
1 Eichler-Shimura Isomorphism

1.1 Cohomology of Fuchsian Groups

Let G be a group, R be a given ring, M be a R[G]-module. We define the group

cohomology as

H∗(G,M) := Ext∗R[G](R,M),

where R is endowed with the trivial G-action. In this way, H∗(G,M) is endowed

with natural R-module structure, while the underlying group itself is independent

of the R, as it is the derived functor of M 7→MG.

In terms of the non-homogeneous cochain, we define Cn(G,M) as the R-module

of all maps from G×n to M , here R acts on M , with differential maps given by

du(g1, · · · , gn+1) := g1u(g2, · · · , gn+1)+
n∑
i=1

(−1)iu(g1, · · · , gi−1, gigi+1, gi+1, · · · , gn+1)

+(−1)n+1u(g1, · · · , gn).

H∗(G,M) is identified with the cohomology of C∗(G,M). For degree 0, we have

H0(G,M) =MG. For degree 1, we have

Z1(G,M) = {u : G→M | u(g1g2) = g1u(g2) + u(g1)},

and

B1(G,M) = {dmv : g 7→ (g − 1)mv}.

Let Q be a subset of G. We define C∗
Q(G,M) as the sub-cochain of C∗(G,M) given

by

C1
Q(G,M) := {u : G→M | u(g) ∈ (g − 1)M for all g ∈ Q},

and Ci
Q(G,M) = Ci(G,M) if i 6= 1. It is clear that B1(G,M) ⊂ C1

Q(G,M).

We define H∗
Q(G,M) as the cohomology of C∗

Q(G,M). In particular, H i
Q(G,M) =

H i(G,M) for i 6= 1, 2, and

H1
Q(G,M) = ker(H1(G,M)→

∏
g∈Q

(〈g〉,M)).

Like the usual cohomology, H1
Q(G,M) has the following functoriality:
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Lemma 1. Assume Q ⊂ G is closed under conjugation and taking powers. Let

H ⊂ G be a subgroup of finite index and M be a H-module. Then the canonical iso-

morphismH1(G, IndGH(M)) ∼= H1(H,M) induces an isomorphismH1
Q(G, IndGH(M)) ∼=

H1
Q∩H(H,M).

Proof. Let S be a set of representatives of H\G/K and define Hs := s−1Hs∩K for

each s ∈ S, and Ms the Hs-module whose underlying space is M and s−1hs(ms) :=

(hm)s. Then we have the canonical isomorphism

Res |K IndGH(M) ∼=
⊕
s∈S

IndKHs
(Ms).

To be explicit, the isomorphism is given by ϕ 7→ (ϕs : k 7→ ϕ(sk)).

For every s ∈ S, we have the restriction map

H∗(H,M)→ H∗(Hs,Ms)

induced by the pair of maps. (s−1hs 7→ h, idM). Therefore, the map

H∗(G, IndGH(M))→ H∗(H,M)→ H∗(Hs,Ms)

is induced by the pair of maps

(s−1hs 7→ h, ϕ 7→ ϕ(1)).

On the other hand, H∗(K, IndGH(M))→ H∗(Hs,Ms) is induced by the pair of maps

(s−1hs 7→ s−1hs, ϕ 7→ ϕ(s)). Hence

H∗(G, IndGH(M))→ H∗(K, IndGH(M))→ H∗(Hs,Ms)

is induced by the pair of maps

(s−1hs 7→ s−1hs, ϕ 7→ sϕ(1)).

Hence we have a commutative diagram

H∗(G, IndGH(M)) H∗(K, IndGH(M))

H∗(H,M)
⊕

s∈S H
∗(Hs,Ms)

,

whose vertical maps are isomorphisms. Let K runs through {〈q〉}q∈Q and we get

the result.
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Let Γ ⊂ PSL2(R) be a Fuchsian group of the first kind and s1, · · · , sm be the

set of cusps on X(Γ). For every si we find a small open disk Di on X(Γ), centered

at si. We can make X(Γ)−
⋃m
i=1Di a simplicial complex satisfying that

1. Each elliptic point is a 0-simplex.

2. For each cusp si, ∂Di is a 1-simplex.

Let H0 be the preimage of X(Γ) −
⋃m
i=1Di under the projection map H → Y (Γ).

H0 can be chosen so that it has trivial homology. We pull-back the simplicial

complex structure of X(Γ) −
⋃m
i=1Di and we make H0 a simplicial complex, say

K. Let C∗(K) be the simplicial chain complex with coefficient R. We have that

there is a R[Γ]-action on C∗(K) and C2(K), C1(K) are free R[Γ]-modules. We define

C∗(K,M) := HomR[Γ](C∗(K),M) and H∗(K,M) the cohomology of C∗(K,M).

For every si we choose ti a 1-simplex of K such that ti is mapped to ∂Di and

define qi as the starting point of ti. Then ∂ti = (πi − 1)[qi] where πi is a generator

of Γsi . Let Q = {π1, · · · , πm}. We define C∗
Q(K,M) as the subcochain complex of

C∗(K,M) given by

C1
Q(K,M) := {u ∈ HomR[Γ](C1(K),M) | u(ti) ∈ (πi − 1)M for all i},

and C1
Q(K,M) = Ci(K,M) if i 6= 1. It is clear that B1(K,M) ⊂ C1

Q(G,M). We

define H∗
Q(K,M) as the cohomology of C∗

Q(K,M).

If Γ has no elliptic elements, C0(K) is also free over R[Γ] and

C∗(K)
a−→ R

is a free R[Γ]-resolution of R. In this case, H∗(Γ,M) is canonically identified with

H∗(K,M). In general, we have to deal with those elliptic points of X(Γ). Let

p1, · · · , pr ∈ H be a set of representatives of elliptic points of X(Γ), ej := |Γpj |, and

E := lcm{ej}. Let C∗(Γ) be the homogeneous chain complex. We would like to

define chain maps

f∗ : C∗(K)→ C∗(Γ), g∗ : C∗(Γ)→ C∗(K)

so that both f∗ ◦ g∗ and g∗ ◦ f∗ are homotopic to E · id. We define f∗ as follows: Let

S ⊂ H0 be a set of representatives of Γ-orbits on 0-simplices. We may assume that
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S contains p1, · · · , pr, q1, · · · , qm. We define f0 : S → C0(Γ) = R[Γ] by

f0(pj) :=
E

ej

∑
g∈Γpj

[g]

and f0(s) = E[e] if s ∈ S − {p1, · · · , pr}. Then f0 extend uniquely to a R[Γ]-

homomorphism from C0(K) to C0(Γ) with the commutative diagram

0 C2(K) C1(K) C0(K) R 0

· · · C2(Γ) C1(Γ) R[Γ] R 0

f0

a

E·

a

Since C2(K), C1(K) are free over R[Γ] and C∗(Γ) is exact, (f0, E·) extends uniquely

up to chain homotopy to a chain map f∗. Similarly, we pick an arbitrary 0-simplex

p of K and define g0 : R[Γ] → C0(K) by evaluation at [p]. g0 is extended uniquely

up to chain homotopy to a chain map g∗ such that g∗ induces identity map at H0.

Now we see that f∗ ◦ g∗ induces E· on H0(C∗(Γ)), so it’s chain homotopic to E · id.

For g∗ ◦ f∗, the only problem is that f0 ◦ g0(pj) should be Γpj -invariant, which is

clear. Now we have

f ∗ : C∗(G,M)→ C∗(K,M), g∗ : C∗(K,M)→ C∗(G,M),

such that both f ∗ ◦ g∗ and g∗ ◦ f ∗ induce multiplication by E on cohomology. In

particular, if E is invertible in R, H∗(G,M) ∼= H∗(K,M).

To deal with the parabolic cohomology, we may assume that

1. f∗(ti) = E([1, πi]) and g∗([1, πi]) = ti + (πi − 1)bi where bi is a 1-chain with

∂bi = [p]− [qi].

2. p ∈ S but is not an elliptic point. In this way, we have that f0 ◦ g0 = E·.

3. The chain homotopy U∗ between f∗◦g∗ and E ·idC0(Γ) satisfies that U1([1, πi]) ∈

(πk − 1)C2(Γ). We first take U0 = 0. We have that

(f1 ◦ g1)([1, πi]) = E([1, πi]) + (πi − 1)f1(bi).

Since ∂f1(bi) = f0([p] − [qi]) = 0, U1 can be chosen so that U1([1, πi]) ∈

(πi − 1)∂−1(f1(bi)).
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4. The chain homotopy V∗ between g∗ ◦ f∗ and E · idC0(Γ) takes 0 on ti. Since

(g0 ◦ f0)[qi] = E[p], V0 can be chosen so that V0([qi]) = bi. Since

(g1 ◦ f1)(ti)− Eti = V0(∂ti),

V1 can be chosen so that V0([ti]) = 0.

Now if u ∈ C1
Q(G,M), we have that

f ∗(u)(ti) = u(f∗(ti)) = Eu([1, πi]) = Eu(πi) ∈ E(πi − 1)M,

and if u ∈ C1
Q(K,M)

g∗(u)(πk) = g∗(u)([1, πi]) = u(ti) + (πi − 1)u(bi) ∈ (πi − 1)M.

Hence f ∗ : C∗(G,M) → C∗(K,M), g∗ : C∗(K,M) → C∗(G,M) and U∗, V∗ remain

chain homotopies. We obtain the same result as usual cohomology case.

Remark 1. Let P be the set of all parabolic elements of Γ, then every element

π ∈ P is conjugate to a power of some πi. If u(πi) = (πi − 1)xi, u(gπni g−1) =

(gπni g
−1− 1)(gx−u(g)). Hence Z1

P (Γ,M) = Z1
Q(Γ,M) and H1

P (Γ,M) = H1
Q(Γ,M).

Let R be a ring, G be a group, M be a R[G]-module, and S be a flat R-

module endowed with trivial G-action. Then both H∗(G, ·)⊗RS and H∗(G, (·)⊗RS)

are cohomological delta functors from ModR[G] to ModR, or ModS when S is a R-

algebra. Since H∗(G, ·) ⊗R S vanishes on injective R[G]-modules, H∗(G, ·) ⊗R S is

an universal delta functor. At degree 0, we have the functorial map MG ⊗R S →

(M ⊗R S)G, which is injective. Hence we obtain a unique natural transformation

t∗ from H∗(G, ·) ⊗R S to H∗(G, (·) ⊗R S). Alternatively t∗(M) is induced by the

obvious chain map C∗(G,M)⊗R S → C∗(G,M ⊗R S).

t∗ may not be a natural isomorphism of delta functors as tensor product does

not commute with infinite product.

Lemma 2. If R[G] is Noetherian, or G is cyclic, t∗ is a natural isomorphism of

delta functors.

Proof. In both cases, R has a finite free resolution.
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Lemma 3. If G is generated by finitely many elements, t0(M) is a natural iso-

morphism and t1(M) is injective for every M .

Proof. Let g1, · · · , gm be a generating set of G. Tensoring S on the exact sequence

0→MG →M
⊕gi−1−−−→

m⊕
i=1

M

and we get the exact sequence 0 → MG ⊗R S → M ⊗R S
⊕gi−1−−−→

⊕m
i=1M ⊗R S,

hence the isomorphism MG ⊗R S ∼= (M ⊗R S)G.

Consider a short exact sequence

0→M →M ′ →M ′′ → 0

with injective M ′. Apply the delta functors and use that t0 is a natural isomorphism

we have that t1(M) is injective.

Suppose t1(M) is an isomorphism and Q ⊂ G is a finite set. Then H1
Q(G,M)⊗

S = H1
Q(G,M ⊗R S).

Let Γ ⊂ PSL2(R) be a Fuchsian group of the first kind.

Lemma 4. H∗(K,M)⊗R S ∼= H∗(K,M ⊗R S).

Proof. We have to compare the cohomology of

HomR[Γ](C∗(K),M)⊗R S

to

HomR[Γ](C∗(K),M ⊗R S).

Consider the natural transformation HomR[Γ](·,M) ⊗R S → HomR[Γ](·,M ⊗R S).

Both functors commute with finite direct sum. If N ∼= R[Γ]/(g− 1) for some g ∈ Γ,

we have HomR[Γ](N,M)⊗R S =M g ⊗R S, HomR[Γ](N,M ⊗R S) = (M ⊗R S)g, and

the natural homomorphism is an isomorphism. Since each C∗(K) is a finite direct

sum of R[Γ]-modules of this form, we get an isomorphism of cochain complexes.

Proposition 1. If E· : M ⊗R S → M ⊗R S is an isomorphism and t1(M) is

injective, H1(Γ,M)⊗R S → H1(Γ,M ⊗R S) is an isomorphism.
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Proof. Consider the commutative diagram

H1(Γ,M)⊗R S H1(Γ,M ⊗R S)

H1(K,M)⊗R S H1(K,M ⊗R S)

H1(Γ,M)⊗R S H1(Γ,M ⊗R S).

t1

f1⊗1 f1

ψ

g1⊗1 g1

t1

We already have that t1 is injective, ψ is an isomorphism, and f 1 ◦g1 = g1 ◦f 1 = E·.

Now (g1 ⊗ 1) ◦ ψ−1 ◦ (E−1f 1) is the inverse of t∗.

1.2 Eichler-Shimura Isomorphism

Let R = R or C, R2 be endowed with the standard GL2(R)-representation, and

Symn(R2) be the Sn-fixed subspace of (R2)⊗n with the natural GL2(R)-action. Let

θ be the R-bilinear form on R2 given by (v, w) → det
(
v w

)
. This is extended to

Θn, the R-bilinear form on Symn(R2), determined by

Θn(v
⊗n, w⊗n) = Θ(v, w)n.

We have Θn(v, w) = (−1)nΘn(w, v), and Θn(αv, αw) = det(α)nΘn(v, w). This

makes Symn(R2) a self-dual SL2(R)-module.

Let Γ ⊂ SL2(R) be a Fuchsian group of the first kind, ρ : Γ → GL(V ) be a

finite dimensional C-representation with finite image, and k be a positive integer.

Definition 1. Sk(Γ, ρ) is the space of holomorphic functions f : H → V satisfying

that

1. f(αz)j(α, z)−k = ρ(α)f(z) for all α ∈ Γ.

2. For every ` ∈ HomC(V,C), ` ◦ f ∈ Sk(ker(ρ)).

Proposition 2. Sk(Γ, ρ1⊕ρ2) = Sk(Γ, ρ1)⊕Sk(Γ, ρ2). For another Fuchsian group

of the first kind Γ′ ⊃ Γ with [Γ : Γ′] <∞, there is a natural isomorphism

Sk(Γ, ρ) ∼= Sk(Γ
′, IndΓ′

Γ (ρ)).
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Proof. The first assertion is trivial. For the second one, we define

φ : Sk(Γ
′, IndΓ′

Γ (ρ))→ Sk(Γ, ρ), z 7→ f(z)(1),

ψ : Sk(Γ, ρ)→ Sk(Γ
′, IndΓ′

Γ (ρ)), z 7→ (α 7→ f(αz)j(α, z)−k).

They are well-defined C-linear map that are inverse to each other.

Let ρ : Γ → GL(V ) given by ρ(α)(v) := ρ(α)(v). For every f ∈ Sk(Γ, ρ), we

have f(αz)j(α, z)−k = ρ(α)f(z) = ρ(α)f(z).

Suppose k ≥ 2. For every f = (f1, f2) ∈ Sk(Γ, ρ)⊕ Sk(Γ, ρ), we define

ω(f) ∈ H0(Ω1(H, V ⊗C Symk−2(C2))),

ω(f)(z) := f1(z)(ze1 + e2)
⊗ndz + f2(z)(ze1 + e2)⊗ndz.

In particular, ω(f) is a closed 1-form, and ω(f) ◦ α = χ(α)ω(f), where χ is the

representation V ⊗ Symk−2(C2). Let F be a primitive of ω(f). Then F have the

form

F (z) =

∫ z

z0

ω(f) + v

for some z0 ∈ H and v ∈ V ⊗C Symk−2(C2). We define u(f) ∈ Z1(Γ, V ⊗C

Symk−2(C2)) by

u(f)(α) := F (αz)− χ(α)F (z) =
∫ αz0

z0

ω(f) + (1− χ(α))v.

Let π ∈ Γ be a parabolic element and s ∈ P1(R) be a cusp fixed by π. F can be

extend to s and we obtain that

F (s) = F (π(s)) = χ(π)F (s) + u(f)(π).

Hence u(f) ∈ Z1
P (Γ, V⊗CSymk−2(C2)) and [u(f)] is a well-defined class inH1

P (Γ, V⊗C

Symk−2(C2)), independent of the choice of F . We therefore obtain a C-linear map

Ψρ : Sk(Γ, ρ)⊕ Sk(Γ, ρ)→ H1
P (Γ, V ⊗C Symk−2(C2)), f 7→ [u(f)].

Lemma 5. Let Γ′ ⊃ Γ be a Fuchsian group of the first kind such that [Γ : Γ′] <∞.

Then we have the commutative diagram

Sk(Γ
′, IndΓ′

Γ (ρ))⊕ Sk(Γ′, IndΓ′

Γ (ρ)) H1
P (Γ

′, IndΓ′

Γ (V )⊗C Symk−2(C2))

Sk(Γ, ρ)⊕ Sk(Γ, ρ) H1
P (Γ, V ⊗C Symk−2(C2))

Ψ
IndΓ′

Γ (ρ)

ϕ Φ

Ψρ

.
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Note that IndΓ′

Γ (ρ) = IndΓ′

Γ (ρ) and Φ is induced by the natural inclusion Γ→ Γ′ and

IndΓ′

Γ (V )⊗C Symk−2(C2)→ V ⊗C Symk−2(C2), ϕ⊗ v 7→ ϕ(1)⊗ v. Here we use the

isomorphism

IndGH(U ⊗ ResH T ) ∼= IndGH(U)⊗ T.

Proof. An explicit computation shows that both Ψρ ◦ φ and Φ ◦ ΨIndΓ′
Γ (ρ)

maps f

to the class represented by

u : α 7→
∫ z

z0

ω(f)(z)(1).

Theorem 1.

Ψρ : Sk(Γ, ρ)⊕ Sk(Γ, ρ)→ H1
P (Γ, V ⊗C Symk−2(C2))

is an isomorphism.

Proof. By the additivity at ρ we may assume that ρ is a regular representation

IndΓ
Γ0
(C), where Γ0 is the kernel of ρ, and the case is reduced to Γ = Γ0 and ρ is the

trivial representation.

Now we show that

Ψ1 : Sk(Γ)⊕ Sk(Γ)→ H1
P (Γ, Symk−2(C2))

is an isomorphism. Since both sides have the same dimension over C, it suffices to

show the injectivity. We define

(f, g) :=

∫
Γ\H

ω(f) ∧ ω(g),

which is a nondegenerate C-bilinear form on Sk(Γ) ⊕ Sk(Γ). To be explicit, if f =

(f1, f2), g = (g1, g2),

(f, g) =

∫
Γ\H

(
f1(z)g2(z)− g1(z)f2(z)

)
(z − z)k−2dz ∧ dz.

Let F be a primitive of ω(f). If Ψ1(f) = 0, F can be chosen so that F (αz) =

χ(α)F (z) for all α ∈ Γ. Let X be a fundamental domain of X(Γ). ∂X =
∑

i(αi−1)si
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where si are 1-simplices. Then

(f, g) =

∫
∂X

F ∧ ω(g) =
∑
i

(∫
αisi

F ∧ ω(g)−
∫
si

F ∧ ω(g)
)

= 0.

for all g. Hence f = 0 and we get the injectivity.

We similarly define

1. Mk(Γ, ρ) is the space of holomorphic functions from H to V such that

f(αz)j(α, z)−k = ρ(α)f(z)

and for every ` ∈ HomC(V,C), ` ◦ f ∈Mk(ker(ρ)).

2.

Ψρ :Mk(Γ, ρ)⊕ Sk(Γ, ρ)→ H1(Γ, ρ⊗C Symk−2(C2))

given by

f 7→
[(
α 7→

∫ αz0

z0

ω(f)

)]
.

Corollary 1.

Ψρ :Mk(Γ, ρ)⊕ Sk(Γ, ρ)→ H1(Γ, ρ⊗C Symk−2(C2))

is an isomorphism.

Proof. By the same functoriality we reduce this to the case ρ = 1. Since Mk(Γ)⊕

Sk(Γ) and H1(Γ, Symk−2(C2)) have the same dimension, it suffices to show the

injectivity. We consider the commutative diagram with exact rows:

0 Sk(Γ)⊕ Sk(Γ) Mk(Γ)⊕ Sk(Γ) coker(ι)

0 H1
P (Γ, Symk−2(C2)) H1(Γ, Symk−2(C2))

⊕m
i=1H

1(〈πi〉, Symk−2(C2)).

ι

Ψ1 Ψ1

We should show that coker(ι) →
⊕m

i=1H
1(〈πi〉, Symk−2(C2)) is injective. Namely,

Mk(Γ) →
⊕m

i=1H
1(〈πi〉, Symk−2(C2)) has kernel Sk(Γ). Let βi ∈ SL2(R) with

βiπiβ
−1
i =

1 1

0 1

 if si is regular, or βiπiβ−1
i =

−1 1

0 −1

, if si is irregular.

Let f ∈Mk(Γ) and zi := βz0. We have∫ πiz0

z0

ω(f) =

∫ βiπiβ
−1
i zi

zi

ω(f) ◦ β−1
i = β−1

i

∫ βiπiβ
−1
i zi

zi

f |[β−1]k(z)(ze1 + e2)
⊗k−2dz.
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Let xi :=
∫ βiπiβ−1

i zi
zi

f |[β−1]k(z)(ze1 + e2)
⊗k−2. β−1

i xi ∈ (πi − 1) Symk−2(C2) if and

only if xi ∈ (βiπiβ
−1
i ) Symk−2(C2). Therefore, f is in the kernel if and only if for all

regular cusps si, ∫ βiπiβ
−1
i zi

zi

f |[β−1
i ]k(z)dz = 0.

Let q = e2πiz. If si is irregular, f |[β−1
i ]k(z) ∈ q1/2C[[q]]. If si is regular, f |[β−1

i ]k(z) ∈

C[[q]], and the constant term is given by∫ βiπiβ
−1
i zi

zi

f |[β−1
i ]k(z)dz.

Hence the kernel of Mk(Γ)→
⊕m

i=1H
1(〈πi〉, Symk−2(C2)) is exactly Sk(Γ).

1.3 Double Coset Operators

Let Γ1,Γ2 ⊂ SL2(R) be two Fuchsian groups of the first kind. Let ∆ ⊂ GL+
2 (R) be

a semi-group containing Γ1,Γ2, and for every α ∈ ∆, αΓ1α
−1 and Γ2 are commen-

surable. Consider the involution

ι : α 7→ det(α)α−1.

Let X be a R[∆ι]-module. We define for every α ∈ ∆ a R-linear map

(Γ1αΓ2)X : H1
P (Γ1, X)→ H1

P (Γ2, X)

as follows: Let {α1, · · · , αd} be a set representatives of Γ1\Γ1αΓ2. For every β ∈ Γ2,

we have αiβ = γiαj (or we write αiβ = γβi αj) for some γi ∈ Γ1. (Γ1αΓ2)X sends a

1-cocycle u to v : β 7→
∑d

i=1 α
ι
iu(γi). This double coset operator actually defines a

”corestriction” map on the category of R[∆ι]-modules. We first define a chain map

α∗ on homogeneous chains

αn : C̃n(Γ1, X)→ C̃n(Γ2, X)

by

α(ũ)(g0, · · · , gn) :=
d∑
i=1

αιiũ(γ
g0
i , · · · , γ

gn
i ).

Since

αigh = γgi αigh = γgi γ
h
igαigh,
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γghi = γgi γ
h
ig. Therefore,

α(ũ)(gh0, · · · , ghn) =
d∑
i=1

αιiũ(γ
g
i γ

h0
ig , · · · , γ

g
i γ

hn
ig ) =

d∑
i=1

αιiγ
g
i ũ(γ

h0
ig , · · · , γ

hn
ig )

=
d∑
i=1

gαιigũ(γ
h0
ig , · · · , γ

hn
ig ) = gα(ũ)(h0, · · · , hn).

Moreover, α is clearly a chain map. Hence we obtain α∗ on cohomology, and clearly

is a homomorphism for delta functors.

Use u(g1, · · · , gn) = ũ(1, g1, g1g2, · · · , g1 · · · gn) and we see that for H1, α1 is the

double coset operator we defined.

At degree 0 we have α0 : XΓ1 → XΓ2 , x 7→
∑d

i=1 α
ι
ix.

Let V be a finite dimensional C-vector space and ρ : ∆ι → GL(V ) be mul-

tiplicative such that ρ(Γ1), ρ(Γ2) are finite. Then ∆ι acts on V ⊗C Symk−2(C2),

denoted by χ. Suppose further that ρ(−I2) = (−1)k if −I2 ∈ ∆. We define

f |[Γ1αΓ2]k,ρ : z 7→ det(α)k−1

d∑
i=1

ρ(αιi)f(αiz)j(αi, z)
−k.

Then [Γ1αΓ2]k,ρ : Sk(Γ1, ρ) → Sk(Γ2, ρ) is a well-defined C-linear map. We also

define [Γ1αΓ2]k,ρ : Sk(Γ1, ρ)→ Sk(Γ2, ρ) by

f |[Γ1αΓ2]k,ρ := f |[Γ1αΓ2]k,ρ.

This is also C-linear.

Proposition 3. We have the commutative diagram

Sk(Γ1, ρ)⊕ Sk(Γ1, ρ) H1
P (Γ1, V ⊗C Symk−2(C2))

Sk(Γ2, ρ)⊕ Sk(Γ2, ρ) H1
P (Γ2, V ⊗C Symk−2(C2))

[Γ1αΓ2]k,ρ [Γ1αΓ2]k,ρ .

Proof. Let f = (f1, f2) ∈ Sk(Γ1, ρ)⊕ Sk(Γ1, ρ). We have

ω(f1|[Γ1αΓ2]k,ρ) =
d∑
i=1

ρ(αιi)f1(αiz)j(αi, z)
−k det(α)k−1(ze1 + e2)

⊗k−2dz

=
d∑
i=1

ρ(αιi)f1(αiz) det(α)k−1α−1
i (αize1 + e2)

⊗k−2dαiz

=
d∑
i=1

χ(αιi)ω(f1) ◦ αi,

12



and

ω(f2|[Γ1αΓ2]k,ρ) =ω(f2|[Γ1αΓ2]k,ρ) =
d∑
i=1

χ(αιi)ω(f2) ◦ αi

=
d∑
i=1

χ(αιi)ω(f2) ◦ αi =
d∑
i=1

χ(αιi)ω(f2) ◦ αi.

Therefore,

ω(f |[Γ1αΓ2]k,ρ) =
d∑
i=1

χ(αιi)ω(f) ◦ αi.

We have that∫ βz0

z0

ω(f |[Γ1αΓ2]k,ρ) =
d∑
i=1

∫ βz0

z0

χ(αιi)ω(f) ◦ αi =
d∑
i=1

χ(αιi)(F (αiβz0)− F (αiz0))

=
d∑
i=1

χ(αιi)(F (γiαjz0)− F (αiz0))

=
d∑
i=1

χ(αιi)(u(f)(γi) + χ(βi)F (αjz0)− F (αiz0))

=
d∑
i=1

χ(αιi)u(f)(γi) +
d∑
i=1

[
χ(β)χ(αιj)F (αjz0)− χ(αi)F (αiz0)

]
and we get the commutativity.

Similarly,

Mk ⊕ Sk → H1

is Hecke-equivariant.

1.4 Lattices and Duality

Let Γ = Γ1(N). Consider Diamond operators and Hecke operators:

〈d〉 :=

Γ
a b

c d

Γ


k

for some

a b

c d

 ∈ Γ0(N), and

Tp :=

Γ
1 0

0 p

Γ


k

.

13



We denote by Hk(N) and hk(N) C-subalgebras of EndC(Mk(N)) and EndC(Sk(N))

generated by all Diamond operators and Hecke operators. There are both commu-

tative C-algebras.

For every Dirichlet character χ : (Z /N Z)× → C× we define Mk(N,χ) and

Sk(N,χ) as Mk(N)[χ] and Sk(N)[χ], respectively. That means, 〈d〉(f) = χ(d)f for

all (d,N) = 1. We take Γ = Γ0(N),

∆ι =


a b

c d

 ∣∣∣∣∣∣ N | c, (d,N) = 1

 ,

extend χ on ∆ι by χ(g) = χ(d), and define

Tp :=

Γ
1 0

0 p

Γ


k

.

We define Ek(N,χ) as the orthogonal complement of Sk(N,χ) in Mk(N,χ) under

the Petersson inner product. An explicit construction of a basis for Ek(N,χ) when

k ≥ 2 is given as follows: Let ψ, ϕ be Dirichlet characters with conductor u, v,

respectively and (ψϕ)(−1) = (−1)k. Define

Eψ,φ
k (q) := δ(ψ)L(1− k, ϕ) + 2

∞∑
n=1

σψ,φk−1(n)q
n,

where

σψ,φk−1(n) :=
∑
d|n

ψ(n/d)ϕ(d)dk−1.

Define

Eψ,φ,t
k (z) :=

 Eψ,φ
k (tz), (k, ψ, ϕ) 6= (2, 1, 1)

E1,1
2 (z)− tE1,1

2 (tz) (k, ψ, ϕ) = (2, 1, 1)

Proposition 4. {Eψ,φ
k : tuv | N, ψϕ = χ} is a basis for Ek(N,χ).

Let R be a subring of C containing Z[χ]. We define Mk(N,χ;R), Sk(N,χ;R) as

subspaces of Mk(N,χ), Sk(N,χ) consisting of forms whose q-expansions are in R[[q]].

We define mk(N,χ;R) as the subspace of Mk(N,χ) of forms whose q-expansions are

in Frac(R) + qR[[q]]. Note that Mk(N,χ;R), Sk(N,χ;R), and mk(N,χ;R) are all

contained in finite free R-modules.
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Lemma 6. Define Ek(N,χ) has a basis with elements in Mk(N,χ;Q(χ)).

Proof. Define Ek(N,χ;R) := Ek(N,χ) ∩Mk(N,χ;R). We should prove that

Ek(N,χ;Q(χ))⊗Q(χ) C = Ek(N,χ).

Since all Eψ,φ,t
k are in Mk(N,χ;Q(ζN)), we already have

Ek(N,χ;Q(ζN))⊗Q(ζN ) C = Ek(N,χ).

Let G := Gal(Q(ζN)/Q(χ)). Then Ek(N,χ;Q(ζN)) is a Q(ζN)[G]-module, where G

acts on Q(ζN) by its natural action. Therefore,

Ek(N,χ;Q(ζN)) = Ek(N,χ;Q(ζN))
G ⊗Q(χ) Q(ζN).

Since Ek(N,χ;Q(ζN))
G = Ek(N,χ;Q(ζN)

G) = Ek(N,χ;Q(χ)), Ek(N,χ;Q(χ)) ⊗Q(χ)

C = Ek(N,χ).

We also define Hk(N,χ)R, hk(N,χ)R as the R-subalgebra of Hk(N,χ), hk(N,χ)

generated by all Hecke operators. ThenHk(N,χ)R, acts onmk(N,χ;R), Mk(N,χ;R),

and hk(N,χ)R acts on Sk(N,χ;R). We define Hk(N,χ;R) and hk(N,χ;R) as images

of Hk(N,χ)R, hk(N,χ)R in EndR(mk(N,χ;R)) and EndR(Sk(N,χ;R)), respectively.

Note that if h ∈ Hk(N,χ;R) with h(f) = 0 for all f ∈ Mk(N,χ;R), h = 0. There-

fore, Hk(N,χ;R) is also seen as the image of Hk(N,χ)R in EndR(mk(N,χ;R)).

Eichler-Shimura isomorphism gives the commutative diagram

Sk(N,χ)⊕ Sk(N,χ) H1
P (Γ0(N), Symk−2(C2)(χ))

Sk(Γ1(N))⊕ Sk(Γ1(N)) H1
P (Γ1(N), Symk−2(C2))

,

which is Hecke-equivariant. Let h be in the Hecke algebra onH1
P (Γ1(N), Symk−2(C2)).

If h = 0 on Sk(Γ1(N)), h = 0 on Sk(Γ1(N)). Restricts this to the χ-isotypic part

and we have that hk(N,χ) acts on H1
P (Γ0(N), Symk−2(C2)(χ)). Define LP (k− 2, χ)

as the image of

H1
P (Γ0, Symk−2(Z[χ]2)(χ))→ H1

P (Γ0, Symk−2(C2)(χ)).
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LP (k− 2, χ) is a Lattice of full-rank and equipped with hk(N,χ)R-action. Similarly

we get a lattice of full-rank L(k − 2, χ) ⊂ H1(Γ0, Symk−2(C2)(χ)) with Hk(N,χ)-

action.

Theorem 2. Suppose k ≥ 2. For all Z[χ] ⊂ R ⊂ C, there are natural isomor-

phisms

Hk(N,χ)R ∼= Hk(N,χ;R), hk(N,χ)R ∼= hk(N,χ;R),

Hk(N,χ)Z[χ] ⊗Z[χ] R ∼= Hk(N,χ)R, hk(N,χ)Z[χ] ⊗Z[χ] R ∼= hk(N,χ)R,

and

mk(N,χ;Z[χ])⊗Z[χ] R = mk(N,χ;R), Sk(N,χ;Z[χ])⊗Z[χ] R = Sk(N,χ;R).

Moreover, we have perfect pairings

Hk(N,χ;R)×mk(N,χ;R)→ R, hk(N,χ;R)× Sk(N,χ;R)→ R

given by (h, f) 7→ a1(h(f)).

Lemma 7. The duality is true if R is a field.

Proof. In this case, we are dealing with finite dimension R-vector spaces, so it

suffices to prove the nondegeneracy of this R-bilinear pairing. If (h, f) = 0 for all h,

(Tn, f) = a1(Tn(f)) = an(f) = 0 for all n ∈ N. Hence f is a constant. Since k > 0,

f = 0. If (h, f) = 0 for all f , (h, Tn(f)) = a1(hTn(f)) = a1(Tnh(f)) = Tn(h(f)) = 0.

Hence h(f) = 0 for all f and we get that h = 0.

Lemma 8. The theorem is true for R = C.

Proof. Consider the commutative diagram

0 hk(N,χ)Z[χ] ⊗Z[χ] C EndZ[χ](LP (k − 2, χ))⊗Z[χ] C

0 hk(N,χ) EndC(H
1
P (Γ0(N), Symk−2(C2)(χ)))

∼= .

By definition, hk(N,χ)Z[χ]⊗Z[χ]C→ hk(N,χ) is surjective. By diagram chasing, it is

also injective, hence an isomorphism. Similarly we have that Hk(N,χ)Z[χ]⊗Z[χ]C→

Hk(N,χ) is an isomorphism.
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Consider the isomorphism

HomC(hk(N,χ),C) ∼= Sk(N,χ), φ 7→
∞∑
n=1

φ(Tn)q
n.

Since hk(N,χ) = hk(N,χ)Z[χ]⊗Z[χ]C, HomC(hk(N,χ),C) = HomZ[χ](hk(N,χ)Z[χ],C).

Since hk(N,χ)Z[χ] is finite projective, it is also HomZ[χ](hk(N,χ)Z[χ],Z[χ]) ⊗Z[χ] C,

and with the identification, HomZ[χ](hk(N,χ)Z[χ],Z[χ]) is identified as the Z[χ]-

submodule in Sk(N,χ) of elements f satisfying that an(f) ∈ Z[χ] for all n ∈ N.

Hence HomZ[χ](hk(N,χ)Z[χ],Z[χ]) = Sk(N,χ;Z[χ]). Therefore,

Sk(N,χ;Z[χ])⊗Z[χ] C = Sk(N,χ),

hk(N,χ)Z[χ] → EndZ[χ](Sk(N,χ;Z[χ])) is isomorphic onto hk(N,χ;Z[χ]), and

hk(N,χ;Z[χ])⊗Z[χ] C = hk(N,χ).

For the duality part, we already have

HomZ[χ](hk(N,χ;Z[χ]),Z[χ]) = Sk(N,χ;Z[χ]).

Apply HomZ[χ](·,Z[χ]) and we have

HomZ[χ](Sk(N,χ;Z[χ]),Z[χ])

=HomZ[χ](HomZ[χ](hk(N,χ;Z[χ]),Z[χ]),Z[χ])

=hk(N,χ;Z[χ]).

For modular forms, we should also prove that

Lemma 9.

mk(N,χ;R) = {f ∈Mk(N,χ) | an(f) ∈ R for all n > 0}.

Proof. Since both Sk(N,χ) and Ek(N,χ) have base with Fourier coefficients in

Q(χ), Mk(N,χ) has a basis with Fourier coefficients in Q(χ). Therefore, if f ∈

Mk(N,χ) and an(f) ∈ Frac(R) for all n ≥ 0, a0(f) ∈ Frac(R).

Now we similarly have

mk(N,χ;Z[χ]) = HomZ[χ](Hk(N,χ)Z[χ],Z[χ]),
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Mk(N,χ) = HomZ[χ](Hk(N,χ)Z[χ],Z[χ])⊗Z[χ] C = mk(N,χ;Z[χ])⊗Z[χ] C,

and

Hk(N,χ) = HomZ[χ](mk(N,χ;Z[χ]),Z[χ]).

Now we prove the general case. Consider the natural map

hk(N,χ)Z[χ] ⊗Z[χ] R→ hk(N,χ)R → hk(N,χ;R).

By definition, this is surjective. If h is in the kernel, h = 0 on Sk(N,χ;Z[χ]). Since

Sk(N,χ;Z[χ])⊗Z[χ]C = Sk(N,χ) and hk(N,χ)Z[χ]⊗Z[χ]R→ hk(N,χ)Z[χ]⊗Z[χ]R⊗R
C = hk(N,χ) is injective for that C is R-flat, h = 0. Hence hk(N,χ)Z[χ] ⊗Z[χ] R →

hk(N,χ)R is injective. By definition, this is also surjective. We obtain that

hk(N,χ)Z[χ] ⊗Z[χ] R = hk(N,χ)R ∼= hk(N,χ;R).

The same argument for Hk and mk gives

Hk(N,χ)Z[χ] ⊗Z[χ] R = Hk(N,χ)R ∼= Hk(N,χ;R).

Since

hk(N,χ) = hk(N,χ)R ⊗R C,

Sk(N,χ) = HomR(hk(N,χ)R,C), and HomR(hk(N,χ)R, R) is identified as Sk(N,χ;R).

On the other hand, the isomorphism hk(N,χ)Z[χ] ⊗Z[χ] R = hk(N,χ)R gives that

Sk(N,χ;R) = HomZ[χ](hk(N,χ;Z[χ]), R)

=HomZ[χ](hk(N,χ;Z[χ]),Z[χ])⊗Z[χ] R

=Sk(N,χ;Z[χ])⊗Z[χ] R.

Similarly, Mk(N,χ) = HomR(Hk(N,χ)R,C), HomR(Hk(N,χ)R, R) is identified as

{f ∈Mk(N,χ) | an(f) ∈ R for all n ∈ N} = mk(N,χ;R),

and

HomR(Hk(N,χ)R, R) = HomR(Hk(N,χ)Z[χ],Z[χ])⊗Z[χ] R = mk(N,χ;Z[χ])⊗Z[χ] R.
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Corollary 2. Mk(N,χ;Z[χ])⊗Z[χ] R =Mk(N,χ;R).

Proof. Define C(R) := mk(N,χ;R)/Mk(N,χ;R), which is identified as a submod-

ule of Frac(R)/R via a0. Consider the commutative diagram

0 Mk(N,χ;Z[χ])⊗Z[χ] R mk(N,χ;Z[χ])⊗Z[χ] R C(Z[χ])⊗Z[χ] R 0

0 Mk(N,χ;R) mk(N,χ;R) C(R) 0

∼= .

By snake lemma it suffices to show that C(Z[χ]) ⊗Z[χ] R → C(R) is injective. The

map

C(Z[χ])⊗Z[χ] R→ C(R)→ Frac(R)/R

is the same as the map

C(Z[χ])⊗Z[χ] R→ Q(χ)/Z[χ]⊗Z[χ] R→ Frac(R)/R,

which is injective.

The same method for Γ1(N) yields that for every subring R ⊂ C and k ≥ 2

there are isomorphisms

Hk(N)R ∼= Hk(N ;R), hk(N)R ∼= hk(N ;R),

Hk(N)Z ⊗Z R ∼= Hk(N,χ)R, hk(N)Z ⊗Z R ∼= hk(N)R,

mk(N ;Z)⊗Z R = mk(N ;R), Sk(N ;Z)⊗Z R = Sk(N ;R),

and perfect pairings

Hk(N ;R)×mk(N ;R)→ R, hk(N ;R)× Sk(N ;R)→ R

given by (h, f) 7→ a1(h(f)). In particular, Mk(N ;Q)⊗QC =Mk(N). Let Aut(C /Q)

acts on Mk(N) by acting on coefficients of q-expansions. Then Aut(C /Q) commute

with Hk(N ;Z). Therefore, for all σ ∈ Aut(C /Q) and f ∈ Mk(N), fσ ∈ Mk(N),

and if f ∈Mk(N ;χ), fσ ∈Mk(N ;χσ). The same result holds for Sk(N).
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1.5 Dimension Computation

Let R be a field, and M be a finite dimensional R-vector space. If E is invertible in

R, we can compute the parabolic cohomology in terms of simplicial cohomology.

Proposition 5. H0
Q(K,M) =MG. This is easily seen by H0

Q(K,M) = H0(K,M)

and H0 is connected.

Proposition 6. H2
Q(K,M) =M/

∑
g∈Γ(g − 1)M = H0(Γ,M).

Now we compute H1
Q(K,M) via Euler characteristic. We have that

χQ(K,M) = dimR(C
0(K,M))− dimR(C

1
Q(K,M)) + dim2(C

1(K,M)).

Let Ni be the number of Γ-orbits of i-simplices in K. We have that

dimR(C
0(K,M)) = N0 dimR(M)−

r∑
j=1

(dimR(M)− dimR(M
Γpj )),

dimR(C
1(K,M)) = N1 dimR(M)−

m∑
i=1

(dimR(M)− dimR((πi − 1)M)),

and dimR(C
2(K,M)) = N2 dimR(M). Let g be the genus of X(Γ). We have

N0 −N1 +N2 +m = 2− 2g.

Let ε0 := dimR(M
G), ε2 := dimR(M/

∑
g∈Γ(g − 1)M). We have that

dimR(H
1
Q(K,M)) =ε0 + ε2 − χQ(K,M) = (2g − 2) dimR(M) + ε0 + ε2

+
m∑
i=1

(dimR((πi − 1)M)) +
r∑
j=1

(dimR(M)− dimR(M
Γpj )).

For modular forms, we should also compute dimR(H
1(K,M)). If Γ has cusps,

H2(K,M) = 0. Hence

dimR(H
1(K,M)) =(2g − 2 +m) dimR(M) + ε0 +

r∑
j=1

(dimR(M)− dimR(M
Γpj )).

Let Γ be the image of Γ in PSL2(R). Let M be a Γ-module. If −I2 ∈ Γ, we use the

Hochschild–Serre spectral sequence

Hp(Γ, Hq({±I2},M))⇒ Hp+q(Γ,M).
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Suppose 2 is invertible in R. Hq({±I2},M) = 0 for q ≥ 1, hence the isomorphism

H∗(Γ,MH) ∼= H∗(Γ,M).

NowM = Symk−2(C2). If k is odd, −I2 6∈ Γ. Hence we always haveH∗(Γ, Symk−2(C2)) =

H∗(Γ, Symk−2(C2)). We have to show that

2 dimC(Sk(Γ)) = dimC(H
1
P (Γ, Symk−2(C2)))

=(2g − 2)(k − 1) + dimC(Symk−2(C2)Γ) + dimC(Symk−2(C2)/
∑
g∈Γ

(g − 1) Symk−2(C2))

+
m∑
i=1

((πi − 1) Symk−2(C2)) +
r∑
j=1

dimC(Symk−2(C2)/ Symk−2(C2)Γpj ).

and that

dimC(Mk(Γ))− dimC(Sk(Γ))

=
m∑
i=1

(Symk−2(C2)πi)− dimC(Symk−2(C2)/
∑
g∈Γ

(g − 1) Symk−2(C2)).

Theorem 3. If k = 2, dimC(S2(Γ)) = g. If k > 2,

dimC(Sk(Γ)) =


(k − 1)(g − 1) +

k − 2

2
m+

∑r
j=1

⌊
k(ej − 1)

2ej

⌋
, k is even

(k − 1)(g − 1) +
k − 2

2
m1 +

k − 1

2
m2 +

∑r
j=1

⌊
k(ej − 1)

2ej

⌋
, k is odd

,

here m1,m2 are numbers of regular and irregular cusps, respectively. Moreover,

dimC(Mk(Γ))− dimC(Sk(Γ)) =


m− 1, k = 2

m, k ≥ 4, k is even

m1, k is odd

.

We first consider cusp forms.

1. k = 2: CΓ = C, C /
∑

g∈Γ(g − 1)C = C, (πk − 1)C = 0, CΓpj = C. We get

dimC(H
1
P (Γ,C)) = 2g.

2. k > 2: (πk− 1) Symk−2(C2) has dimension k− 1 if sk is an irregular cusp, oth-

erwise it has dimension k−2. Let σj be a generator of Γpj . Let e′j be the order

of σj. Then σj has tow eigenvalues ωj, ω−1
j where ωj is a primitive e′jth root
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of unity. σj acts on Symk−2(C2) with eigenvalues ωk−2
j , ωk−4

j , · · · , ω4−k
j , ω2−k

j .

Therefore, dimC(Symk−2(C2)/ Symk−2(C2)Γpj ) is twice the numbers of positive

integers a ∈ {1, · · · , k − 2} such that a ≡ k (mod 2) and e′j ∤ a. We should

show that the number of such a is
⌊
k(ej − 1)

2ej

⌋
.

(a) If e′j is even, −I2 ∈ Γpj . We have that k is even and e′j = 2ej. Let ` := k

2
.

We have to verify the identity

`− 1−
⌊
`− 1

ej

⌋
=

⌊
`(ej − 1)

ej

⌋
,

or equivalently,

`− 1 =

⌊
`− 1

ej

⌋
+

⌊
`(ej − 1)

ej

⌋
.

This is true for that `− 1 + `(ej − 1) = `ej − 1.

(b) If e′j is odd, ej = e′j. If k is even write ` = k

2
. Then ej | k− 2i if and only

if ej | `− i. Hence we reduce the case to the previous one. Suppose k is

odd, say k = 2`+ 1. We have to verify that

2`− 1−
⌊
2`− 1

ej

⌋
−

(
`− 1−

⌊
`− 1

ej

⌋)
=

⌊
(2`+ 1)(ej − 1)

2ej

⌋
.

Since
⌊
(2`+ 1)(ej − 1)

2ej

⌋
= ` −

⌊
2`+ ej
2ej

⌋
= ` −

⌊
`

ej
+

1

2

⌋
, we have to

show that ⌊
`

ej
+

1

2

⌋
+

⌊
`− 1

ej

⌋
=

⌊
2`− 1

ej

⌋
.

Since ` is a period of both
⌊
`

ej
+

1

2

⌋
+

⌊
`− 1

ej

⌋
− 2`

ej
and

⌊
2`− 1

ej

⌋
− 2`

ej
,

and ej is odd, it suffices to show the equation for 1 ≤ ` < ej/2 and

ej/2 < ` ≤ ej, both of which are clear.

Suppose x ∈ Symk−2(C2). Define

p(z) := Θk−2(x, (ze1 + e2)
⊗k−2).

Then p(z) is a polynomial in z of degree at most k − 2. For every α ∈ Γ,

p(αz)j(α, z)k−2 = Θk−2(x, α(ze1 + e2)
⊗k−2) = p(z).
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For every cusp sk, let gk ∈ SL2(R) such that gkπkg−1
k =

1 h

0 1

. Then

p|[g−1
k ]2−k

is a polynomial in z and p|[g−1
k ]2−k(z) = p|[g−1

k ]2−k(z + 2h). This gives that

p|[g−1
k ]2−k is a constant. Hence p(z) ∈ M2−k(Γ). Since 2 − k < 0, p =

0. This gives that x = 0. We use the duality between H0 and H0 to get

Symk−2(C2)/
∑

g∈Γ(g − 1) Symk−2(C2) = 0.

Since dimC(Symk−2(C2)/
∑

g∈Γ(g − 1) Symk−2(C2)) is 0 if k > 2, is 1 if k = 2, and∑m
i=1(Symk−2(C2)πi) is the number of regular primes, the case for modular forms

follows.

2 O-adic Modular Forms

2.1 Basic Definitions

Let K/Qp be a finite extension, O ⊂ K be the ring of integers, and $ ∈ O be a

uniformizer. Let q = p if p > 2 and q = 4 if p = 2. Let ω : (Z /q Z)× → O× be the

Teichmüller character and χ : (Z /N Z)× → O× be a Dirichlet character. We define

Mk(N,χ;O) :=Mk(N,χ;Z[χ])⊗Z[χ] O, Sk(N,χ;O) := Sk(N,χ;Z[χ])⊗Z[χ] O .

We similarly have Hk(H,χ;O), hk(N,χ;O), and we endow all spaces with p-adic

topology.

2.2 Ordinary Forms

Lemma 10. Let A be O-algebra which is finite as a O-module. Then for every

x ∈ A, the limit limn→∞ xn! exists under p-adic topology and is an idempotent.

Proof. Since A is finite over O, A is p-adically complete, and for every m ∈ N,

A/pmA is finite. There are a(m), b(m) ∈ N such that

xa(m) ≡ xa(m)+b(m) (mod pmA).

23



Hence for every n ≥ a(m), xn ≡ xn+b(m) (mod pmA). Take n(m) := max{a(m), b(m)}

and we have that for every n ≥ n(m),

x(n+1)! ≡ xn! ≡ x2(n!) (mod pmA).

Hence limn→∞ xn! exists in A/pmA, which is xn(m)! (mod pmA), which is an idempo-

tent. Let em := xn(m)! (mod pmA). Then (em)m∈N defines an element in lim←−m∈NA/p
mA =

A, which is an idempotent.

Definition 2. The ordinary projector e is defined as limn→∞ T n!p ∈ Hk(N,χ;O).

By definition, e(f) = limn→∞ T n!p (f) under p-adic topology. f ∈ Mk(N,χ;Cp) is

called ordinary if e(f) = f . Equivalently, f ∈ eMk(N,χ;Cp).

Example 1. Assume p | N , k ≥ 2. In this case, an(Tp(f)) = apn(f). For every

(t, p) = 1 we define Vψ,φ,t as the subspace generated by

Eψ,φ,t
k , Eψ,φ,pt

k , · · ·

in Ek(N,ψ, ϕ). Assume that Vψ,φ,t 6= 0 and we compute eVψ,φ,t. Note that if

Eψ,φ
k (pα+1tz) ∈ Ek(N,ψ, ϕ), TpEψ,φ

k (pα+1tz) = Eψ,φ
k (pαtz).

1. ψ(p) = 0: TpEψ,φ,t
k = ϕ(p)pk−1Eψ,φ,t

k . In this case, eVψ,φ,t = 0.

2. ψ(p) 6= 0 but ϕ(p) = 0: TpEψ,φ,t
k = ψ(p)Eψ,φ,t

k . In this case, eVψ,φ,t = CEψ,φ,t
k .

3. ψ(p)ϕ(p) 6= 0: Let α := vp(N) > 0. Suppose (k, ψ, ϕ) 6= (2, 1, 1). We consider

another basis

{Eψ,φ,t
k −ϕ(p)pk−1Eψ,φ,pt

k , · · · , Eψ,φ,pα−1t
k −ϕ(p)pk−1Eψ,φ,pαt

k , Eψ,φ,t
k −ψ(p)Eψ,φ,pt

k }.

Eψ,φ,t
k −ϕ(p)pk−1Eψ,φ,pt

k , Eψ,φ,t
k −ψ(p)Eψ,φ,pt

k are Tp-eigenvectors of eigenvalues

ψ(p), ϕ(p)pk−1, respectively. Therefore, eVψ,φ,t = C(Eψ,φ,t
k −ϕ(p)pk−1Eψ,φ,pt

k ).

If (k, ψ, ϕ) = (2, 1, 1), we similarly have eVψ,φ,t = C(Eψ,φ
k (tz)− 2Eψ,φ

k (2tz)).

e preserves Sk(N,χ;O) as Sk(N,χ;O) is a complete subspace of Mk(N,χ;O).

We define

Hord
k (N,χ;O) := eHk(N,χ;O), hord

k (N,χ;O) := ehk(N,χ;O),
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Mord
k (N,χ;O) := eMk(N,χ;O), Sord

k (N,χ;O) := eSk(N,χ;O),

and

mord
k (N,χ;O) := emk(N,χ;O).

We still have the duality

HomO(H
ord
k (N,χ;O),O) ∼= mord

k (N,χ;O),

HomO(h
ord
k (N,χ;O),O) ∼= Sord

k (N,χ;O).

Note that e(f) may be a cusp form even if f is not a cusp form. The example on

Eisenstein series shows that

dimCp(M
ord
k (N,χωa))− dimCp(S

ord
k (N,χωa))

is independent of a and k ≥ 2.

Lemma 11. Suppose (p,N) = 1, α > 0, and χ is a Dirichlet character modulo

Npα. Then Tp sends Mk(Np
α+1, χ) to Mk(Np

α, χ).

Proof. It suffices to show that if f ∈ Mk(Np
α+1, χ), Tp(f) is Γ1(Np

α)-invariant.

Let g =

a b

c d

 ∈ Γ1(Np
α).

1 j

0 p

a b

c d

1 j

0 p

−1

=

a+ cj B

pc d− cj


where B ∈ (d− a)j − cj2 + b

p
. Hence if p | b, Tp(f)|[g]k = Tp(f). Since Tp(f) is1 Z

0 1

-invariant, Tp(f) has level Npα.

Let pα be the p-part of the conductor of χ. We see that if α > 0 and f is

ordinary of Nebentypus χ and tame level N , then f has level Npα.

2.3 Constant Rank

Suppose (N, p) = 1.
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Theorem 4. Let χ : (Z /Npα Z)× → O× be a Dirichlet character for some α > 0.

Let ε : (Z /Npα Z)× → µp∞(O×) be a finite order character. Then

dim(Mord
k (Npα, εχω−k)) = dim(Mord

2 (Npα, χω−2)),

dim(Sord
k (Npα, εχω−k)) = dim(Sord

2 (Npα, χω−2)).

For Γ1(Np
α) we have

dim(Mord
k (Γ1(Np

α))) = dim(Mord
2 (Γ1(Np

α))),

dim(Sord
k (Γ1(Np

α))) = dim(Sord
2 (Γ1(Np

α))).

Proof. Let Γ := Γ0(Np
α) or Γ1(Np

α) and define L(k − 2, R) := Symk−2(R2). For

our purpose we may assume that α >> 0. Suppose that Γ has a subgroup H ⊂ Γ of

finite index with p ∤ [Γ : H] and H has no torsion elements other than {±I2}. For

example, if Γ = Γ1(Np
α), for our purpose we may assume Npα > 3 and hence Γ has

no torsion element. For Γ0, if p > 3, we may take H = Γ1(p) ∩ Γ, and if p = 2, 3,

we may assume α ≥ 2 as Γ0(4) and Γ0(9) have no torsion points other than {±I2}

and take H = Γ. Now we have H∗(H,M) = H∗(Γ,M) for all O[Γ]-module M . In

particular, H2(H,M) = 0. This gives H2(Γ,M) = 0 for all O[Γ]-module M except

the case Γ = Γ0(N2α).

Let F be the residue field of O. Consider the short exact sequence

0→ L(k − 2,O)(εχω−k)
ϖ·−→ L(k − 2,O)(εχω−k)→ L(k − 2,F)(εχω−k)→ 0

and the corresponding long exact sequence. Since

T 2
p |L(k−2,F)(ϵχω−k) = 0,

eH0(Γ, L(k − 2,F)(εχω−k)) = 0. Since the image of H0(Γ, L(k − 2,F)(εχω−k)) in

H1(Γ, L(k−2,O)(εχω−k)) isH1(Γ, L(k−2,O)(εχω−k))[$], eH1(Γ, L(k−2,O)(εχω−k))[$] =

0. Therefore,

eH1(Γ, L(k − 2,O)(εχω−k))

26



is finite free, and

dimK(eH
1(Γ, L(k − 2, K)(εχω−k)))

= dimF(eH
1(Γ, L(k − 2,O)(εχω−k))⊗O F)

= dimF(eH
1(Γ, L(k − 2,F)(χω−k))).

when we are not in the case Γ = Γ0(N2α). If Γ = Γ0(N2α), we show that

eH2(Γ, L(k − 2,O)(εχω−k)) = 0 and we also have the formula above. Consider

the spectral sequence

Ep,q
2 = Hp(Γ, Hq({±I2},M))⇒ Hp+q(Γ,M).

where M is a O[Γ]-module, which is finite free over O with trivial {±I2}-action.

Then H1({±I2},M) = M [2] = 0. Since Hp(Γ, ·) vanishes for p ≥ 2, the spectral

sequence gives the isomorphism H2(Γ,M) ∼= H2({±I2},M)Γ.

Now we compute H2({±I2},M). Let ϕ2 be a inhomogeneous 2-cochain. The

condition that it is a cocycle is that

ϕ2(I2, I2) = ϕ2(I2,−I2) = ϕ2(−I2, I2).

Let ϕ1 be a 1-cocycle. Say ϕ(I2) = a and ϕ(−I2) = b. Then

(δϕ1)(I2, I2) = (δϕ1)(−I2, I2) = (δϕ1)(I2,−I2) = a, (δϕ1)(−I2,−I2) = 2b− a.

Therefore,

[ϕ2] 7→ ϕ2(−I2,−I2)− ϕ2(I2, I2)

induces an Γ-equivariant isomorphism from H2({±I2},M) to M/2M . Hence we

obtain an isomorphism H2(Γ,M)→ H0(Γ,M/2M). Take M = L(k−2,O)(εχω−k).

The isomorphism is compatible with Hecke operators for that a class [u] in H2(Γ,M)

is uniquely determined by values of u on {±I2}2 and {±I2} is in the center of Γ.

Since eH0(Γ,M/2M) = 0, eH2(Γ,M) = 0.

Consider the Γ-equivariant map

ι : L(k − 2,F)(χω−k)→ F(χω−2), e1 7→ 0, e2 7→ 1.
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This gives the long exact sequence

eH∗(Γ, ker(ι))→ eH∗(Γ, L(k − 2,F)(χω−k))→ eH∗(Γ,F(χω−2))
+1−→ .

Since

p i

0 1

 vanishes on ker(ι), eH∗(Γ, ker(ι)) = 0 and we get

eH1(Γ, L(0,F)(χω−2)) = eH1(Γ,F(χω−2)) ∼= eH1(Γ, L(k − 2,F)(χω−k)).

3 Hida Family

3.1 Λ-adic Modular Forms

Let Γ = Gal(Q∞ /Q) = 1+q Zp and u ∈ Γ = 1+q Zp be a fixed geometric generator.

Define

Λ = O[[Γ]] := lim←−
k

O[Γ/Γpk ] ∼= lim←−
k

O[T ]/〈(1 + T )p
k − 1〉

where the last isomorphism is given by γ0 7→ 1+T . We will show that lim←−kO[T ]/〈(1+

T )p
k − 1〉 = O[[T ]].

Definition 3. Let P ∈ O[T ]. P is called a distinguished polynomial if P is non-

constant, monic, and P ≡ T deg(P ) (mod $).

Proposition 7 (Division Algorithm). Suppose P = a0+a1T + · · · ∈ O[[T ]], P 6≡ 0

(mod $), and n = min{k ∈ N | ak ∈ O×}. Then for every f ∈ O[[T ]] there exists a

unique pair (Q,R) where Q ∈ O[[T ]] and R ∈ O[T ] has degree smaller than n, such

that

f = QP +R.

Theorem 5 (Weierstrass Preparation). For every f ∈ O[[T ]] there exists a unique

triple (u, U(T ), P (T )) where u ∈ Z≥0, U ∈ O[[T ]]×, and P (T ) is a distinguished

polynomial, such that

f = $uPU.

28



It is easily seen that O[[T ]] is a UFD of dimension 2 and its irreducible elements

are $ and all irreducible distinguished polynomials.

Theorem 6. Let P1, P2, · · · be a sequence of distinguished polynomials such that

Pk ∈ ($,T )k and Pk | Pk+1 for all k ∈ N. We endow O[[T ]] with the m-adic topology

and O[[T ]]/(Pk) the p-adic topology. Then the natural map

ϕ : O[[T ]]→ lim←−
k

O[[T ]]/(Pk)

is an isomorphism both algebraically and topologically.

Proof. SinceO[[T ]]/(Pk) is p-adically complete, it is isomorphic to lim←−ℓO[[T ]]/(Pk, $
ℓ)

with each object endowed with discrete topology. Hence

lim←−
k

O[[T ]]/(Pk) = lim←−
k,ℓ

O[[T ]]/(Pk, $ℓ) = lim←−
k

O[[T ]]/(Pk, $k),

where each O[[T ]]/(Pk, $k) is given discrete topology. Since (Pk, $
k) ⊂ mk, it

suffices to show that for every k ∈ N is a ` such that mℓ ⊂ (Pk, $
k). This is true as

the radical of (Pk, $k) is m and hence O[[T ]]/(Pk, $k) is Artinian.

Let Pk := (1 + T )p
k − 1. Since O[T ]/(Pk) → O[[T ]]/(Pk) is an isomorphism,

lim←−kO[T ]/〈(1 + T )p
k − 1〉 = O[[T ]].

Definition 4. Let χ : (Z /Npα Z)× → O× be a Dirichlet character for some α ≥ 1.

We say F ∈ Λ[[q]] is a (cusp,ordinary) Λ-adic modular form if F (uk − 1) ∈ O[[q]]

is a (cusp,ordinary) modular form in Mk(Np
α, χω−k,O) for all k >> 0. We define

M(χ; Λ) (Mord(χ; Λ), S(χ; Λ), Sord(χ; Λ)) as the space of Λ-adic (ordinary, cusp,

ordinary cusp) modular forms.

Example 2. Let ψ, ϕ be two primitive Dirichlet characters modulo u, v, respec-

tively, with value in O×. Suppose ψ(p) 6= 0. Then

1

2

(
Eψ,φ
k (z)− ϕ(p)pk−1Eψ,φ

k (pz)
)

is ordinary. The q-expansion of the ordinary Eisenstein series is

n 7→
∑
d|n
p∤d

ψ(n/d)ϕ(d)dk−1
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and the constant term is
1

2
δ(ψ)Lp(1− k, ϕ)

We define An,ψ,φ as ∑
d|n
p∤d

ψ(n/d)ϕ(d)d−1〈d〉

and A0,ψ,φ as the element in Frac(Λ) with

A0,ψ,φ(ε(u)u
s − 1) =

1

2
δ(ψ)Lp(1− s, εϕ)

for all |s|p < qp−1/(p−1) and ε any finite order character on 1 + q Zp. If ϕ is odd or

ψ 6= 1, A0,ψ,φ = 0. If ψ = 1, ϕ is nontrivial and even, then A0,ψ,φ ∈ Λ. If ψ = ϕ = 1,

A0,ψ,φ ∈
Λ

T
. Define

Eψ,φ := A0,ψ,φ +
∞∑
n=1

An,ψ,φq
n.

When (ϕ, ψ) 6= (1, 1),

Eψ,φ ∈Mord(ψϕ; Λ)

with suitable level, E1,1 ∈ T−1Mord(1; Λ), and

Eψ,φ(ε(u)uk − 1) ∈Mord
k (Npα, εψϕ;Qp[ε])

for all k ≥ 2 with suitable N,α.

Definition 5. For every k ≥ 2 we define

Pk := T − (uk − 1).

More generally, for every finite order character ε : 1 + 2pZp → C×
p , we define Pk,ϵ as

the minimal polynomial of ε(u)uk − 1 over O.

3.2 Ordinary Hida Families

Theorem 7. Mord(χ; Λ) and Sord(χ; Λ) are free of finite rank over Λ.

Proof. Let M ′ be a finite free submodule of Mord, say F1, · · · , Fn be a basis. Then

there exists b1, · · · , bn ∈ N such that D := det(a(bj, Fi)) 6= 0. Therefore, for
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all k >> 0, {Fi(uk − 1)} ⊂ Mord
k (Npα, χω−k;O) and generates a free O-module

of rank n. Therefore, n ≤ rankO(M
ord
k (Npα, χω−k;O)) for all k >> 0. Since

rankO(M
ord
k (Npα, χω−k;O)) is bounded independent of k, n is bounded indepen-

dent of M . Therefore, there is a n0 ∈ Z≥0 such that n0 is the maximal possible rank

of free submodules of Mord.

Let F1, · · · , Fn0 ⊂ Mord be a basis of a free submodule M ′ of rank n0 of Mord.

Let L := Frac(Λ). Let F ∈Mord. There are λ1, · · · , λn0 ∈ L such that

λ1F1 + · · ·+ λn0Fn0 = F.

Consider linear equations

λ1a(nj, F1) + · · ·+ λn0a(nj, Fn0) = a(nj, F )

and we have that Dλj ∈ Λ for all j. Hence M ′

D
⊃ Mord, and Mord is finitely

generated. Therefore, there is a a ∈ N such that for all k ≥ a and F ∈ Mord,

F (uk − 1) ∈ Mord
k (Npα, χω−k;O). Let k ≥ a. If F (uk − 1) = 0, then F = PkF

′ for

some F ′ ∈ Λ[[q]] and F ′(ur − 1) = F (ur − 1)/(ur − uk) ∈Mord
r (Np, χω−r;O) for all

r > k. Hence F ∈ PkMord. We have that

Mord/PkMord →Mord
k (Npα, χω−k;O)

is injective. Let f1, · · · , fn be a O-basis of the image and F1, · · · , Fn be their liftings.

By Nakayama’s lemma, Mord is generated by F1, · · · , Fn. If λ1, · · · , λn ∈ Λ such that

λ1F1 + · · ·+ λnFn = 0,

Pk | λi for all i. By infinite descent method λ1 = · · · = λn = 0. Namely, Mord is free

and {F1, · · · , Fn} is a basis.

The proof for Sord is identical.

We define Hecke operators on M as follows:

a(m,TnF ) :=
∑
d|(m,n)
(d,Np)=1

χ(d)〈d〉d−1a(mn/d2, F ).

Since (TnF )(u
k − 1) = Tn(F (u

k − 1)) for k >> 0, Tn ∈ EndΛ(M), preserving

subspaces of ordinary and cusp forms.
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We would like to define an ordinary projector e : M→Mord, which should be

eF = lim
n→∞

T n!p F

under the m-adic topology. This is done circuitously. Given an F ∈ M. Let a ∈ N

such that F (uk − 1) ∈Mk(Np, χω
−k;O) for all k ≥ a. We define

Ma,j := {F ∈M | F (uk − 1) ∈Mk(Np, χω
−k;O) ∀ k ∈ [a, j]}.

Let Ωj :=
∏j

k=a Pk(T ) where Pk(T ) := T − (uk − 1). Then

Ma,j →
j⊕

k=a

Mk(Np, χω
−k;O)

has kernel Ωj[[q]] ∩Ma,j. Since Tp preserves Ma,j and Ωj[[q]] ∩Ma,j, the image of

Ma,j →
⊕j

k=aMk(Np, χω
−k;O) is a Tp-invariant subspace. Hence limn→∞ T n!p is

defined on Ma,j

Ωj[[q]] ∩Ma,j

, denoted by ej. Then we have the commutative diagram

Ma,j+1

Ωj+1[[q]] ∩Ma,j+1

Ma,j

Ωj[[q]] ∩Ma,j

Ma,j+1

Ωj+1[[q]] ∩Ma,j+1

Ma,j

Ωj[[q]] ∩Ma,j

ej+1 ej .

On the other hand, Ma,j

Ωj[[q]] ∩Ma,j

is a subspace of (Λ/Ωj)[[q]]. Therefore,

lim←−
j

Ma,j

Ωj[[q]] ∩Ma,j

⊂ lim←−
j

(Λ/Ωj)[[q]] = Λ[[q]],

and the image is clearly Ma. We thus define e := lim←−j ej on Ma. Since lim←−j(Λ/Ωj)

with p-adic topology on each Λ/Ωj is Λ with m-adic topology,

eF = lim
n→∞

T n!p F

under the m-adic topology, and (eF )(uk − 1) = e(F (uk − 1)) for all k ≥ a. Hence e

is an idempotent from M onto Mord, mapping cusp forms to cusp forms.

Proposition 8. For every a ≥ 0 and f ∈ Ma(Np
α, χω−a;O) there is a F ∈

M(χ; Λ) such that F (ua−1) = f . If f is cusp (ordinary), F can be taken to be cusp

(ordinary).
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Proof. We first consider E1,1 ∈Mord(1,Λ). The T−1-term of E1,1 is

lim
s→0

(us − 1)Lp(1− s)
2

= 2−1(p−1 − 1) logp(u) ∈ Z×
p .

Define

E ′ :=
TE1,1

2−1(p−1 − 1) logp(u)
∈Mord(χ; Λ)

and

E(T ) := E ′(u−aT + (u−a − 1)), F := fE.

Then for all k ≥ a, F (uk − 1) ∈Mk(Np
α, χω−k;O), and F (ua − 1) = fE ′(0) = f .

If f is cusp, F is cusp. If f is ordinary, we take F := e(fE) instead.

From this we can write down a basis for Mord (Sord) as follows: We first take

a a ∈ N such that F (uk − 1) ∈ Mord
k (Npα, χω−k;O) (Sord

k (Npα, χω−k;O)) for all

F ∈ Mord (Sord) and k ≥ a. Let f1, · · · , fn be a basis of Mord
a (Npα, χω−a;O)

(Sord
a (Npα, χω−a;O)) and Fi := e(fE ′). Then {F1, · · · , Fn} is a Λ-basis of Mord

(Sord). This shows that for all finite order characters ε : 1 + q Zp → C×
p and k ≥ a,

F (ε(u)uk − 1) ∈Mord
k (Npα, εχω−k;O[ε]) (Sord

k (Npα, εχω−k;O[ε])).

We define

ε∗ : M(χ; Λ)→M(εχ; Λ[ε]), (ε∗F ))(T ) := F (εT + (ε− 1)).

Since ε−1
∗ ◦ ε∗ = id, when ε takes value in O×,

ε∗ : M(χ; Λ) ∼= M(εχ; Λ).

Theorem 8. For every k ≥ 2 and every F ∈ Mord (Sord), F (ε(u)uk − 1) ∈

Mord(Npα, εχω−k;O[ε]) (Sord(Npα, εχω−k;O[ε])). Moreover, there are isomorphisms

Mord(χ; Λ)/Pk,ϵMord(χ; Λ) ∼= Mord
k (Npα, εχω−k;O),

and

Sord(χ; Λ)/Pk,ϵSord(χ; Λ) ∼= Sord
k (Npα, εχω−k;O).

for all k ≥ 2. In particular, rankO(M
ord
k (Npα, εχω−k;O)) and rankO(S

ord
k (Npα, εχω−k;O))

are constant for all k ≥ 2.
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Proof. We first show the case ε = 1.

From the previous proposition we have that the image of

Mord(χ; Λ)/PkMord(χ; Λ) ↪→ O[[q]]

contains Mord
k (Npα, χω−k;O) for all k ≥ 0. For k >> 0, Mord(χ; Λ)/PkMord(χ; Λ) ⊂

Mord
k (Npα, χω−k;O) and the equality holds.

Since rankO(M
ord
k (Npα, χω−k;O)) is a constant for all k ≥ 2, then Mord(χ; Λ)/PkMord(χ; Λ)

and rankO(M
ord
k (Npα, χω−k;O)) have the same rank. Therefore,

Mord
k (Npα, χω−k;O) = (Mord

k (Npα, χω−k;O)⊗O K) ∩ O[[q]]

⊃Mord(χ; Λ)/PkMord(χ; Λ) ⊃Mord
k (Npα, χω−k;O).

For general ε we first consider Mord(χ; Λ′) where Λ′ := O[ε][[T ]]. Since ε∗ :

Mord(χ; Λ′) ∼= Mord(χ; εΛ′),

Mord(χ; Λ′)/(T − (ε(u)uk − 1))Mord(χ; Λ′)

∼= Mord(χ; εΛ′)/(T − (ε(u)uk − 1))Mord(εχ; Λ′)

∼= Mk(Np
α, εχω−k;O[ε]).

for all k ≥ 2. Every F ∈Mord(χ,Λ′) can be written as a finite sum

F =
∑
i

Fiε(u)
i

where each Fi ∈Mord(χ; Λ). Given k ≥ 2. Define

F ′ :=
∑
i

Fi
(1 + T )i

uik
∈Mord(χ; Λ).

Then

F ′(ε(u)uk − 1) = F (ε(u)uk − 1)

and therefore,

Mord(χ; Λ)/Pk,ϵMord(χ; Λ) ∼= Mord(χ; Λ′)/(T − (ε(u)uk − 1))Mord(χ; Λ′).

The proof for cusp forms is identical.
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3.3 Duality and Lifting

We define Hecke algebrasHord(χ; Λ) and hord(χ; Λ) as the Λ-subalgebra of EndΛ(Mord(χ; Λ))

and EndΛ(Sord(χ; Λ)), respectively. Moreover generally, for every Λ-algebra A,

We define Hord(χ;A) = EndA(Mord(χ;A)) = Hord(χ; Λ) ⊗Λ A an similarly define

hord(χ;A).

Theorem 9 (Duality). The pairing

(h, f) 7→ a1(h(f))

defines a perfect pairing between hord(χ;A), Sord(χ;A), and Hord(χ;A), mord(χ;A).

Proof. It suffices to prove the case A = Λ. The pairing gives a map hord(χ; Λ) →

HomΛ(Sord(χ; Λ); Λ). If h is in the kernel, we have for all f and n,

0 = (h, Tnf) = a1(hTnf) = a1(Tnhf) = an(h(f)),

so h = 0. Let N be the cokernel of the map. We tensor Λ/(Pk) on the short exact

sequence

0→ hord(χ; Λ)→ HomΛ(Sord(χ; Λ),Λ)→ N → 0.

Since Sord(χ; Λ) is finite free, the middle term is

HomΛ(Sord(χ; Λ),Λ)⊗Λ Λ/(Pk) ∼= HomΛ(Sord(χ; Λ)/Pk Sord(χ; Λ),O)

∼=HomO(S
ord
k (χω−k;O),O) ∼= hord

k (χω−k;O).

The image from the first term is the O-subalgebra generated by {Tn}n∈N , which is

hord
k (χω−k;O) itself. Hence N = PkN . By Nakayama’s lemma, N = 0. Hence we

have

hord(χ; Λ) ∼= HomΛ(Sord(χ; Λ),Λ).

In particular, hord(χ; Λ) is finite free over Λ. Take dual on both sides and we have

HomΛ(h
ord(χ; Λ),Λ) = HomΛ(HomΛ(Sord(χ; Λ),Λ),Λ) ∼= Sord(χ; Λ).

The proof for H and m are identical.
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Now we have that for every Λ-algebra A, HomΛ(h
ord(χ; Λ), A) ∼= Sord(χ;A).

Moreover, ϕ ∈ HomΛ(h
ord(χ; Λ), A) is a Λ-algebra homomorphism if and only if

Fφ :=
∑∞

n=1 ϕ(Tn)q
n is a normalized Hecke eigenform with coefficients in A.

Let k ≥ 2 and f ∈ Sord
k (χω−k;O). f induces an O-algebra homomorphism

hord
k (χω−k;O) → O. Since hord

k (χω−k;O) ∼= hord(χ; Λ) ⊗Λ Λ/(Pk), we obtain a

unique Λ-algebra homomorphism from hord(χ; Λ)→ O. Since Λ is a complete local

ring and hence henselian, hord(χ; Λ) decomposes into a finite product of Λ-algebras,

which are again henselian local rings. Let Pf be the kernel of hord
k (χω−k;O) → O

and mf be the maximal ideal lying over Pf . Then the ring homomorphism factors

through hord(χ; Λ)→ hord(χ; Λ)mf
.

We may lift f to an normalized Hecke eigenform over a Λ-algebra with better

algebraic properties. Let Qf be a minimal prime ideal of hord(χ; Λ) contained in Pf ,

I ′ := hord(χ; Λ)/Qf and define I as the integral closure of I ′. Then I/Λ is finite.

We see that I is a complete local ring, and the topology coincide with the mΛ-adic

topology. Let P ′
f be any prime ideal of I over Pf ⊂ I ′. Then I/P ′

f is finite over O

and hence hord(χ; Λ)→ I/P ′
f defines an normalized Hecke eigenform with coefficient

in Zp which is exactly f .
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