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Abstract. Following [4, chapter 7, section 5], we show that to each ordinary I-adic form
we can associate a unique Galois representation over K satisfying certain good properties,
where K is a finite extension of Frac Λ and I is the integral closure of Λ in K.

1. Introduction

As previously, fix a finite extension E of Qp (let’s assume p > 2 for simplicity) with ring
of integers O, and let Λ = O[(1 + pZp)×] ' O[Zp] ' O[[T ]]. Let K be a finite extension
of Frac Λ and define I to be the integral closure of Λ in K, with maximal ideal m. Fix a
topological generator u = 1 + p of (1 + pZp)×, and define the map κ : (1 + pZp)× → Λ×

defined on powers of u by κ(un) = (1 +X)n and extended to all of 1 + pZp by continuity.
We say that a Galois representation π : Gal(Q/Q)→ GL2(K) is continuous if there exists

an I-submodule L of K2 such that L ⊗I K = K2, L is stable under π, and the restriction
π : GQ = Gal(Q/Q) → EndI(L) is continuous with respect to the m-adic topology on L.
This definition is independent of the choice of L.

Why this definition of continuity? We could instead take the topology coming from a
topology on K, but since I has Krull dimension 2 K cannot be locally compact; but since
GQ is profinite and therefore compact under the Krull topology, its image under a continuous
representation is compact, and therefore gives us only a very small portion of GL2(K). On
the other hand, we can find some n such that In surjects onto L; thus each L/miL is the
image of (I/mi)n, which is finite (think for example of I = Λ) so that the induced topology
on EndI(L) makes it compact. Therefore continuity with respect to this topology is more
natural for Galois representations.

We say that π is unramified at a prime ` if the inertia group at ` is in the kernel of π.
We didn’t get to this last time, but in Hung’s notes [1] there’s a duality result that we’ll

use: I’ll just give the statement, and you can see there for the proof.
Let χ be a Dirichlet character modulo p, and for any Λ-algebra A let hord(χ;A) =

EndA(Sord(χ;A)). For any modular form f write a1(f) for its first Fourier coefficient.

Proposition 1.1. The pairing (h, f) 7→ a1(h(f)) defines a perfect pairing between hord(χ;A)
and Sord(χ;A). In particular HomA(hord(χ;A), A) ' Sord(χ;A), and ϕ ∈ HomA(hord(χ;A))
is a homomorphism of Λ-algebras if and only if the corresponding cusp form is a normalized
Hecke eigenform with coefficients in A.

Let F ∈ Sord(χ, I) be a normalized eigenform. Since I is a Λ-algebra, F corresponds to
a unique homomorphism of Λ-algebras λ : hord(χ; I) → I. Our main goal for today is to
prove the following result.

Theorem 1.2. There exists a unique Galois representation π : GQ → GL2(K) such that
(i) π is continuous and absolutely irreducible;

(ii) π is unramified at each prime ` 6= p;
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1 INTRODUCTION

(iii) for each prime ` 6= p, we have

det(1− π(Frob`)T ) = 1− λ(T`)T + χ(`)κ(〈`〉)`−1T 2

where T` is the Hecke operator at ` and 〈`〉 is the Diamond operator.

Let p be a prime ideal of I, and π be a Galois representation as in Theorem 1.2. Let
kp = Frac(I/p), and for each element t ∈ I write t(p) for the image of t under the surjection
I → I/p. We want to reduce π modulo p; this reduction should be a representation πp :
GQ → GL2(kp) satisfying

(a) πp is continuous and semisimple;
(b) πp is unramified at each prime ` 6= p;
(c) for each prime ` 6= p, we have

det(1− πp(Frob`)T ) = 1− λ(T`)(p)T + (χ(`)κ(〈`〉)`−1)(p)T 2.

Note that in particular if p is the kernel of the specialization X 7→ ε(u)uk − 1 for some char-
acter ε modulo p then we have (χ(`)κ(〈`〉)`−1)(p) = χ(`)`k−1 and λ(T`)(p) is the `th Fourier
coefficient of the reduction of F modulo p, so these are the expected Galois representations
corresponding to F modulo p. Thus we can think of Theorem 1.2 as providing a way of
deforming Galois representations coming from p-adic modular forms.

The continuity of πp is defined similarly to above: if L is an I-submodule of K2 with
respect to which π is continuous, then L/pL is a submodule of k2p with respect to which
we want πp to be continuous in the induced m-adic topology. (Since I has Krull dimension
2, each kp is locally compact, and so in this case we can think equivalently of the natural
topology on GL2(kp) coming from the topology on kp.)

We say that any Galois representation GQ → GL2(kp) is residual at p if it satisfies these
properties.

Since L need not be free, it is not a priori obvious that we can find such a residual
representation, but in fact it is true:

Proposition 1.3. Let π be a Galois representation as in Theorem 1.2. Then for every prime
ideal p there exists a residual representation πp at p, unique up to kp-isomorphisms.

Proof sketch. The idea is to replace L by a free module V of rank 2 over an I-algebra A; we
can take A to be the localization of I at p and V = L⊗I A, for p of height 1 to ensure good
properties of A. Then we can reduce the restriction of π to GL(V ) ' GL2(A) modulo p to
get a representation satisfying the desired properties; and we repeat the process to get the
result for primes of all heights.

Of course, we might expect to find representations GQ → GL2(kp) at a prime p of I
satisfying conditions (a, b, c), regardless of the existence of any “global” representation.
To prove Theorem 1.2, it is natural to ask if we can go the other way, local-global style:
given sufficiently many representations πp : GQ → GL2(kp) residual at p, can we somehow
glue them together to form a representation π : GQ → GL2(K) satisfying the conditions of
Theorem 1.2?

Answer: yes! And this will be our main tool in proving Theorem 1.2, as summarized in
the following theorem of Wiles [7].
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2 REDUCTION TO PSEUDO-REPRESENTATIONS

Theorem 1.4. Let F ∈ Sord(χ, I) be a normalized eigenform corresponding to the Λ-algebra
homomorphism λ : hord(χ; I) → I, and for each prime p of I write Op for the ring of
integers of kp. If there are infinitely many primes p such that there exists a representation
πp : GQ → GL2(Op) residual at p, then there exists a representation π : GQ → GL2(K)
satisfying the conditions of Theorem 1.2.

Note that the condition that the image of πp lie in GL2(Op) ⊂ GL2(kp) is not a serious
one: although this is not necessarily true of an arbitrary representation, any continuous
representation (of a compact group) into GL2(kp) is conjugate to one valued on GL2(Op).
Indeed, it is enough to find an invariant lattice, so that changing to the corresponding basis
gives a representation valued in GL2(Op); if L0 is any Op-lattice in k2p , then π−1p (GL(L0)) is
a finite index subgroup since GL(L0) is open in GL2(kp), and so we can sum over finitely
many cosets σi ∈ GQ/π

−1
p (GL(L0)) to get an invariant lattice

∑
i σiL0.

Given this theorem, we still need the input of an infinite family of suitable Galois repre-
sentations. This is provided by the following theorem.

Theorem 1.5. Let k be a positive integer, χ be a Dirichlet character modulo N , M be a
finite extension of Qp, and λ : hk(Γ0(N), χ;Z[χ]) → M be a homomorphism. Then there
exists a unique representation π : GQ → GL2(M) such that

(i) π is continuous and absolutely irreducible over M ;
(ii) π is unramified at each prime ` not dividing Np;

(iii) for each prime ` not dividing Np, we have

det(1− π(Frob`)T ) = 1− λ(T`)T + χ(`)`k−1T 2.

This is due to Eichler–Shimura [6] and Igusa [5] in the case k = 2, Deligne [2] for k > 2,
and Deligne–Serre [3] for k = 1.

For each k and ε as above, we have a specialization map with kernel some prime ideal p;
Theorem then gives at each such p a residual representation with respect to F by taking the
specialization of the corresponding map λ. Thus with the input of Theorem 1 we’ve reduced
Theorem 1.2 to Theorem 1.4.

The remainder of today will therefore be about proving Theorem 1.4. We’ll do this
by introducing a notion of pseudo-representations and showing that they satisfy properties
which will allow us to do a local-to-global–type construction on them, and that we can use
this to produce an honest representation satisfying the desired conditions.

2. Reduction to pseudo-representations

Fix a prime p of I, and let π : GQ → GL2(Op) be residual at p with respect to some
F ∈ Sord(χ; I) and its corresponding homomorphism λ : hord(χ; I) → I. Let Qunr,p be the
maximal extension of Q unramified away from p, and set G = Gal(Qunr,p/Q); since π is
unramified away from p, it factors through the restriction π : GQ � G → GL2(Op) and so
we can consider π to be a representation of G.

Let L = O2
p , viewed as a G-module via π. Let c ∈ G be complex conjugation; in

Gal(Q(ζp)/Q) it acts by −1, and so detπ(c) = χ(−1)k(−1)k−1 = −1. Therefore the eigen-
values of π(c) are ±1, since c2 = 1, and so we can decompose L into the eigenspaces L+⊕L−.
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2 REDUCTION TO PSEUDO-REPRESENTATIONS

Writing π in the corresponding basis, we have

π(c) =

(
1
−1

)
.

Define functions a, b, c, d : G→ Op such that

π(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
for each σ ∈ G. Define x : G×G→ Op by x(σ, τ) = b(σ)c(τ). Each of a and d is continuous
on G, since

Tr π(σ) = a(σ) + d(σ), Tr π(cσ) = Tr(π(c)π(σ)) = a(σ)− d(σ)

are both continuous on G; since π is a group homomorphism,

π(στ) =

(
a(σ) b(σ)
c(σ) d(σ)

)(
a(τ) b(τ)
c(τ) d(τ)

)
=

(
a(στ) b(στ)
c(στ) d(στ)

)
,

and writing this out gives among other things a(σ)a(τ) + b(σ)c(τ) = a(σ)a(τ) + x(σ, τ) =
a(στ), so the continuity of x follows from the continuity of a. Using the definition of x and
the product formula above, we also have the following properties:

(a) a(στ) = a(σ)a(τ) + x(σ, τ), d(στ) = d(σ)d(τ) + x(τ, σ), and

x(στ, σ′τ ′) = a(σ)a(τ ′)x(τ, σ′)+a(τ ′)d(τ)x(σ, σ′)+a(σ)d(σ′)x(τ, τ ′)+d(τ)d(σ′)x(σ, τ ′);

(b) a(1) = d(1) = 1, a(c) = −d(c) = 1, and x(σ, 1) = x(σ, c) = x(1, σ) = x(c, σ) = 0;
(c) x(σ, τ)x(σ′, τ ′) = x(σ, τ ′)x(σ′, τ).

For any (commutative) topological ring R and continuous functions a, d : G → R and
x : G×G→ R, we say that a triple π′ = (a, d, x) is a pseudo-representation of G if a, d, and
x satisfy conditions (a, b, c) above. In this case we define the trace

Tr π′ = a(σ) + d(σ)

and the determinant
detπ′(σ) = a(σ)d(σ)− x(σ, σ).

It is clear from the definition and our calculations above that every continuous representation
G→ GL2(R) for a topological ring R yields a unique pseudo-representation.

There are two main propositions about pseudo-representations that we’ll need; together
these will be enough to prove Theorem 1.4.

Proposition 2.1. Let R be a topological integral domain with fraction field M , and sup-
pose that π′ = (a, d, x) is a pseudo-representation G → R. Then there exists a continuous
representation π : G→ GL2(M) with Tr π = Tr π′ and detπ = detπ′.
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2 REDUCTION TO PSEUDO-REPRESENTATIONS

Proposition 2.2. Let a, b be ideals of I, and let πa and πb be pseudo-representations of G
into I/a and I/b respectively, which are compatible in the sense that there exists a dense
subset Σ of G and functions T,D : Σ→ I/a ∩ b such that for every σ ∈ Σ we have

Tr πa(σ) ≡ T (σ) (mod a), Tr πb(σ) ≡ T (σ) (mod b)

and
detπa(σ) ≡ D(σ) (mod a), detπb(σ) ≡ D(σ) (mod b).

Then there exists a pseudo-representation πa∩b : G→ I/a ∩ b such that for every σ ∈ Σ we
have

Tr πa∩b(σ) = T (σ), detπa∩b(σ) = D(σ).

We now prove Theorem 1.4, assuming these two propositions. By assumption we have
infinitely many primes p1, p2, . . . of I at which we have residual representations πp with
respect to our eigenform F ; each is also a pseudo-representation. By (the infinite version of)
Chebotarev’s density theorem, since Qunr,p is unramified away from p the Frobenius elements
Frob` for ` 6= p form a dense subset Σ of G = Gal(Qunr,p/Q); since πp is residual, we have

Tr πp(Frob`) = λ(T`)(p)

and
detπp(Frob`) = (χ(`)κ(〈`〉)`−1)(p).

Therefore, applying Proposition 2.2 at p1, p2 we have a pseudo-representation πp1∩p2 : G →
I/p1 ∩ p2 such that

Tr πp1∩p2(Frob`) ≡ λ(T`) (mod p1 ∩ p2)

and
detπp1∩p2(Frob`) ≡ χ(`)κ(〈`〉)`−1 (mod p1 ∩ p2).

Repeating with p1 ∩ p2 and p3, we similarly get a pseudo-representation πp1∩p2∩p3 ; iterating,
for every n ≥ 1 we have a pseudo-representation πn : G→ I/p1 ∩ · · · ∩ pn satisfying

Tr πn(Frob`) ≡ λ(T`) (mod p1 ∩ · · · ∩ pn)

and
detπn(Frob`) ≡ χ(`)κ(〈`〉)`−1 (mod p1 ∩ · · · ∩ pn),

and at each n we have Tr πn ≡ Tr πn−1 (mod p1 ∩ · · · ∩ pn−1) on each Frob` and similarly
for the determinant; since the Frob` are dense in G and both sides are continuous, this is
true on all of G, so that we have an inverse system. Taking the limit as n → ∞ gives
a pseudo-representation π′ := lim←−n πn : G → lim←−n I/p1 ∩ · · · ∩ pn = I with trace λ(T`)

and determinant χ(`)κ(〈`〉)`−1 at Frob`; applying Proposition 2.1 with R = I then gives a
genuine representation G→ GL2(K) which, upon composing with the restriction GQ � G,
satisfies the conditions of Theorem 1.2 as desired.

It remains only to prove these two propositions, which we will now do.
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4 PROOF OF PROPOSITION 2.2

3. Proof of Proposition 2.1

Let R be a topological integral domain with fraction field M and π′ = (a, d, x) be a pseudo-
representation G→ R. There are two cases: either x is identically zero or it is not.

First, suppose that x is identically zero, so that the condition that π′ is a pseudo-
representation implies that a(στ) = a(σ)a(τ) and similarly for d. Then setting

π(σ) =

(
a(σ)

d(σ)

)
is an honest representation G → GL2(M), and since a and d are continuous so is π; and it
manifestly has the same trace and determinant as π′.

Therefore suppose that we can find some σ0, τ0 such that x(σ0, τ0) 6= 0. Then we define

functions b, c : G→ R by b(σ) = x(σ,τ0)
x(σ0,τ0)

and c(σ) = x(σ0, σ) for each σ ∈ G. These are con-

tinuous since x is. Since π′ is a pseudo-representation, we have b(σ)c(τ) = x(σ,τ0)
x(σ0,τ0)

x(σ0, τ) =

x(σ, τ); similarly the various conditions on π′ work out to imply that if we define

π(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
then

π(1) =

(
1

1

)
, π(c) =

(
1
−1

)
,

and
π(στ) = π(σ)π(τ).

Therefore π is a continuous representation G → GL2(K) with the same trace and determi-
nant as π′.

4. Proof of Proposition 2.2

Let a, b be ideals of I. By the (rather generalized) Chinese remainder theorem we have a
short exact sequence of I-modules

0→ I/a ∩ b
i−→ I/a⊕ I/b p−→ I/(a + b)→ 0

where the injection is i : x 7→ (x mod a, x mod b) and the surjection is p : (x, y) 7→ x −
y mod a + b. Letting πa and πb be the given pseudo-representations of G into I/a and I/b
respectively, define π = πa ⊕ πb to be a pseudo-representation G → I/a ⊕ I/b. For σ ∈ Σ,
we have Tr π(σ) = Trπa(σ) + Tr πb(σ) ∈ I/a⊕I/b; by assumption this is the image of T (σ)
under i, and therefore p(Tr π(σ)) = 0 for every σ ∈ Σ. Since Σ is dense in G and p ◦ Tr π
is continuous, p(Tr π(σ)) = 0 for every σ ∈ G, and so Tr π(σ) is always in the image of i.
Writing π = (a, d, x), we can reconstruct each of a, d, and x from Trπ by

a(σ) =
Tr π(σ) + Tr(π(cσ))

2
, d(σ) =

Tr π(σ)− Tr π(cσ)

2
, x(σ, τ) = a(στ)−a(σ)a(τ),
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so since each of Trπ(σ) and Trπ(cσ) is in the image of i so are each of a(σ), d(σ), and
x(σ, τ) (recalling that 2 is invertible in I). Therefore π is a pseudo-representation of G into
the image of i, and so taking the preimage under i we get a pseudo-representation π′ of G
into I/a ∩ b satisfying Trπ′(σ) = T (σ) for σ ∈ Σ, and

detπ′(σ) = i−1(a(σ)d(σ)− x(σ, σ)) =
Tr π′(σ) Trπ′(cσ)

2
− Tr π′(cσ2)

2

must also agree with det πa and det πb modulo a and b respectively since the trace does.
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