorname{Hom}_{\Lambda}\left(\mathbb{S}^{\text {ord }}(\chi ; \Lambda), \Lambda\right) \rightarrow N \rightarrow 0
$$

Since $\mathbb{S}^{\text {ord }}(\chi ; \Lambda)$ is finite free, the middle term is

$$
\begin{aligned}
& \operatorname{Hom}_{\Lambda}\left(\mathbb{S}^{\text {ord }}(\chi ; \Lambda), \Lambda\right) \otimes_{\Lambda} \Lambda /\left(P_{k}\right) \cong \operatorname{Hom}_{\Lambda}\left(\mathbb{S}^{\text {ord }}(\chi ; \Lambda) / P_{k} \mathbb{S}^{\text {ord }}(\chi ; \Lambda), \mathcal{O}\right) \\
\cong & \operatorname{Hom}_{\mathcal{O}}\left(S_{k}^{\text {ord }}\left(\chi \omega^{-k} ; \mathcal{O}\right), \mathcal{O}\right) \cong h_{k}^{\text {ord }}\left(\chi \omega^{-k} ; \mathcal{O}\right)
\end{aligned}
$$

The image from the first term is the \mathcal{O}-subalgebra generated by $\left\{T_{n}\right\}_{n \in N}$, which is $h_{k}^{\text {ord }}\left(\chi \omega^{-k} ; \mathcal{O}\right)$ itself. Hence $N=P_{k} N$. By Nakayama's lemma, $N=0$. Hence we have

$$
h^{\text {ord }}(\chi ; \Lambda) \cong \operatorname{Hom}_{\Lambda}\left(\mathbb{S}^{\text {ord }}(\chi ; \Lambda), \Lambda\right) .
$$

In particular, $h^{\text {ord }}(\chi ; \Lambda)$ is finite free over Λ. Take dual on both sides and we have

$$
\operatorname{Hom}_{\Lambda}\left(h^{\text {ord }}(\chi ; \Lambda), \Lambda\right)=\operatorname{Hom}_{\Lambda}\left(\operatorname{Hom}_{\Lambda}\left(\mathbb{S}^{\text {ord }}(\chi ; \Lambda), \Lambda\right), \Lambda\right) \cong \mathbb{S}^{\text {ord }}(\chi ; \Lambda)
$$

The proof for H and m are identical.

Now we have that for every Λ-algebra $A, \operatorname{Hom}_{\Lambda}\left(h^{\text {ord }}(\chi ; \Lambda), A\right) \cong \mathbb{S}^{\text {ord }}(\chi ; A)$. Moreover, $\varphi \in \operatorname{Hom}_{\Lambda}\left(h^{\text {ord }}(\chi ; \Lambda), A\right)$ is a Λ-algebra homomorphism if and only if $F_{\varphi}:=\sum_{n=1}^{\infty} \varphi\left(T_{n}\right) q^{n}$ is a normalized Hecke eigenform with coefficients in A.

Let $k \geq 2$ and $f \in S_{k}^{\text {ord }}\left(\chi \omega^{-k} ; \mathcal{O}\right) . f$ induces an \mathcal{O}-algebra homomorphism $h_{k}^{\text {ord }}\left(\chi \omega^{-k} ; \mathcal{O}\right) \rightarrow \mathcal{O}$. Since $h_{k}^{\text {ord }}\left(\chi \omega^{-k} ; \mathcal{O}\right) \cong h^{\text {ord }}(\chi ; \Lambda) \otimes_{\Lambda} \Lambda /\left(P_{k}\right)$, we obtain a unique Λ-algebra homomorphism from $h^{\text {ord }}(\chi ; \Lambda) \rightarrow \mathcal{O}$. Since Λ is a complete local ring and hence henselian, $h^{\text {ord }}(\chi ; \Lambda)$ decomposes into a finite product of Λ-algebras, which are again henselian local rings. Let P_{f} be the kernel of $h_{k}^{\text {ord }}\left(\chi \omega^{-k} ; \mathcal{O}\right) \rightarrow \mathcal{O}$ and \mathfrak{m}_{f} be the maximal ideal lying over P_{f}. Then the ring homomorphism factors through $h^{\text {ord }}(\chi ; \Lambda) \rightarrow h^{\text {ord }}(\chi ; \Lambda)_{\mathfrak{m}_{f}}$.

We may lift f to an normalized Hecke eigenform over a Λ-algebra with better algebraic properties. Let Q_{f} be a minimal prime ideal of $h^{\text {ord }}(\chi ; \Lambda)$ contained in P_{f}, $I^{\prime}:=h^{\text {ord }}(\chi ; \Lambda) / Q_{f}$ and define I as the integral closure of I^{\prime}. Then I / Λ is finite. We see that I is a complete local ring, and the topology coincide with the \mathfrak{m}_{Λ}-adic topology. Let P_{f}^{\prime} be any prime ideal of I over $\overline{P_{f}} \subset I^{\prime}$. Then I / P_{f}^{\prime} is finite over \mathcal{O} and hence $h^{\text {ord }}(\chi ; \Lambda) \rightarrow I / P_{f}^{\prime}$ defines an normalized Hecke eigenform with coefficient in $\overline{\mathbb{Z}_{p}}$ which is exactly f.

References

[H] H. Hida, Elementary Theory of L-functions and Eisenstein Series, London Mathematical Society Student Texts 26, Cambridge University Press, 1993.
[S] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, 1971.

