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0 - Motivation From Classical Modular Forms

When discussing modular forms over arbitrary rings, it makes more sense to use their interpretation as q-

expansions or as functions on elliptic curves, then as function on the upper half-plane. This leads us to three

main equivalent definitions of modular curves over a ring R and we will try to find analogous definitions in

a p-adic setting afterward. We will almost only care about modular curves of level 1.

Definition (Version 1). A (meromorphic) modular form f of weight k (and level 1) over R is a function on

isomorphism classes (E,ω), where

(1.1) E → Spec(A) is an elliptic curves over some R-algebra A.

(1.2) ω ∈ H0(E,Ω1
E/A) is a nowhere vanishing differential

(2.1) f(E/A, ω) ∈ A

(2.2) f(E/A, λω) = λ−kf(E/A, ω), for all λ ∈ A×.

(2.3) f commutes with pullbacks

Note that the hypothesis (1.1) and (1.2) are about the domain of f and the other 3 are about the

properties of f .

Definition (Version 2). A (merormophic) modular form f of weight k over R is a global section

f ∈ H0(Y (1)R, ω
⊗k
H ) ,

where ωH is the base changed to R of the Hodge line bundle over Y (1). We just drop the “meromorphic”

adjective if f extends to a global section of H0(X(1)R, ω
⊗k
H ).

Definition (Version 3). Although it is uncommon to define (meromorphic) modular formss as particular

q-expansions, it is worth noting that a modular curve f as above over R is uniquely determined by its

q-expansion

f(Tate(q), ωcan) ∈ R((q)) ,

where Tate(q) is the Tate curve over Z((q)) (base changed to R) with its canonical non-vanishing differential

ωcan. We have that f is actually a modular form if and only if f(Tate(q), ωcan) ∈ R[[q]].

For more details on this subject, see Haodong’s notes from his talks on p-adic properties of modular

schemes and modular forms.
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1 - Serre’s Approach to p-adic Modular Forms

Fix a prime integer p ≥ 2. One way to define p-adic modular forms is as limits of classical modular forms,

where the coefficients converge uniformely p-adically. Over Zp, one can juste define a q-expansion

f =
∑
n≥0

anq
n ∈ Qp[[q]]

to be a p-adic modular forms if there exists a sequence (fi), such that fi is a modular form of weight ki (and

level 1) with rational q-expansion and

||f − fi||p := sup
n
|an(f)− an(fi)|p

i→+∞−−−−→ 0

Note that this implies that the p-valuations of the coefficients of f are bounded below, hence we in fact

have f ∈ Zp[[q]]⊗Zp
Qp.

Theorem 1. Let f , fi and ki be as above. The sequence (ki)i converges in to some element k in

lim←−
m

Z/(pm(p− 1))Z = Zp × Z/(p− 1)Z (∼= Z×p )

Moreover, if another sequence of modular forms (gi)i converges to f in the sense above, the limit of the

weights of gi is k again. We say that f has weight k ∈ Zp × Z/(p− 1)Z.

One of the most well-known example of a non-classical p-adic modular form comes from congruencees of

Eisenstein series.

Example 1. Let k ≥ 4 be any integer. The classical Eisenstein series of weight k is

Gk =
−Bk

2k
+

∞∑
n=1

σk−1(n)qn ,

where σr(n) =
∑

d|n d
r and Bk is the k-th Bernouilli number.

Now, take a sequence of integers (ki), such that all ki ≥ 4, ki → +∞ and the sequences converges to some

k ∈ Zp × Z/(p− 1)Z. Assume for simplicity that p− 1 does not divide ki for i large enough or equivalently,

k /∈ Zp × {0}.
Using Fermat’s Little Theorem, it is easy to see that

σki−1(n)→ σk−1(n)∗ :=
∑
p-d|n

dk−1 ∈ Qp

where this sequence converges with respect to the natural topology of Qp. Note that the divisors d | n that

are not coprime to p will contribute to 0 in the limit and the other divisors p - d | n are units in Zp, so the

exponent dk makes sense.

The all-important Kummer congruences tells us that the constant term a0(Gki
) also converges to some

a∗0 ∈ Qp. It follows that we have a non-classical p-adic modular form

G∗k := a∗0 +
∑
n≥1

σ∗k−1(n)qn

A theorem of Serre tells us that one does not actually need to prove the Kummer congruences (which

is a difficult task) to obtain this p-adic modular forms. Indeed, one can use the following result to extend

congruences of higher order terms to the 0-th term of the q-expansion
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Theorem 2. Let f (i) =
∑

n≥0 a
(i)
n qn be a p-adic modular forms of weight ki such that

1. The sequence (ki)i converges to some k in Zp × Z/(p− 1)Z.

2. The sequence (a
(i)
n )i converges to some an ∈ Qp, uniformely in n.

In that case, the sequence (a
(i)
0 )i also converges to some a0 ∈ Qp and f =

∑
n≥0 anq

n is a p-adic modular

forms of weight k.

For more details on this example, see Vonk’s notes [Von19] or even better, Serre’s original article [Ser73].

Remark 1. The example above, together with Serre’s theorem, already show how useful p-adic modular

forms can be when studying congruences of classical modular forms. Furthermore, the coefficent a0(G∗k) = a∗0
as a function of k ∈ Zp×Z/(p−1)Z is actually intimately related to the Kubota-Leopoldt p-adic L-function.

This gives a surprising way to construct it.

2 - Katz’s Approach to p-adic Modular Forms

Although Serre’s approach is already quite powerful and impressive, it is not really flexible enough to

generalize to other rings. As we mentioned in section 0, q-expansions might not be the most natural way to

build the theory of (p-adic) modular forms. We now approach the theory using (simultaneously) the other

two definitions of classical modular forms over a ring R. Before accomplishing this, we need to discuss the

Hasse Invariant and some more geometry.

2.1 - Hasse Invariant and More General p-adic Modular Forms

The Hasse invariant allows us to detect, in a general sense, elliptic curves whose reduction are supersingular.

We will later use its lift to explain how some elliptic curves are “more supersingular” than others. Let S be

a ring such that p = 0 in S.

Definition. The Hasse invariant A is a (classical) modular form over S of weight p−1. It’s exact construc-

tion will not matter to us, for more details see [Cal13], [Kat73] or [Von19]. Note that the Hasse invariant A

depends on S, even though the notation does not show this dependence.

The important properties for us are the following :

1. If S = Fp is a field, then A(E,ω) is 0 if and only if E is supersingular.

2. The q-expansion of A is A(Tate(q), ωcan) = 1.

3. Suppose there exists some ring R of characteristic 0 such that S = R/pR. If p ≥ 5, the Eisenstein

series Ep−1 over R reduces to A in S. Otherwise, if p = 2, then E4 ≡ A4 mod 8 and, finally, if p = 3,

then E6 ≡ A3 mod 9. Here, Ek = −2k
Bk

Gk is the Eisenstein series, normalized to have constant term 1.

Let R be a p-adically completed ring.

Definition. A p-adic modular form f of weight k (and level 1) is a function on isomorphism classes of pairs

(E,ω) such that

(1.1) E → Spec(A) is an elliptic curve, where A is a p-adically completed R-algebra.

(1.2) ω ∈ H0(E,Ω1
E/A) is a non-vanishing differential on E.
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(1.3) The Hasse invariant A(E/B, ωB) is invertible, B = A/pA.

(2.1) f(E/A, ω) ∈ A

(2.2) f(E, λω) = λ−kf(E,ω), for all λ ∈ A×.

(2.3) f commutes with pullback

(2.4) f(Tate(q), ωcan) ∈ A[[q]].

The space of such function is denoted by Mk(R, 0) (= Mk(Γ(1), R, 0)). The inclusion of the “0” in the

notation will make sense shortly, after we introduce overconvergent modular forms. Note that once more,

the first 3 conditions are about the domain of f and the last 4, about its properties.

We pick up the third condition for its domain because, in the case R = Zp, we recover Serre’s p-adic

modular curves and interpreted as functions on elliptic curves, they might not be well-defined on supersingular

elliptic curves. This observation will exactly be what leads us to consider overconvergent modular forms.

Remark 2. Geometrically, p-adic modular forms are global sections of powers of the Hodge line bundle on

the ordinary locus Xrig[0] as drawn below (where X = X(1)) :

Figure 1: Rigid analytic ordinary locus

Here, we use the reduction map red : X(Cp) → X(F̄p). This maps exists since X is proper, hence all

Cp-points extend uniquely to OCp
-points, which can be reduced to F̄p-points. The picture suggest that

Xrig[0] should be defined as the complement of the pre-image of the supersingular points of X(F̄p) along

the reduction map.

2.2 - Geometry Behind p-adic Modular Forms - Rigid Analytic Spaces

We now explain more about the rigid analytic space Xrig[0] drawn above. The drawing suggest that we

have “(open) disks” above all the supersingular points of X(1)/Fp and we want to remove them from X(1).

Unfortunately, open disks are not really objects in the theory of schemes and hence we certainly can’t remove

them. This is where rigid analytic geometry comes into play. We won’t explain the details of the theory but

introduce the relevant facts.

Let K be a complete non-Archimedian field with (non-trivial) absolute value | · |, e.g. K = Qp or Cp.

Definition. A Tate algebra over K is

K〈T1, . . . , Tn〉 :=

{∑
I

aIX
I : aI ∈ K, |aI | → 0 as |I| → +∞

}
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where I = (i1, . . . , in), ij ≥ 0 and |I| =
∑
ij .

This is the equivalent of affine space in rigid analytic geometry. We associate to it the space

Specmax(K〈T1, . . . , Tn〉) = R̄n

where R̄ is the ring of integers of the algebraic closure K̄ of K. Namely, we associate an n-dimensional ball

of radius 1 to this Tate algebra.

Definition. A K-affinoid algebra is a quotient of a Tate algebra over K and an affinoid is the corresponding

set of maximal ideals.

One can equip such an affinoid with a Grothendieck topology, called the G-topology, and rigid analytic

space is one formed by gluing such affinoids, together with its own structure sheaf with respect to the G-

topology. It is important to keep in mind that its is not an actual topology on the space (such as the Zariski

topology) but more of a site (such as the étale site). It allows one to have a more general theory of sheaf in

this setting and is in some sense finer than the Zariski topology. Most importantly, it allows one to substract

(open) balls (of various radius), as the ones above.

Theorem 3. Given a variety X over K, we can associate to it a rigid analytic space Xrig such that the

geometric space associated to Xrig is the set of closed points of X

We will mostly be interested in the case X = X(1), over K = Qp or Cp, and the ordinary locus

Xrig[0] = Xrig \ {rigid analytic open disks above supersingular points}

Figure 2: Rigid analytic ordinary locus

Now that this is introduced, we can rephrase our definitions of p-adic modular forms over K in a slightly

more concice manner

Definition. A p-adic modular form f of weight k (and level 1) is a global section

f ∈ H0(X(1)rigK [0], ω⊗KH )

Example 2. If p = 2, then jE = 0 is the only super singular elliptic j-invariant. In other words, the ordinary

locus can be described as |j|2 ≥ 1 or equivalently, |j−1|2 ≤ 1. From that, one can argue that p-adic modular

forms over C2 of weight 0 are all functions in the variable j−1 that converge on |j−1|2.

In other words, M0(C2, 0) is the Tate algebra C2〈j−1〉 and the 2-adic ordinary locus Xrig[0] is the

corresponding ball.
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Remark 3. Although this space is very interesting, it is too big in some sense. One way to see this is

through the spectral theory of the Hecke operator Up on Mk(R, 0). Namely, one can check that all values

λ ∈ R with positive valuation are eigenvalues of Up (see [Cal13] for details).

Therefore, the spectrum of Up is continuous and quite large, so there is no hope of finding an Hilbert

basis of that space formed of Hecke (generalised) eigenform, as in the classical case. We now try to restrict

ourselves to somewhat smaller spaces (that are still infinite dimensional) where we the spectral theory of Up

is a little more interesting.

2.3 - Overconvergent Modular Forms

To introduce overconvergent p-adic modular forms, we first need to construct rigid analytic spaces that

(strictly) contains Xrig[0]. For that, we need to generalize our definition of Hasse invariant.

Let x ∈ Xrig(Cp) and let (E,ω) be the elliptic curve (over Cp) it corresponds to. We can find a lift Ã to

Cp of the Hasse invariant A (over Fp) in a small neighborhood of x. If p ≥ 5, then Ep−1 is in fact a global

lift. The valuation vp(Ã(E,ω)) is independant of our choice of lift Ã, provided it is less or equal to 1.

In other words, the quantity

min{vp(Ã(E,ω), 1}

is an invariant of x, called its Hasse invariant. We now have a map

Xrig(Cp)→ [0, 1]

defined as evaluation of the Hasse invariant and, given r ∈ [0, 1], we set Xrig[r] as the rigid analytic space

coming from the pre-image of [0, r]. This is obviously consistent with our previous notation if r = 0.

Remark 4. This amounts to taking (open) disks of smaller radius over the supersingular points of X(F̄p).

We can do this because the full pre-image is a disk of radius 1 associated to a Tate algebra in 1 variable

and we can make the radius smaller by taking the affinoid associated to the Tate algebra where the local

parameter is rescaled.

Definition. An overconvergent p-adic modular form f of weight k and radius r ∈ [0, 1] is

f ∈ H0(Xrig[r], ω⊗k)

and this space is denoted M†k(r) (= M†k(Γ(1), r)).

Figure 3: Drawing of Xrig[r] for 0 < r < 1
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Example 3. We mentioned earlier that

M0(Γ(1), 0) = M0(Γ(1),C2) = C2〈j−1〉

We now want the part that “overconverges” beyond the ordinary locus, up to an annulus of radius r over

the unique supersingular j = 0. This amounts to forcing a certain speed of decay of the coefficients of the

elements of C2〈j−1〉.
Note that j =

E3
4

∆ , where ∆ is the usual discriminant modular form of weight 12, and as we saw previously,

E4 is a lift of A3. On the supersingular disk, elliptic curves obviously have good reduction, i.e. v(∆) = 0.

From this, we obtain that

v(j) = v(E3
4) = 3v(E4) = 12v(A) ,

and hence v(A) ≤ r ⇐⇒ v(j) ≤ 12r ⇐⇒ v(j−1) ≥ −12r.

Therefore, we want power series in j−1 that converge on |j−1| ≤ 212r, i.e.

M†0 (r) = {
∑
n≥0

anj
−n : |an|2(212r)n → 0} = C2〈212rj−1〉

Remark 5. There is a way to describe the above even more nicely when working on X0(2) instead of X(1).

Namely,

M†0 (r) = C2〈2rf〉,

where f = ∆(2z)/∆(z) is the Hauptmodul of X0(2). This is related to the existence of a canonical subgroup

of order 2 for elliptic curves that are not “too” supersingular over F̄2 giving us a “partial” section to the

natural map X0(2)→ X(1).

Theorem 4. There is a canonical inclusion Mk(Γ0(pn)) ⊂M†k(r), for r > 0.

Remark 6. Note that this is not obvious since modular forms in Mk(Γ0(p)) need to be evaluated on elliptic

curves equipped with some level structure. If E is not “too” supersingular, i.e. r is small enough, there is a

canonical choice of level structure on E and we use it in our evaluation of the desired overconvergent p-adic

modular form.

2.4 - Notes on Spectral Theory of Up

Now that we have introduced the space of overconvergent modular forms, we ask : Is it really “better” than

the space Serre introduced? To answer this, we give quick note about the spectral theory of Up.

Theorem 5. The operator Up extends to

M†k(r)→M†k(pr)
can−−→M†k(r)

provided r < p
p+1 . Moreover, it is compact.

Once more, this has to do with the canonical level p structure that can be given to elliptic curves that

are not “too” supersingular.

Conjecture 1 (Spectral Conjecture). Suppose that r ∈ ( 1
p+1 ,

p
p+1 ). Then, any F ∈ M†k(r) has a spectral

decomposition, i.e.

F =
∑
i

ci,F vi

where the vi’s are generalized eigenform Up and the infinite sum converges with respect to some (strong)

norm on M†k(r).
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Theorem 6 (Loeffler, 07). The Spectral conjecture is ture if p = 2 and r ∈ (5/12, 7/12). Moreover, the

(strong) norm of F ∈M†k(r) is satisfies some further properties.

Remark 7. The vi’s above are generalized eigenform. The question of whether or not they are actually

eigenforms, i.e. Up is semisimple, is an interesting topic in this theory.

Definition. Suppose F ∈ M†k(r), for r ≤ p
p+1 , is an eigenform of Up. We define the slope of F has the

p-valuation of its Up-eigenvalue.

Theorem 7. If F ∈Mk(Γ0(p)) is an Up-eigenform, it has slope at most k − 1. If F ∈M†k(r) has slope less

or equal to k − 2, then it lies in Mk(Γ0(p)). If it has slope k − 1, then it need not be classical.

3 - Some Computations

Consider the case p = 2. Obviously, j−1 is overconvergent, for all r 6= 1. It therefore makes sense to compute

U2j
−1, at least for r < 2/3.

One can check that

U2j
−1 = −744j−1 − 140914688j−2 − 16324041375744j−3 + . . .

and more importantly, the 2-valuations of the coefficients are

3, 12, 20, 28, 35, 46, 52, 60, 67, 76, . . .

and at a very large scale, those look like values on the line of slope 8 (passing through the origin). Note that

8 = 12 · ( 2
3 ), so the coefficients grow as fast as they could while still convergins on the space Xrig[ 2

3 ].

Remark 8. In terms of working with f , the Hauptmodul of X0(2), instead of j−1, we would instead compute

U2f = 24f + 2048f2

and this again relates to the existence of a canonical section X0(2)rig[ 2
3 ]→ Xrig[ 2

3 ].
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