Λ-adic Galois representations

Avi Zeff

Abstract

Following [4, chapter 7, section 5], we show that to each ordinary \mathcal{I}-adic form we can associate a unique Galois representation over K satisfying certain good properties, where K is a finite extension of $\operatorname{Frac} \Lambda$ and \mathcal{I} is the integral closure of Λ in K.

1. Introduction

As previously, fix a finite extension E of \mathbb{Q}_{p} (let's assume $p>2$ for simplicity) with ring of integers \mathcal{O}, and let $\Lambda=\mathcal{O}\left[\left(1+p \mathbb{Z}_{p}\right)^{\times}\right] \simeq \mathcal{O}\left[\mathbb{Z}_{p}\right] \simeq \mathcal{O}[[T]]$. Let K be a finite extension of $\operatorname{Frac} \Lambda$ and define \mathcal{I} to be the integral closure of Λ in K, with maximal ideal \mathfrak{m}. Fix a topological generator $u=1+p$ of $\left(1+p \mathbb{Z}_{p}\right)^{\times}$, and define the map $\kappa:\left(1+p \mathbb{Z}_{p}\right)^{\times} \rightarrow \Lambda^{\times}$ defined on powers of u by $\kappa\left(u^{n}\right)=(1+X)^{n}$ and extended to all of $1+p \mathbb{Z}_{p}$ by continuity.

We say that a Galois representation $\pi: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(K)$ is continuous if there exists an \mathcal{I}-submodule L of K^{2} such that $L \otimes_{\mathcal{I}} K=K^{2}, L$ is stable under π, and the restriction $\pi: G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{End}_{\mathcal{I}}(L)$ is continuous with respect to the \mathfrak{m}-adic topology on L. This definition is independent of the choice of L.

Why this definition of continuity? We could instead take the topology coming from a topology on K, but since \mathcal{I} has Krull dimension $2 K$ cannot be locally compact; but since $G_{\mathbb{Q}}$ is profinite and therefore compact under the Krull topology, its image under a continuous representation is compact, and therefore gives us only a very small portion of $\mathrm{GL}_{2}(K)$. On the other hand, we can find some n such that \mathcal{I}^{n} surjects onto L; thus each $L / \mathfrak{m}^{i} L$ is the image of $\left(\mathcal{I} / \mathfrak{m}^{i}\right)^{n}$, which is finite (think for example of $\mathcal{I}=\Lambda$) so that the induced topology on $\operatorname{End}_{\mathcal{I}}(L)$ makes it compact. Therefore continuity with respect to this topology is more natural for Galois representations.

We say that π is unramified at a prime ℓ if the inertia group at ℓ is in the kernel of π.
We didn't get to this last time, but in Hung's notes [1] there's a duality result that we'll use: I'll just give the statement, and you can see there for the proof.

Let χ be a Dirichlet character modulo p, and for any Λ-algebra A let $h^{\text {ord }}(\chi ; A)=$ $\operatorname{End}_{A}(\mathbb{S}$ ord $(\chi ; A))$. For any modular form f write $a_{1}(f)$ for its first Fourier coefficient.

Proposition 1.1. The pairing $(h, f) \mapsto a_{1}(h(f))$ defines a perfect pairing between $h^{\text {ord }}(\chi ; A)$ and $\mathbb{S}^{\text {ord }}(\chi ; A)$. In particular $\operatorname{Hom}_{A}\left(h^{\text {ord }}(\chi ; A), A\right) \simeq \mathbb{S}^{\text {ord }}(\chi ; A)$, and $\varphi \in \operatorname{Hom}_{A}\left(h^{\text {ord }}(\chi ; A)\right)$ is a homomorphism of Λ-algebras if and only if the corresponding cusp form is a normalized Hecke eigenform with coefficients in A.

Let $F \in \mathbb{S}^{\text {ord }}(\chi, \mathcal{I})$ be a normalized eigenform. Since \mathcal{I} is a Λ-algebra, F corresponds to a unique homomorphism of Λ-algebras $\lambda: h^{\text {ord }}(\chi ; \mathcal{I}) \rightarrow \mathcal{I}$. Our main goal for today is to prove the following result.

Theorem 1.2. There exists a unique Galois representation $\pi: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(K)$ such that
(i) π is continuous and absolutely irreducible;
(ii) π is unramified at each prime $\ell \neq p$;
(iii) for each prime $\ell \neq p$, we have

$$
\operatorname{det}\left(1-\pi\left(\operatorname{Frob}_{\ell}\right) T\right)=1-\lambda\left(T_{\ell}\right) T+\chi(\ell) \kappa(\langle\ell\rangle) \ell^{-1} T^{2}
$$

where T_{ℓ} is the Hecke operator at ℓ and $\langle\ell\rangle$ is the Diamond operator.
Let \mathfrak{p} be a prime ideal of \mathcal{I}, and π be a Galois representation as in Theorem 1.2. Let $k_{\mathfrak{p}}=\operatorname{Frac}(\mathcal{I} / \mathfrak{p})$, and for each element $t \in \mathcal{I}$ write $t(\mathfrak{p})$ for the image of t under the surjection $\mathcal{I} \rightarrow \mathcal{I} / \mathfrak{p}$. We want to reduce π modulo \mathfrak{p}; this reduction should be a representation $\pi_{\mathfrak{p}}$: $G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(k_{\mathfrak{p}}\right)$ satisfying
(a) $\pi_{\mathfrak{p}}$ is continuous and semisimple;
(b) $\pi_{\mathfrak{p}}$ is unramified at each prime $\ell \neq p$;
(c) for each prime $\ell \neq p$, we have

$$
\operatorname{det}\left(1-\pi_{\mathfrak{p}}\left(\operatorname{Frob}_{\ell}\right) T\right)=1-\lambda\left(T_{\ell}\right)(\mathfrak{p}) T+\left(\chi(\ell) \kappa(\langle\ell\rangle) \ell^{-1}\right)(\mathfrak{p}) T^{2}
$$

Note that in particular if \mathfrak{p} is the kernel of the specialization $X \mapsto \epsilon(u) u^{k}-1$ for some character ϵ modulo p then we have $\left(\chi(\ell) \kappa(\langle\ell\rangle) \ell^{-1}\right)(\mathfrak{p})=\chi(\ell) \ell^{k-1}$ and $\lambda\left(T_{\ell}\right)(\mathfrak{p})$ is the ℓ th Fourier coefficient of the reduction of F modulo \mathfrak{p}, so these are the expected Galois representations corresponding to F modulo \mathfrak{p}. Thus we can think of Theorem 1.2 as providing a way of deforming Galois representations coming from p-adic modular forms.

The continuity of $\pi_{\mathfrak{p}}$ is defined similarly to above: if L is an \mathcal{I}-submodule of K^{2} with respect to which π is continuous, then $L / \mathfrak{p} L$ is a submodule of $k_{\mathfrak{p}}^{2}$ with respect to which we want $\pi_{\mathfrak{p}}$ to be continuous in the induced \mathfrak{m}-adic topology. (Since \mathcal{I} has Krull dimension 2 , each $k_{\mathfrak{p}}$ is locally compact, and so in this case we can think equivalently of the natural topology on $\mathrm{GL}_{2}\left(k_{\mathfrak{p}}\right)$ coming from the topology on $k_{\mathfrak{p}}$.)

We say that any Galois representation $G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\bar{k}_{\mathfrak{p}}\right)$ is residual at \mathfrak{p} if it satisfies these properties.

Since L need not be free, it is not a priori obvious that we can find such a residual representation, but in fact it is true:

Proposition 1.3. Let π be a Galois representation as in Theorem 1.2. Then for every prime ideal \mathfrak{p} there exists a residual representation $\pi_{\mathfrak{p}}$ at \mathfrak{p}, unique up to $\bar{k}_{\mathfrak{p}}$-isomorphisms.

Proof sketch. The idea is to replace L by a free module V of rank 2 over an \mathcal{I}-algebra A; we can take A to be the localization of \mathcal{I} at \mathfrak{p} and $V=L \otimes_{\mathcal{I}} A$, for \mathfrak{p} of height 1 to ensure good properties of A. Then we can reduce the restriction of π to $\mathrm{GL}(V) \simeq \mathrm{GL}_{2}(A)$ modulo \mathfrak{p} to get a representation satisfying the desired properties; and we repeat the process to get the result for primes of all heights.

Of course, we might expect to find representations $G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(k_{\mathfrak{p}}\right)$ at a prime \mathfrak{p} of \mathcal{I} satisfying conditions ($\mathrm{a}, \mathrm{b}, \mathrm{c}$), regardless of the existence of any "global" representation. To prove Theorem 1.2, it is natural to ask if we can go the other way, local-global style: given sufficiently many representations $\pi_{\mathfrak{p}}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(k_{\mathfrak{p}}\right)$ residual at \mathfrak{p}, can we somehow glue them together to form a representation $\pi: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(K)$ satisfying the conditions of Theorem 1.2?

Answer: yes! And this will be our main tool in proving Theorem 1.2, as summarized in the following theorem of Wiles [7].

Theorem 1.4. Let $F \in \mathbb{S}^{\text {ord }}(\chi, \mathcal{I})$ be a normalized eigenform corresponding to the Λ-algebra homomorphism $\lambda: h^{\text {ord }}(\chi ; \mathcal{I}) \rightarrow \mathcal{I}$, and for each prime \mathfrak{p} of \mathcal{I} write $\mathcal{O}_{\mathfrak{p}}$ for the ring of integers of $k_{\mathfrak{p}}$. If there are infinitely many primes \mathfrak{p} such that there exists a representation $\pi_{\mathfrak{p}}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{p}\right)$ residual at \mathfrak{p}, then there exists a representation $\pi: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(K)$ satisfying the conditions of Theorem 1.2.

Note that the condition that the image of $\pi_{\mathfrak{p}}$ lie in $\mathrm{GL}_{2}\left(\mathcal{O}_{\mathfrak{p}}\right) \subset \mathrm{GL}_{2}\left(k_{\mathfrak{p}}\right)$ is not a serious one: although this is not necessarily true of an arbitrary representation, any continuous representation (of a compact group) into $\mathrm{GL}_{2}\left(k_{\mathfrak{p}}\right)$ is conjugate to one valued on $\mathrm{GL}_{2}\left(\mathcal{O}_{\mathfrak{p}}\right)$. Indeed, it is enough to find an invariant lattice, so that changing to the corresponding basis gives a representation valued in $\mathrm{GL}_{2}\left(\mathcal{O}_{\mathfrak{p}}\right)$; if L_{0} is any $\mathcal{O}_{\mathfrak{p}}$-lattice in $k_{\mathfrak{p}}^{2}$, then $\pi_{\mathfrak{p}}^{-1}\left(\mathrm{GL}\left(L_{0}\right)\right)$ is a finite index subgroup since $\mathrm{GL}\left(L_{0}\right)$ is open in $\mathrm{GL}_{2}\left(k_{\mathfrak{p}}\right)$, and so we can sum over finitely many cosets $\sigma_{i} \in G_{\mathbb{Q}} / \pi_{\mathfrak{p}}^{-1}\left(\mathrm{GL}\left(L_{0}\right)\right)$ to get an invariant lattice $\sum_{i} \sigma_{i} L_{0}$.

Given this theorem, we still need the input of an infinite family of suitable Galois representations. This is provided by the following theorem.

Theorem 1.5. Let k be a positive integer, χ be a Dirichlet character modulo N, M be a finite extension of \mathbb{Q}_{p}, and $\lambda: h_{k}\left(\Gamma_{0}(N), \chi ; \mathbb{Z}[\chi]\right) \rightarrow M$ be a homomorphism. Then there exists a unique representation $\pi: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(M)$ such that
(i) π is continuous and absolutely irreducible over M;
(ii) π is unramified at each prime ℓ not dividing $N p$;
(iii) for each prime ℓ not dividing $N p$, we have

$$
\operatorname{det}\left(1-\pi\left(\operatorname{Frob}_{\ell}\right) T\right)=1-\lambda\left(T_{\ell}\right) T+\chi(\ell) \ell^{k-1} T^{2}
$$

This is due to Eichler-Shimura [6] and Igusa [5] in the case $k=2$, Deligne [2] for $k>2$, and Deligne-Serre [3] for $k=1$.

For each k and ϵ as above, we have a specialization map with kernel some prime ideal \mathfrak{p}; Theorem then gives at each such \mathfrak{p} a residual representation with respect to F by taking the specialization of the corresponding map λ. Thus with the input of Theorem 1 we've reduced Theorem 1.2 to Theorem 1.4.

The remainder of today will therefore be about proving Theorem 1.4. We'll do this by introducing a notion of pseudo-representations and showing that they satisfy properties which will allow us to do a local-to-global-type construction on them, and that we can use this to produce an honest representation satisfying the desired conditions.

2. Reduction to pseudo-REpresentations

Fix a prime \mathfrak{p} of \mathcal{I}, and let $\pi: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{\mathfrak{p}}\right)$ be residual at \mathfrak{p} with respect to some $F \in \mathbb{S}^{\text {ord }}(\chi ; \mathcal{I})$ and its corresponding homomorphism $\lambda: h^{\text {ord }}(\chi ; \mathcal{I}) \rightarrow \mathcal{I}$. Let $\mathbb{Q}^{\text {unr }, p}$ be the maximal extension of \mathbb{Q} unramified away from p, and set $G=\operatorname{Gal}\left(\mathbb{Q}^{\text {unr }, p} / \mathbb{Q}\right)$; since π is unramified away from p, it factors through the restriction $\pi: G_{\mathbb{Q}} \rightarrow G \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{\mathfrak{p}}\right)$ and so we can consider π to be a representation of G.

Let $L=\mathcal{O}_{\mathfrak{p}}^{2}$, viewed as a G-module via π. Let $c \in G$ be complex conjugation; in $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$ it acts by -1 , and so $\operatorname{det} \pi(c)=\chi(-1)^{k}(-1)^{k-1}=-1$. Therefore the eigenvalues of $\pi(c)$ are ± 1, since $c^{2}=1$, and so we can decompose L into the eigenspaces $L_{+} \oplus L_{-}$.

Writing π in the corresponding basis, we have

$$
\pi(c)=\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)
$$

Define functions $a, b, c, d: G \rightarrow \mathcal{O}_{\mathfrak{p}}$ such that

$$
\pi(\sigma)=\left(\begin{array}{ll}
a(\sigma) & b(\sigma) \\
c(\sigma) & d(\sigma)
\end{array}\right)
$$

for each $\sigma \in G$. Define $x: G \times G \rightarrow \mathcal{O}_{\mathfrak{p}}$ by $x(\sigma, \tau)=b(\sigma) c(\tau)$. Each of a and d is continuous on G, since

$$
\operatorname{Tr} \pi(\sigma)=a(\sigma)+d(\sigma), \quad \operatorname{Tr} \pi(c \sigma)=\operatorname{Tr}(\pi(c) \pi(\sigma))=a(\sigma)-d(\sigma)
$$

are both continuous on G; since π is a group homomorphism,

$$
\pi(\sigma \tau)=\left(\begin{array}{ll}
a(\sigma) & b(\sigma) \\
c(\sigma) & d(\sigma)
\end{array}\right)\left(\begin{array}{ll}
a(\tau) & b(\tau) \\
c(\tau) & d(\tau)
\end{array}\right)=\left(\begin{array}{ll}
a(\sigma \tau) & b(\sigma \tau) \\
c(\sigma \tau) & d(\sigma \tau)
\end{array}\right),
$$

and writing this out gives among other things $a(\sigma) a(\tau)+b(\sigma) c(\tau)=a(\sigma) a(\tau)+x(\sigma, \tau)=$ $a(\sigma \tau)$, so the continuity of x follows from the continuity of a. Using the definition of x and the product formula above, we also have the following properties:
(a) $a(\sigma \tau)=a(\sigma) a(\tau)+x(\sigma, \tau), d(\sigma \tau)=d(\sigma) d(\tau)+x(\tau, \sigma)$, and

$$
x\left(\sigma \tau, \sigma^{\prime} \tau^{\prime}\right)=a(\sigma) a\left(\tau^{\prime}\right) x\left(\tau, \sigma^{\prime}\right)+a\left(\tau^{\prime}\right) d(\tau) x\left(\sigma, \sigma^{\prime}\right)+a(\sigma) d\left(\sigma^{\prime}\right) x\left(\tau, \tau^{\prime}\right)+d(\tau) d\left(\sigma^{\prime}\right) x\left(\sigma, \tau^{\prime}\right)
$$

(b) $a(1)=d(1)=1, a(c)=-d(c)=1$, and $x(\sigma, 1)=x(\sigma, c)=x(1, \sigma)=x(c, \sigma)=0$;
(c) $x(\sigma, \tau) x\left(\sigma^{\prime}, \tau^{\prime}\right)=x\left(\sigma, \tau^{\prime}\right) x\left(\sigma^{\prime}, \tau\right)$.

For any (commutative) topological ring R and continuous functions $a, d: G \rightarrow R$ and $x: G \times G \rightarrow R$, we say that a triple $\pi^{\prime}=(a, d, x)$ is a pseudo-representation of G if a, d, and x satisfy conditions (a, b, c) above. In this case we define the trace

$$
\operatorname{Tr} \pi^{\prime}=a(\sigma)+d(\sigma)
$$

and the determinant

$$
\operatorname{det} \pi^{\prime}(\sigma)=a(\sigma) d(\sigma)-x(\sigma, \sigma)
$$

It is clear from the definition and our calculations above that every continuous representation $G \rightarrow \mathrm{GL}_{2}(R)$ for a topological ring R yields a unique pseudo-representation.

There are two main propositions about pseudo-representations that we'll need; together these will be enough to prove Theorem 1.4.

Proposition 2.1. Let R be a topological integral domain with fraction field M, and suppose that $\pi^{\prime}=(a, d, x)$ is a pseudo-representation $G \rightarrow R$. Then there exists a continuous representation $\pi: G \rightarrow \mathrm{GL}_{2}(M)$ with $\operatorname{Tr} \pi=\operatorname{Tr} \pi^{\prime}$ and $\operatorname{det} \pi=\operatorname{det} \pi^{\prime}$.

Proposition 2.2. Let $\mathfrak{a}, \mathfrak{b}$ be ideals of \mathcal{I}, and let $\pi_{\mathfrak{a}}$ and $\pi_{\mathfrak{b}}$ be pseudo-representations of G into $\mathcal{I} / \mathfrak{a}$ and $\mathcal{I} / \mathfrak{b}$ respectively, which are compatible in the sense that there exists a dense subset Σ of G and functions $T, D: \Sigma \rightarrow \mathcal{I} / \mathfrak{a} \cap \mathfrak{b}$ such that for every $\sigma \in \Sigma$ we have

$$
\operatorname{Tr} \pi_{\mathfrak{a}}(\sigma) \equiv T(\sigma) \quad(\bmod a), \quad \operatorname{Tr} \pi_{\mathfrak{b}}(\sigma) \equiv T(\sigma) \quad(\bmod \mathfrak{b})
$$

and

$$
\operatorname{det} \pi_{\mathfrak{a}}(\sigma) \equiv D(\sigma) \quad(\bmod a), \quad \operatorname{det} \pi_{\mathfrak{b}}(\sigma) \equiv D(\sigma) \quad(\bmod \mathfrak{b})
$$

Then there exists a pseudo-representation $\pi_{\mathfrak{a} \cap \mathfrak{b}}: G \rightarrow \mathcal{I} / \mathfrak{a} \cap \mathfrak{b}$ such that for every $\sigma \in \Sigma$ we have

$$
\operatorname{Tr} \pi_{\mathfrak{a} \cap \mathfrak{b}}(\sigma)=T(\sigma), \quad \operatorname{det} \pi_{\mathfrak{a} \cap \mathfrak{b}}(\sigma)=D(\sigma)
$$

We now prove Theorem 1.4, assuming these two propositions. By assumption we have infinitely many primes $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots$ of \mathcal{I} at which we have residual representations $\pi_{\mathfrak{p}}$ with respect to our eigenform F; each is also a pseudo-representation. By (the infinite version of) Chebotarev's density theorem, since $\mathbb{Q}^{\text {unr }, p}$ is unramified away from p the Frobenius elements $\operatorname{Frob}_{\ell}$ for $\ell \neq p$ form a dense subset Σ of $G=\operatorname{Gal}\left(\mathbb{Q}^{\text {unr, } p} / \mathbb{Q}\right)$; since $\pi_{\mathfrak{p}}$ is residual, we have

$$
\operatorname{Tr} \pi_{\mathfrak{p}}\left(\operatorname{Frob}_{\ell}\right)=\lambda\left(T_{\ell}\right)(\mathfrak{p})
$$

and

$$
\operatorname{det} \pi_{\mathfrak{p}}\left(\operatorname{Frob}_{\ell}\right)=\left(\chi(\ell) \kappa(\langle\ell\rangle) \ell^{-1}\right)(\mathfrak{p})
$$

Therefore, applying Proposition 2.2 at $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ we have a pseudo-representation $\pi_{\mathfrak{p}_{1} \cap \mathfrak{p}_{2}}: G \rightarrow$ $\mathcal{I} / \mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ such that

$$
\operatorname{Tr} \pi_{\mathfrak{p}_{1} \cap \mathfrak{p}_{2}}\left(\operatorname{Frob}_{\ell}\right) \equiv \lambda\left(T_{\ell}\right) \quad\left(\bmod \mathfrak{p}_{1} \cap \mathfrak{p}_{2}\right)
$$

and

$$
\operatorname{det} \pi_{\mathfrak{p}_{1} \cap \mathfrak{p}_{2}}\left(\operatorname{Frob}_{\ell}\right) \equiv \chi(\ell) \kappa(\langle\ell\rangle) \ell^{-1} \quad\left(\bmod \mathfrak{p}_{1} \cap \mathfrak{p}_{2}\right)
$$

Repeating with $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ and \mathfrak{p}_{3}, we similarly get a pseudo-representation $\pi_{\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{p}_{3}}$; iterating, for every $n \geq 1$ we have a pseudo-representation $\pi_{n}: G \rightarrow \mathcal{I} / \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{n}$ satisfying

$$
\operatorname{Tr} \pi_{n}\left(\operatorname{Frob}_{\ell}\right) \equiv \lambda\left(T_{\ell}\right) \quad\left(\bmod \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{n}\right)
$$

and

$$
\operatorname{det} \pi_{n}\left(\operatorname{Frob}_{\ell}\right) \equiv \chi(\ell) \kappa(\langle\ell\rangle) \ell^{-1} \quad\left(\bmod \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{n}\right)
$$

and at each n we have $\operatorname{Tr} \pi_{n} \equiv \operatorname{Tr} \pi_{n-1}\left(\bmod \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{n-1}\right)$ on each Frob ${ }_{\ell}$ and similarly for the determinant; since the Frob_{ℓ} are dense in G and both sides are continuous, this is true on all of G, so that we have an inverse system. Taking the limit as $n \rightarrow \infty$ gives a pseudo-representation $\pi^{\prime}:=\lim _{n} \pi_{n}: G \rightarrow{\underset{\hbar}{n}} \mathcal{I} / \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{n}=\mathcal{I}$ with trace $\lambda\left(T_{\ell}\right)$ and determinant $\chi(\ell) \kappa(\langle\ell\rangle) \ell^{-1}$ at Frob $_{\ell}$; applying Proposition 2.1 with $R=\mathcal{I}$ then gives a genuine representation $G \rightarrow \mathrm{GL}_{2}(K)$ which, upon composing with the restriction $G_{\mathbb{Q}} \rightarrow G$, satisfies the conditions of Theorem 1.2 as desired.

It remains only to prove these two propositions, which we will now do.

3. Proof of Proposition 2.1

Let R be a topological integral domain with fraction field M and $\pi^{\prime}=(a, d, x)$ be a pseudorepresentation $G \rightarrow R$. There are two cases: either x is identically zero or it is not.

First, suppose that x is identically zero, so that the condition that π^{\prime} is a pseudorepresentation implies that $a(\sigma \tau)=a(\sigma) a(\tau)$ and similarly for d. Then setting

$$
\pi(\sigma)=\left(\begin{array}{ll}
a(\sigma) & \\
& d(\sigma)
\end{array}\right)
$$

is an honest representation $G \rightarrow \mathrm{GL}_{2}(M)$, and since a and d are continuous so is π; and it manifestly has the same trace and determinant as π^{\prime}.

Therefore suppose that we can find some σ_{0}, τ_{0} such that $x\left(\sigma_{0}, \tau_{0}\right) \neq 0$. Then we define functions $b, c: G \rightarrow R$ by $b(\sigma)=\frac{x\left(\sigma, \tau_{0}\right)}{x\left(\sigma_{0}, \tau_{0}\right)}$ and $c(\sigma)=x\left(\sigma_{0}, \sigma\right)$ for each $\sigma \in G$. These are continuous since x is. Since π^{\prime} is a pseudo-representation, we have $b(\sigma) c(\tau)=\frac{x\left(\sigma, \tau_{0}\right)}{x\left(\sigma_{0}, \tau_{0}\right)} x\left(\sigma_{0}, \tau\right)=$ $x(\sigma, \tau)$; similarly the various conditions on π^{\prime} work out to imply that if we define

$$
\pi(\sigma)=\left(\begin{array}{ll}
a(\sigma) & b(\sigma) \\
c(\sigma) & d(\sigma)
\end{array}\right)
$$

then

$$
\pi(1)=\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right), \quad \pi(c)=\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)
$$

and

$$
\pi(\sigma \tau)=\pi(\sigma) \pi(\tau)
$$

Therefore π is a continuous representation $G \rightarrow \mathrm{GL}_{2}(K)$ with the same trace and determinant as π^{\prime}.

4. Proof of Proposition 2.2

Let $\mathfrak{a}, \mathfrak{b}$ be ideals of \mathcal{I}. By the (rather generalized) Chinese remainder theorem we have a short exact sequence of \mathcal{I}-modules

$$
0 \rightarrow \mathcal{I} / \mathfrak{a} \cap \mathfrak{b} \xrightarrow{i} \mathcal{I} / \mathfrak{a} \oplus \mathcal{I} / \mathfrak{b} \xrightarrow{p} \mathcal{I} /(\mathfrak{a}+\mathfrak{b}) \rightarrow 0
$$

where the injection is $i: x \mapsto(x \bmod \mathfrak{a}, x \bmod b)$ and the surjection is $p:(x, y) \mapsto x-$ $y \bmod \mathfrak{a}+\mathfrak{b}$. Letting $\pi_{\mathfrak{a}}$ and $\pi_{\mathfrak{b}}$ be the given pseudo-representations of G into $\mathcal{I} / \mathfrak{a}$ and $\mathcal{I} / \mathfrak{b}$ respectively, define $\pi=\pi_{\mathfrak{a}} \oplus \pi_{b}$ to be a pseudo-representation $G \rightarrow \mathcal{I} / \mathfrak{a} \oplus \mathcal{I} / \mathfrak{b}$. For $\sigma \in \Sigma$, we have $\operatorname{Tr} \pi(\sigma)=\operatorname{Tr} \pi_{\mathfrak{a}}(\sigma)+\operatorname{Tr} \pi_{\mathfrak{b}}(\sigma) \in \mathcal{I} / \mathfrak{a} \oplus \mathcal{I} / \mathfrak{b}$; by assumption this is the image of $T(\sigma)$ under i, and therefore $p(\operatorname{Tr} \pi(\sigma))=0$ for every $\sigma \in \Sigma$. Since Σ is dense in G and $p \circ \operatorname{Tr} \pi$ is continuous, $p(\operatorname{Tr} \pi(\sigma))=0$ for every $\sigma \in G$, and so $\operatorname{Tr} \pi(\sigma)$ is always in the image of i. Writing $\pi=(a, d, x)$, we can reconstruct each of a, d, and x from $\operatorname{Tr} \pi$ by
$a(\sigma)=\frac{\operatorname{Tr} \pi(\sigma)+\operatorname{Tr}(\pi(c \sigma))}{2}, \quad d(\sigma)=\frac{\operatorname{Tr} \pi(\sigma)-\operatorname{Tr} \pi(c \sigma)}{2}, \quad x(\sigma, \tau)=a(\sigma \tau)-a(\sigma) a(\tau)$,
so since each of $\operatorname{Tr} \pi(\sigma)$ and $\operatorname{Tr} \pi(c \sigma)$ is in the image of i so are each of $a(\sigma), d(\sigma)$, and $x(\sigma, \tau)$ (recalling that 2 is invertible in \mathcal{I}). Therefore π is a pseudo-representation of G into the image of i, and so taking the preimage under i we get a pseudo-representation π^{\prime} of G into $\mathcal{I} / \mathfrak{a} \cap \mathfrak{b}$ satisfying $\operatorname{Tr} \pi^{\prime}(\sigma)=T(\sigma)$ for $\sigma \in \Sigma$, and

$$
\operatorname{det} \pi^{\prime}(\sigma)=i^{-1}(a(\sigma) d(\sigma)-x(\sigma, \sigma))=\frac{\operatorname{Tr} \pi^{\prime}(\sigma) \operatorname{Tr} \pi^{\prime}(c \sigma)}{2}-\frac{\operatorname{Tr} \pi^{\prime}\left(c \sigma^{2}\right)}{2}
$$

must also agree with $\operatorname{det} \pi_{\mathfrak{a}}$ and $\operatorname{det} \pi_{\mathfrak{b}}$ modulo \mathfrak{a} and \mathfrak{b} respectively since the trace does.

References

[1] Hung Chiang. Eichler-Shimura isomorphism, ordinary modular forms and Hida families, February 2021.
[2] Pierre Deligne. Formes modulaires et representations ℓ-adiques, sém bourbaki, 355. Lecture Notes in Math, 179:136-172, 1971.
[3] Pierre Deligne and Jean-Pierre Serre. Formes modulaires de poids 1. In Annales scientifiques de l'École Normale Supérieure, volume 7, pages 507-530, 1974.
[4] Haruzo Hida. Elementary Theory of L-functions and Eisenstein Series. Cambridge University Press, 1993.
[5] Jun-Ichi Igusa. Kroneckerian model of fields of elliptic modular functions. American Journal of Mathematics, 81(3):561-577, 1959.
[6] Goro Shimura. Introduction to the arithmetic theory of automorphic functions. Princeton University Press, 1971.
[7] Andrew Wiles. On ordinary λ-adic representations associated to modular forms. Inventiones mathematicae, 94(3):529-573, 1988.

