The Igusa tower and the p-adic theory

August 17, 2021

• p prime, N prime to p

- p prime, N prime to p
- $X = X_1(N) \rightarrow \operatorname{Spec} \mathbb{Z}_p$

- p prime, N prime to p
- $X = X_1(N) \rightarrow \operatorname{Spec} \mathbb{Z}_p$
- $\mathfrak{X} = p$ -adic completion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- p prime, N prime to p
- $X = X_1(N) \rightarrow \operatorname{Spec} \mathbb{Z}_p$
- $\mathfrak{X} = p$ -adic completion
- $X_n \to \operatorname{Spec} \mathbb{Z}/p^n \mathbb{Z}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- p prime, N prime to p
- $X = X_1(N) \rightarrow \operatorname{Spec} \mathbb{Z}_p$
- $\mathfrak{X} = p$ -adic completion
- $X_n \to \operatorname{Spec} \mathbb{Z}/p^n \mathbb{Z}$
- X^{ord} , $\mathfrak{X}^{\text{ord}}$, X_n^{ord} , ...

- p prime, N prime to p
- $X = X_1(N) \rightarrow \operatorname{Spec} \mathbb{Z}_p$
- $\mathfrak{X} = p$ -adic completion
- $X_n \to \operatorname{Spec} \mathbb{Z}/p^n \mathbb{Z}$
- X^{ord} , $\mathfrak{X}^{\text{ord}}$, X_n^{ord} , ...
- $\Lambda = \mathbb{Z}_p[[\mathbb{Z}_p^{\times}]], \ \kappa : \mathbb{Z}_p^{\times} \to \Lambda$

- p prime, N prime to p
- $X = X_1(N) \rightarrow \operatorname{Spec} \mathbb{Z}_p$
- $\mathfrak{X} = p$ -adic completion
- $X_n \to \operatorname{Spec} \mathbb{Z}/p^n \mathbb{Z}$
- X^{ord} , $\mathfrak{X}^{\text{ord}}$, X_n^{ord} , ...
- $\Lambda = \mathbb{Z}_p[[\mathbb{Z}_p^{\times}]], \ \kappa : \mathbb{Z}_p^{\times} \to \Lambda$
- $\omega = {\rm line}$ bundle arising from universal elliptic curve as in previous talks

lgusa tower

$\mathsf{Ig} \to \mathfrak{X}^{\mathsf{ord}}$ classifies $E \in \mathfrak{X}^{\mathsf{ord}}$, trivialization $\psi : \mathbb{Z}_p \to T_p(E)^{\acute{\mathsf{e}t}}$.

Igusa tower

Ig $\to \mathfrak{X}^{\text{ord}}$ classifies $E \in \mathfrak{X}^{\text{ord}}$, trivialization $\psi : \mathbb{Z}_p \to T_p(E)^{\text{\'et}}$.

Hodge-Tate map $T_p(E)^{\text{\'et}} \to \omega$ induces $T_p(E)^{\text{\'et}} \otimes \mathcal{O}_{\mathfrak{X}^{\text{ord}}} \xrightarrow{\sim} \omega$ induces

The sheaf ω^{κ}

Set $\omega^{\kappa} = (\mathcal{O}_{\lg} \widehat{\otimes} \Lambda)^{\mathbb{Z}_p^{\times}}$ with the diagonal action. For each $k \in \mathbb{Z}$, $x \mapsto x^k$ on \mathbb{Z}_p^{\times} extends to $k : \Lambda \to \mathbb{Z}_p$.

The sheaf ω^{κ}

Set $\omega^{\kappa} = (\mathcal{O}_{\lg} \widehat{\otimes} \Lambda)^{\mathbb{Z}_p^{\times}}$ with the diagonal action. For each $k \in \mathbb{Z}$, $x \mapsto x^k$ on \mathbb{Z}_p^{\times} extends to $k : \Lambda \to \mathbb{Z}_p$.

Lemma 1

As a sheaf of $\Lambda \otimes \mathcal{O}_{\mathfrak{X}^{ord}}$ -modules, ω^{κ} is invertible, and for each k we (canonically) recover $\omega^{k} \simeq \omega^{\kappa} \otimes_{\Lambda,k} \mathbb{Z}_{p}$.

Proof: compare sections and use the above diagram

(ロ)、(型)、(E)、(E)、 E) の(の)

• $H^0(\mathfrak{X}^{\mathrm{ord}},\omega^\kappa)$ - space of sections

Cohomology

- $H^0(\mathfrak{X}^{\mathrm{ord}},\omega^\kappa)$ space of sections
- $H^1_c(\mathfrak{X}^{\operatorname{ord}},\omega^{\kappa}) := \lim_n H^1_c(X^{\operatorname{ord}}_n,\omega^{\kappa}/\mathfrak{m}^n_{\Lambda})$ where $m^n_{\Lambda} = \operatorname{ker}(\Lambda \to \mathbb{F}_p[[\mathbb{F}_p^{\times}]])$

Cohomology

- $H^0(\mathfrak{X}^{\mathrm{ord}},\omega^\kappa)$ space of sections
- $H^1_c(\mathfrak{X}^{\mathrm{ord}}, \omega^{\kappa}) := \lim_n H^1_c(X_n^{\mathrm{ord}}, \omega^{\kappa}/\mathfrak{m}^n_{\Lambda})$ where $m^n_{\Lambda} = \ker(\Lambda \to \mathbb{F}_p[[\mathbb{F}_p^{\times}]])$
- Choose a coherent extension \mathscr{F}_n of $\omega^{\kappa}/\mathfrak{m}^n_{\Lambda}$ to X_n , and let \mathscr{I} be the ideal of $X_n \setminus X_n^{\mathrm{ord}}$
- $H^1_c(X_n^{\text{ord}}, \omega^{\kappa}/\mathfrak{m}^n_{\Lambda}) := \lim_m H^1(X_n, \mathscr{I}^m \mathscr{F}_n)$ (independent of \mathscr{F}_n by results of Hartshorne)

Frobenius

Frobenius $F : \mathfrak{X}^{\text{ord}} \to \mathfrak{X}^{\text{ord}}$, $E \mapsto E/\mu_p$ via $\mu_p \hookrightarrow E[p]$

Frobenius

Frobenius $F : \mathfrak{X}^{\operatorname{ord}} \to \mathfrak{X}^{\operatorname{ord}}$, $E \mapsto E/\mu_p$ via $\mu_p \hookrightarrow E[p]$

Lift to $F : Ig \rightarrow Ig$ by composition:

 $(E, \psi: \mathbb{Z}_{p} \xrightarrow{\sim} T_{p}(E)^{\text{\'et}}) \mapsto (E/\mu_{p}, \psi \xrightarrow{\sim} T_{p}(E)^{\text{\'et}} \xrightarrow{\sim} T_{p}(E/\mu_{p}))$

Frobenius

Frobenius
$$F:\mathfrak{X}^{\mathsf{ord}} o\mathfrak{X}^{\mathsf{ord}}$$
, $E\mapsto E/\mu_p$ via $\mu_p\hookrightarrow E[p]$

Lift to $F : \lg \rightarrow \lg$ by composition:

$$(E, \psi : \mathbb{Z}_p \xrightarrow{\sim} T_p(E)^{\text{\'et}}) \mapsto (E/\mu_p, \psi \xrightarrow{\sim} T_p(E)^{\text{\'et}} \xrightarrow{\sim} T_p(E/\mu_p))$$

 $\mathsf{Pullback}\ F^*\mathcal{O}_{\mathsf{lg}} \to \mathcal{O}_{\mathsf{lg}}, \, \mathsf{trace}\ \mathsf{tr}: F_*\mathcal{O}_{\mathsf{lg}} \to \mathcal{O}_{\mathsf{lg}}$

Lemma 2

The image of tr : $F_*\mathcal{O}_{lg} \to \mathcal{O}_{lg}$ is in $p\mathcal{O}_{lg}$.

Lemma 2

The image of $\mathsf{tr}:F_*\mathcal{O}_{\mathsf{lg}}\to \mathcal{O}_{\mathsf{lg}} \text{ is in } p\mathcal{O}_{\mathsf{lg}}.$

Proof.

We have ${\sf tr}({\sf F}_*{\cal O}_{{\mathfrak X}^{{\sf ord}}})\subseteq p{\cal O}_{{\mathfrak X}^{{\sf ord}}},$ and Ig is the fiber product

so by commutativity $tr(F_*\mathcal{O}_{lg})$ also has image divisible by p.

Lemma 2

The image of $\mathsf{tr}:F_*\mathcal{O}_{\mathsf{lg}}\to \mathcal{O}_{\mathsf{lg}} \text{ is in } p\mathcal{O}_{\mathsf{lg}}.$

Proof.

We have $tr(F_*\mathcal{O}_{\mathfrak{X}^{ord}}) \subseteq p\mathcal{O}_{\mathfrak{X}^{ord}}$, and Ig is the fiber product

so by commutativity $tr(F_*\mathcal{O}_{lg})$ also has image divisible by p.

By equivariance define $F : F^* \omega^{\kappa} \to \omega^{\kappa}$ and $U_p : F_* \omega^{\kappa} \to \omega^{\kappa}$ by tensoring $F^* \mathcal{O}_{lg} \to \mathcal{O}_{lg}$ and $\frac{1}{p}$ tr with Λ and taking \mathbb{Z}_p^{\times} -invariants.

Relationship to the universal isogeny

The universal isogeny $\pi: E \to E/\mu_p$ induces $\pi^*: F^*\omega \to \omega$, and similarly the dual induces $\hat{\pi}^*: \omega \to F^*\omega$.

Relationship to the universal isogeny

The universal isogeny $\pi: E \to E/\mu_p$ induces $\pi^*: F^*\omega \to \omega$, and similarly the dual induces $\hat{\pi}^*: \omega \to F^*\omega$.

Lemma 3

The maps
$$p^{-k}(\pi^*)^k$$
 and $F_*\omega^k \xrightarrow{(\hat{\pi}^*)^k} F_*F^*\omega^k \xrightarrow{\frac{1}{p}tr} \omega^k$ are the specializations of F and U_p respectively.

Relationship to the universal isogeny

The universal isogeny $\pi: E \to E/\mu_p$ induces $\pi^*: F^*\omega \to \omega$, and similarly the dual induces $\hat{\pi}^*: \omega \to F^*\omega$.

Lemma 3

The maps
$$p^{-k}(\pi^*)^k$$
 and $F_*\omega^k \xrightarrow{(\hat{\pi}^*)^k} F_*F^*\omega^k \xrightarrow{\frac{1}{p}tr} \omega^k$ are the specializations of F and U_p respectively.

Proof.

We have a commutative diagram

so $F: F^*\omega^k \to \omega^k$ is given by $(\hat{\pi}^*)^{-k} = p^{-k}(\pi^*)^k$, and similarly for U_p .

As cohomological correspondences

 $X_0 \to \operatorname{Spa}(\mathbb{Z}_p, \mathbb{Q}_p)$ adic modular curve of level $\Gamma_0(p) \cap \Gamma_1(N)$, with projections $p_1, p_2 : X_0 \to X$

 $\mathfrak{X}_0, \mathfrak{X}_0^{\text{ord}}, \text{ etc.}$ $\mathfrak{X}_0^{\text{ord}} = \mathfrak{X}_0^{\text{ord}, F} \sqcup \mathfrak{X}_0^{\text{ord}, V}$

As cohomological correspondences

 $X_0 \to \operatorname{Spa}(\mathbb{Z}_p, \mathbb{Q}_p)$ adic modular curve of level $\Gamma_0(p) \cap \Gamma_1(N)$, with projections $p_1, p_2 : X_0 \to X$ $\mathfrak{X}_0, \mathfrak{X}_0^{\operatorname{ord}}$, etc. $\mathfrak{X}_0^{\operatorname{ord}} = \mathfrak{X}_0^{\operatorname{ord},F} \sqcup \mathfrak{X}_0^{\operatorname{ord},V}$ On $\mathfrak{X}_0^{\operatorname{ord},F}$, p_1 is an isomorphism and $p_2 = F$, on $\mathfrak{X}_0^{\operatorname{ord},V} p_2$ is an isomorphism and $p_1 = F$. Therefore on $\mathfrak{X}_0^{\operatorname{ord},F}$

$$F: F^*\omega^\kappa \simeq p_2^*\omega^\kappa o \omega^\kappa \simeq p_1^!\omega^\kappa$$

and on $\mathfrak{X}_0^{\mathrm{ord},\mathit{V}}$

$$U_{p}: F_{*}\omega^{\kappa} \simeq p_{1*}p_{2}^{*}\omega^{\kappa} \to \omega^{\kappa} \quad \rightsquigarrow \quad U_{p}: p_{2}^{*}\omega^{\kappa} \to p_{1}^{!}\omega^{\kappa}$$

so we can view F and U_p as cohomological correspondences supported on $\mathfrak{X}_0^{\text{ord},F}$, $\mathfrak{X}_0^{\text{ord},V}$.

Comparison with T_p

Similarly let T_p^F , T_p^V be the projections onto $\mathfrak{X}_0^{\text{ord},F}$, $\mathfrak{X}_0^{\text{ord},V}$, and specialize all the operators to ω^k .

Comparison with T_p

Similarly let T_p^F , T_p^V be the projections onto $\mathfrak{X}_0^{\text{ord},F}$, $\mathfrak{X}_0^{\text{ord},V}$, and specialize all the operators to ω^k .

Lemma 4

If
$$k \ge 1$$
, we have $T_p^F = p^{k-1}F$, $T_p^V = U_p$, and $T_p = p^{k-1}F + U_p$;
if $k \le 1$, we have $T_p^F = F$, $T_p^V = p^{1-k}U_p$, and $T_p = F + p^{1-k}U_p$.

Comparison with T_p

Similarly let T_p^F , T_p^V be the projections onto $\mathfrak{X}_0^{\text{ord},F}$, $\mathfrak{X}_0^{\text{ord},V}$, and specialize all the operators to ω^k .

Lemma 4

If
$$k \ge 1$$
, we have $T_p^F = p^{k-1}F$, $T_p^V = U_p$, and $T_p = p^{k-1}F + U_p$;
if $k \le 1$, we have $T_p^F = F$, $T_p^V = p^{1-k}U_p$, and $T_p = F + p^{1-k}U_p$.

Proof.

 $T_{p,k}^{\text{naive},F}$, $T_{p,k}^{\text{naive},V}$ are given by pullback by π and $\hat{\pi}$, so the claim follows from Lemma 3 by comparing normalizations.

Main theorem

Theorem <u>5</u>

There are locally finite actions of F and U_p on $H^1_c(\mathfrak{X}^{\text{ord}}, \omega^{\kappa})$ and $H^0(\mathfrak{X}^{\text{ord}}, \omega^{\kappa})$ respectively, and $e(F)H^1_c(\mathfrak{X}^{\text{ord}}, \omega^{\kappa})$ and $e(U_p)H^0(\mathfrak{X}^{\text{ord}}, \omega^{\kappa})$ are finite projective Λ -modules. Further for $k \leq -1$ we have

$$e(F)H^1_{\mathsf{c}}(\mathfrak{X}^{\mathrm{ord}},\omega^\kappa)\otimes_{\Lambda,k}\mathbb{Z}_p=e(T_p)H^1(X,\omega^k)$$

and for $k \geq 3$

$$e(U_{\rho})H^{0}(\mathfrak{X}^{\mathrm{ord}},\omega^{\kappa})\otimes_{\Lambda,k}\mathbb{Z}_{\rho}=e(T_{\rho})H^{0}(X,\omega^{k}).$$

The cases are similar, so we'll look at the statement for F.

Action on cohomology

First: define action of F on $H^1_c(\mathfrak{X}^{\mathrm{ord}}, \omega^{\kappa}) = \lim_n H^1_c(X_n, \omega^{\kappa}/\mathfrak{m}^n_{\Lambda}).$

Action on cohomology

First: define action of F on $H^1_c(\mathfrak{X}^{\mathrm{ord}}, \omega^{\kappa}) = \lim_n H^1_c(X_n, \omega^{\kappa}/\mathfrak{m}^n_{\Lambda}).$

We have $X_{0,n}^{\text{ord}} = X_{0,n}^{\text{ord},F} \sqcup X_{0,n}^{\text{ord},V}$, and $X_{0,n}^{\text{ord},F} \hookrightarrow X_n^{\text{ord}} \times X_n^{\text{ord}}$ is the graph of Frobenius $F : X_n^{\text{ord}} \to X_n^{\text{ord}}$, so p_1 is an isomorphism and $p_2 = F$; thus we can view F as a cohomological correspondence $p_2^* \omega^{\kappa} / \mathfrak{m}_{\Lambda}^n \to p_1^! \omega^{\kappa} / \mathfrak{m}_{\Lambda}^n$ on $X_{0,n}^{\text{ord}}$ which is F on $X_{0,n}^{\text{ord},F}$ and 0 on $X_{0,n}^{\text{ord},V}$.

Action on cohomology

First: define action of F on $H^1_c(\mathfrak{X}^{\mathrm{ord}}, \omega^{\kappa}) = \lim_n H^1_c(X_n, \omega^{\kappa}/\mathfrak{m}^n_{\Lambda}).$

We have $X_{0,n}^{\text{ord}} = X_{0,n}^{\text{ord},F} \sqcup X_{0,n}^{\text{ord},V}$, and $X_{0,n}^{\text{ord},F} \hookrightarrow X_n^{\text{ord}} \times X_n^{\text{ord}}$ is the graph of Frobenius $F : X_n^{\text{ord}} \to X_n^{\text{ord}}$, so p_1 is an isomorphism and $p_2 = F$; thus we can view F as a cohomological correspondence $p_2^* \omega^{\kappa} / \mathfrak{m}_{\Lambda}^n \to p_1^! \omega^{\kappa} / \mathfrak{m}_{\Lambda}^n$ on $X_{0,n}^{\text{ord}}$ which is F on $X_{0,n}^{\text{ord},F}$ and 0 on $X_{0,n}^{\text{ord},V}$.

We can extend to $X_{0,n}$ by choosing an extension \mathscr{F} and taking (co)limits over $\mathscr{I}^{-m}\mathscr{F}$. As in Hung's talk this yields an endomorphism $F : H^1_c(X_n, \omega^{\kappa}/\mathfrak{m}^n_{\Lambda})$, and taking the limit gives the desired action.

Finiteness: base case

Look at the case n = 1, i.e. mod p: sections of $\omega^{\kappa}/\mathfrak{m}_{\Lambda} = (\mathcal{O}_{\lg}\widehat{\otimes}\Lambda)^{\mathbb{Z}_{p}^{\times}}/\mathfrak{m}_{\Lambda}$ are \mathbb{Z}_{p}^{\times} -invariant functions valued in \mathbb{F}_{p} on pairs $(E, \psi : \mathbb{F}_{p} \to E[p])$, which decompose as

$$\omega^{\kappa}/\mathfrak{m}_{\Lambda} = \bigoplus_{j=-p+1}^{-1} \omega^{j},$$

so

$$H^{1}_{\mathsf{c}}(X_{1}^{\mathsf{ord}},\omega^{\kappa}/\mathfrak{m}_{\Lambda}) = \bigoplus_{j=-p+1}^{-1} H_{\mathsf{c}}(X_{1}^{\mathsf{ord}},\omega^{j}).$$

Finiteness: base case

Look at the case n = 1, i.e. mod p: sections of $\omega^{\kappa}/\mathfrak{m}_{\Lambda} = (\mathcal{O}_{\lg}\widehat{\otimes}\Lambda)^{\mathbb{Z}_{p}^{\times}}/\mathfrak{m}_{\Lambda}$ are \mathbb{Z}_{p}^{\times} -invariant functions valued in \mathbb{F}_{p} on pairs $(E, \psi : \mathbb{F}_{p} \to E[p])$, which decompose as

$$\omega^{\kappa}/\mathfrak{m}_{\Lambda} = \bigoplus_{j=-p+1}^{-1} \omega^{j},$$

so

$$H^{1}_{\mathsf{c}}(X_{1}^{\mathsf{ord}},\omega^{\kappa}/\mathfrak{m}_{\Lambda}) = \bigoplus_{j=-p+1}^{-1} H_{\mathsf{c}}(X_{1}^{\mathsf{ord}},\omega^{j}).$$

By Lemma 4, the action of F on the left is given by T_p on the right (since $j \leq -1$) so it follows from the mod p case that the action is locally finite and after applying projectors both sides are finite \mathbb{F}_p -vector spaces.

Finiteness: induction

$0 \to \omega^{\kappa} \otimes (\mathfrak{m}^{n}_{\Lambda}/\mathfrak{m}^{n+1}_{\Lambda}) \to \omega^{\kappa}/\mathfrak{m}^{n+1}_{\Lambda} \to \omega^{\kappa}/\mathfrak{m}^{n}_{\Lambda} \to 0$

Finiteness: induction

$$0\to \omega^\kappa\otimes (\mathfrak{m}^n_\Lambda/\mathfrak{m}^{n+1}_\Lambda)\to \omega^\kappa/\mathfrak{m}^{n+1}_\Lambda\to \omega^\kappa/\mathfrak{m}^n_\Lambda\to 0$$
 induces

$$\begin{split} 0 &\to H^{1}_{\mathsf{c}}(X^{\mathsf{ord}}_{n+1}, \omega^{\kappa} \otimes (\mathfrak{m}^{n}_{\Lambda}/\mathfrak{m}^{n+1}_{\Lambda})) \to H^{1}_{\mathsf{c}}(X^{\mathsf{ord}}_{n+1}, \omega^{\kappa}/\mathfrak{m}^{n+1}_{\Lambda}) \\ &\to H^{1}_{\mathsf{c}}(X^{\mathsf{ord}}_{n+1}, \omega^{\kappa}/\mathfrak{m}^{n}_{\Lambda}) \to 0 \end{split}$$

Finiteness: induction

$$0 \to \omega^{\kappa} \otimes (\mathfrak{m}^{n}_{\Lambda}/\mathfrak{m}^{n+1}_{\Lambda}) \to \omega^{\kappa}/\mathfrak{m}^{n+1}_{\Lambda} \to \omega^{\kappa}/\mathfrak{m}^{n}_{\Lambda} \to 0$$

induces

Finiteness: induction

$$0 \to \omega^{\kappa} \otimes (\mathfrak{m}^{n}_{\Lambda}/\mathfrak{m}^{n+1}_{\Lambda}) \to \omega^{\kappa}/\mathfrak{m}^{n+1}_{\Lambda} \to \omega^{\kappa}/\mathfrak{m}^{n}_{\Lambda} \to 0$$

induces

Finiteness: induction

$$0 \to \omega^{\kappa} \otimes (\mathfrak{m}^{n}_{\Lambda}/\mathfrak{m}^{n+1}_{\Lambda}) \to \omega^{\kappa}/\mathfrak{m}^{n+1}_{\Lambda} \to \omega^{\kappa}/\mathfrak{m}^{n}_{\Lambda} \to 0$$

induces

so the result follows by induction plus a lemma for local finiteness.

(ロ)、(型)、(E)、(E)、 E) の(の)

Equalities

Finally,

$$e(F)H^1_c(\mathfrak{X}^{\mathrm{ord}},\omega^{\kappa}) \otimes_{\Lambda,k} \mathbb{Z}_p = e(F)H^1_c(\mathfrak{X}^{\mathrm{ord}},\omega^{k}),$$

and $X \to \mathfrak{X}$ induces $H^1_c(\mathfrak{X}^{\mathrm{ord}},\omega^{k}) \to H^1(X,\omega^{k}).$

Equalities

Finally,

$$e(F)H^{1}_{c}(\mathfrak{X}^{\mathrm{ord}},\omega^{\kappa})\otimes_{\Lambda,k}\mathbb{Z}_{p}=e(F)H^{1}_{c}(\mathfrak{X}^{\mathrm{ord}},\omega^{k}),$$

and $X \to \mathfrak{X}$ induces $H^1_c(\mathfrak{X}^{ord}, \omega^k) \to H^1(X, \omega^k)$. Applying projectors,

$$e(F)H^1_{\mathsf{c}}(\mathfrak{X}^{\mathsf{ord}},\omega^k) \to e(T_p)H^1(X,\omega^k)$$

is a map of finite free \mathbb{Z}_p -algebras and is an isomorphism modulo p for $k \leq -1$ by Haodong's talk, so is an isomorphism.