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Abstract. This paper generalizes a theorem of Hida in [Hid98] on the struc-
ture of ordinary representations on unitary groups to P -ordinary representations,
where P is a general parabolic subgroup of some general linear group. When P
is minimal, we recover Hida’s theorem which asserts that ordinary subspaces are
1-dimensional. While analogous P -ordinary subspaces are infinite-dimensional in
general, we use the theory of Bushnell-Kutzko types developed in [BK98, BK99] to
canonically associate a finite-dimensional type to the representation (under minor
assumptions) that has multiplicity one in its P -ordinary subspace. We simulta-
neous develop the theory of modular forms on unitary groups with P -Iwahoric
level structure whose nebentypus is a type (instead of a character) and construct
lattices of P -ordinary modular forms inside P -ordinary automorphic representa-
tions. We also obtain direct consequences for the dual notion of P -anti-ordinary
forms and representations.
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Introduction

In the paper [EHLS20], the four authors construct a p-adic L-function for ordinary
families on unitary groups. This completed a project started more than a decade
earlier by three of the four authors in [HLS06]. This required the development
of several technical results on p-adic differential operators, accomplished in great
part by the first author in [Eis12], to obtain a more general Eisenstein measure
[Eis15] than the one originally constructed in [HLS06]. Fundamental properties of
their p-adic L-function for families are obtained by carefully computing local zeta
integrals related to the doubling method [GPSR87] as well as local coefficients of
Siegel Eisenstein series [Eis15]. The most technical calculations are for local factors
at places above the fixed prime p and a theorem of Hida in [Hid98] establishing the
uniqueness (up to scalar) of ordinary vectors plays a crucial role in their analysis.

In this article, we generalize this theorem of Hida to construct a canonical finite-
dimensional subspace in the space of P -ordinary vectors for a P -ordinary represen-
tation π on a unitary group G. Here, P is a parabolic subgroup of a product of
general linear groups related to G. When P corresponds to (a product of) upper
triangular Borel subgroups, the notion of π being “P -ordinary” coincides with the
usual notion of being “ordinary”.

This accomplishes the first step in a broader project of the author to construct
a p-adic L-function for a P -ordinary family on G, directly generalizing the work
of [EHLS20]. In upcoming work, the author plans to develop the theory of P -
ordinary families on unitary groups, inspired by the results of [Pil12] on symplectic
groups, and adapt the calculations of [Eis15, EHLS20] using the P -ordinary vectors
constructed here instead of ordinary vectors.

Structure of this paper. In Section 1, we first set some notation and conventions, and
review the theory of Bushnell-Kutzko types relevant for us. Then, in Section 2, we
introduce level subgroups of G(Zp) that are “P -Iwahoric” (of some level r). Using
the geometry of Shimura varieties associated to G, this allows us to construct P -
Iwahoric covers over them. We also introduce the relevant notation to compare the



p-ADIC ZETA INTEGRALS 3

theory on G = G1 and on the unitary group G2 associated to its opposite Hermitian
vector space.

This sets up the background to define holomorphic, P -ordinary as well as anti-
holomorphic, P -anti-ordinary representations on G1 as well as dual notions on G2

in later sections. Simultaneously, it leads us to a natural definition of (holomorphic
and anti-holomorphic) modular forms on G whose level structure at p is P -Iwahoric
and whose nebentypus is a type, instead of a 1-dimensional character. We refer to
the latter as a P -nebentypus to emphasize the distinction.

In Section 3, we introduce Hecke operators at p related to P and define (holo-
morphic) P -ordinary representations as the ones having simultaneous eigenvectors
for all these operators with p-adic unit eigenvalues. Equivalently, we define a P -
ordinary projector eP from these operators and π is P -ordinary if and only if its
p-factor πp contains an eP -fixed vector. When this is the case, eP determines a
P -ordinary subspace in πp which is typically infinite dimensional. We use the theory
of Bushnell-Kutzko types to decompose this space into a direct sum of subspaces of
P -ordinary vectors of type τ , or (P, τ)-ordinary vectors.

Our first main result (Theorem 3.10) describes natural homomorphisms between
a type τ and the corresponding space of (P, τ)-ordinary vectors. This result is
stated for local factors of πp at places above p. Using well-known results about
types and a minor hypothesis (which the author wishes to remove in the future),
our second main result (Theorem 3.13) rephrases this statement for πp and proves
that for a canonical type τ associated to πp, which we called the BK-type of π, the
homomorphism constructed actually provides an isomorphism between τ and the
corresponding (P, τ)-ordinary subspace.

Given some fixed P -ordinary representation π with BK-type τ (which is a smooth
irreducible representation of some p-adic compact Lie group contained in P ), one
can tensor π by a character χ of P (that factors through the determinant map).
Then, π ⊗ χ is now P -ordinary with BK-type τ ⊗ χ. This plays a more relevant
role in upcoming work of the author to construct a p-adic family of P -ordinary
representations containing π of dimension equal to the rank d of the Levi subgroup
of P . Moreover, the isomorphism above allows us to vary a fixed (P, τ)-ordinary
vector of π p-adically in this family. Again, in upcoming work, this allows the
author to adapt the crucial calculations of [EHLS20, Section 4] and [Eis15, Section
2] to construct (d+ 1)-variables p-adic L-functions on G.

In Section 4, we define the analogous objects for P -anti-ordinary representations
on G = G1. Using pairs of contragredient representations, the two notions are dual
to each other and we obtain consequences about space of P -anti-ordinary vectors
from our work in the previous section. We also prove analogous statements on G2.
Relying on a canonical identification between G1 and G2, we first obtain identical
results by simply replacing P with its opposite parabolic P op. However, using stan-
dard intertwining operators, we state the analogous result with P instead of P op.
As a part of this broader project on p-adic L-functions, this is purely from computa-
tional purposes. Namely, in upcoming work of the author, some Rankin-Selberg zeta
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integrals are evaluated involving P -anti-ordinary vectors on both G1 and G2 and the
analysis is simpler when both parabolic subgroups are equal instead of opposite to
one another.

Finally, in Section 5, we use classical comparison theorems between coherent co-
homology on Shimura varieties and cohomology of Lie algebras to embed integral
spaces of P -ordinary holomorphic modular forms as lattices inside P -ordinary rep-
resentations. The P -nebentypus of these forms at p is directly related to the type
of the corresponding P -ordinary vectors.

Similar results in the literature. Many of our results are greatly inspired by anal-
ogous statements in [EHLS20, Sections 6 and 8] when P is minimal (i.e. a Borel
subgroup B). The author would like to point out that many statements are quite
similar, both in content and in notation. However, the reader should keep in mind
that the difference of level structure at p, i.e. related to P here instead of B, makes
our work a genuine generalization of their careful analysis. We try to add a subscript
P when relevant to emphasize the distinction but this convention is not always held,
especially when the notation already involes a long list of subscripts.

Furthermore, similar notions of “P -ordinary” have been considered for symplectic
group to develop “P -ordinary Hida theory” (see [Pil12]) and p-adic L-functions for
P -ordinary families ([LR20]). However, in both cases, the analogous definitions of
P -Iwahori subgroups are slightly less general and as a consequence, all the Bushnell-
Kutzko types involved are all 1-dimensional. Another goal of this article is to develop
the theory to allow types of any dimension.

One motivation to do so, other than for the sake of generality, is that our more
general notions and definitions imply that all (holomorphic cuspidal) automorphic
representations of G are trivially GL(n)-ordinary, where n is the dimension of the
Hermitian vector space associated to G. However, if we restrict our attention and
only involve 1-dimensional types, this is no longer true. In fact, in this case, a
necessary condition for π to be GL(n)-ordinary would be that its local factors at
places above p contained an SL(n)-fixed vector. Our goal is to avoid such restrictions.
With this more general notion of being P -ordinary, the case of P = GL(n) in our
broader project leads to the construction of a 2-variable p-adic L-function associated
to any (holomorphic cuspidal) automorphic representation π of G.

Acknowledgments. I thank Michael Harris who first suggested that I look at the
work of [EHLS20] and adapt it to the P -ordinary setting. His countless insights and
comments greatly helped me to obtain the results of this article, which is roughly
the first third of the thesis he supervised.

1. Notation and conventions

Let Q ⊂ C be the algebraic closure of Q in C. For any number field F ⊂ Q, let
ΣF denote its set of complex embedding Hom(F,C) = Hom(F,Q).
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Throughout this article, we fix a CM field K ⊂ Q with ring of integers O =
OK. Let K+ be the maximal real subfield of K and denote its ring of integers as
O+ = OK+ . Let c ∈ Gal(K/K+) denote complex conjugation, the unique nontrivial
automorphism. Given a place v of K, we usually denote c(v) as v.

Let Z(1) ⊂ C be the kernel of the exponential map exp : C → C×, a free rank
one Z-module with noncanonical basis 2π

√
−1. For any commutative ring R, denote

R⊗ Z(1) by R(1).

1.1. CM types and local places. Fix an integer prime p that is unramified in K.
Throughout this paper, we assume the following :

HYPOTHESIS 1.1. Each place v+ of K+ above p split as v+ = vv̄ in K.

This hypothesis plays a crucial role in our analysis of the local factors at place
above p of the automorphic representations considered in later sections.

Fix an algebraic closure Qp of Qp and an embedding inclp : Q ↪→ Qp. Define

Z(p) = {z ∈ Q : νp(inclp(z)) ≥ 0} ,

where νp is the canonical extension to Qp of the normalized p-adic valuation on Qp.

Let Cp be the completion of Qp. The map inclp yields an isomorphism between

its valuation ring OCp and the completion of Z(p) which extends to an isomorphism

ι : C ∼−→ Cp.

Fix an embedding ι∞ : Q ↪→ C such that inclp = ι ◦ ι∞ and identify Q with its
image in both C and Cp.

Given σ ∈ ΣK, the embedding inclp ◦ σ determines a prime ideal pσ of ΣK. There
may be several embeddings inducing the same prime ideal. Similarly, given a place
w of K, let pw denote the corresponding prime ideal of O.

Under Hypotesis 1.1, for each place of v+ of K+ above p, there are exactly two
primes of O above v+. Fix a set Σp containing exactly one of these prime ideals for
each such place v+. The set Σ = {σ ∈ ΣK | pσ ∈ Σp} is a CM type of K (see [Kat78,
p.202]).

1.2. Bushnell-Kutzko Types. To discuss the local theory of P -ordinary repre-
sentations in later sections, let us recall the theory of Bushnell-Kutzko types and
covers, adapting the notions of [BK98] and [Lat21, Section 3] to our setting.

Fix a place w of O and write F = Kw. Similarly, let OF denote OKw . Let
G = GLn(F ) for some integer n ≥ 1.

1.2.1. Parabolic inductions and Jacquet modules. For any parabolic subgroup P of
G, let L and P u denote its Levi factor and unipotent radical, respectively. Let
δP : P → C× denote its modulus character.
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Recall that δP factors through L. Moreover, if P is the standard parabolic sub-
group associated to the partition n = n1 + . . .+ nt, one has

(1) δP (l) =
∏

j=1,...,t

|det(lj)|−
∑

i<j ni+
∑

i>j ni

for any l = (l1, . . . , lt) in L =
∏t

j=1GLnj (F ). In particular, δP agrees with δB on

the center Z(L) of L, where B is the Borel upper triangular subgroup (associated
to the partition n = 1 + . . .+ 1).

Given a smooth representation (σ,W ) of L, let IndGP (σ,W ) denote the classical
(unnormalized) parabolic induction functor from P to G. Moreover, given a repre-
sentation (π, V ) of G, let (πP , VP ) denote the classical P -Jacquet functor. We often
consider σ and πP as both representations of L and P without comments.

Definition 1.2. The normalized parabolic induction functor is

ιGP (σ,W ) = IndGP (σ ⊗ δ
1/2
P ,W )

and the normalized Jacquet functor is

rGP (π, V ) = (πP ⊗ δ
−1/2
P , VP )

We often simply write ιGP σ (resp. ιGP W ) and rGP π (resp. rGP V ) when the associated
vector space (resp. representation) is clear from context.

The Frobenius reciprocity theorem [Cas95, Theorem 2.4.1] states

HomG(π, ι
G
P σ) = HomP (r

G
P π, σ)

1.2.2. Supercuspidal support. A theorem of Jacquet (see [Cas95, Theorem 5.1.2])
implies that given any irreducible representation π of G, one may find a parabolic
subgroup P of G with Levi subgroup L and a supercuspidal representation σ of L
such that π ⊂ ιGP σ. .

The pair (L, σ) is uniquely determined by π, up to G-conjugacy and one refers to
this conjugacy class as the supercuspidal support of π.

Consider two pairs (L, σ) and (L′, σ′) consisting of a Levi subgroup of G and one
of its supercuspidal representation. One says that they are G-inertially equivalent
if there exists some g ∈ G such that L′ = g−1Lg and some unramified character
χ of L′ such that gσ ∼= σ′ ⊗ χ, where gσ(x) = σ(gxg−1). We write [L, σ]G for the
G-inertial equivalence class of (L, σ) and let B(G) for the set of such classes.

For each s ∈ B(G), let Reps(G) denote the full subcategory of Rep(G) whose
objects are the representations such that all their irreducible subquotients have
inertial equivalence class s.

The Bernstein-Zelevinsky geometric lemma (see [Ren10, Section VI.5.1]) implies
that ιGP σ is an object of Reps(G), where s = [L, σ]G.

Definition 1.3 ([BK98]). Let J be a compact open subgroup of G and τ be an
irreducible representation of J . Let Repτ (G) denote the full subcategory of Rep(G)
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whose objects are the representations generated over G by their τ -isotypic subspace.
We say that (J, τ) is an s-type if Repτ (G) = Reps(G).

If π is an irreducible supercuspidal representation of G with inertial support s,
then one can easily construct an s-type (J, τ), see [BK98, Section 5]. By [BK98,
Proposition 5.6], the complex vector space HomJ(τ, π) is 1-dimensional.

Furthermore, it follows from [Pas05, Theorem 1.3] that there exists a unique (up
to isomorphism) representation τ of K = G(OF ) such that (K, τ) is an s-type.
We refer to this unique “maximal” type of s as the BK-type of the supercuspidal
representation π.

2. P -nebentypus of modular forms on unitary Shimura varieties.

In this section, we introduce the main algebraic groups of interest for this paper.
We are mostly concerned about its structure over Zp and construction of particular p-
adic parabolic subgroups P . Furthermore, we analyse the geometry of the associated
Shimura varieties and consider automorphic vector bundles over them (of a fixed
weight κ and P -nebentypus τ). This allows to discuss the theory of modular forms
whose p-level structure is “P -Iwahoric”. This sets up the background to discuss
(holomorphic and anti-holomorphic) cuspidal representations that have a particular
behavior under the action of the P -Iwahori subgroup in the next sections. We follow
the standard approach and material of [Hid04, CEF+16, EHLS20].

2.1. Unitary Groups. Let V be a finite-dimensionalK-vector space, equipped with
a pairing ⟨·, ·⟩V that is Hermitian with respect to the quadratic extension K/K+.
Write n = dimK V .

Let δ ∈ O be totally imaginary and prime to p and define ⟨·, ·⟩ = traceK/Q(δ⟨·, ·⟩V ).
This choice of δ and our Hypothesis (1.1) ensure the existence of an O-lattice L ⊂ V
such that the restriction of ⟨·, ·⟩ to L is integral and yields a perfect pairing on L⊗Zp.

For each σ ∈ ΣK, let Vσ denote V ⊗K,σC. It has a C-basis diagonalizing the pairing
⟨·, ·⟩. The only eigenvalues must be ±1, say that 1 (resp. −1) has multiplicity rσ
(resp. sσ). We order the basis so that the +1-eigenvectors appear first. Fixing such
a basis, let hσ : C → EndR(Vσ) be hσ = diag(z1rσ , z̄1sσ).

Let h =
∏

σ∈Σ hσ : C →
∏

σ∈Σ EndR(Vσ) and assume that h is standard (see
[EHLS20, Section 2.3.2]). Since Σ is a CM type of K, one has a canonical identifi-
cation ∏

σ∈Σ
EndR(Vσ) = EndK+⊗R(V ⊗ R)

The tuple P = (K, c,O, L, 2π
√
−1⟨·, ·⟩, h) is a PEL datum of unitary type, as

defined in [EHLS20, Section 2.1-2.2]. It has an associate group scheme G = GP over
Z whose R-points are

G(R) = {(g, ν) ∈ GLO⊗R(L⊗R)×R× | ⟨gx, gy⟩ = ν⟨x, y⟩, ∀x, y ∈ L⊗R},
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for any commutative ring R. In particular, G/Q is a reductive group. Moreover, the
assumptions on p imply that G/Zp

is smooth and G(Zp) is a hyperspecial maximal
compact of G(Qp).

2.1.1. Hodge structure. The homomorphism h determines a pure Hodge structure
of weight −1 on VC = L⊗C, i.e. V = V −1,0⊕V 0,−1 and h(z) acts as z on V −1,0 and
as z̄ on V 0,−1. In particular, the O ⊗ C-submodule V 0 ⊂ V defined as the degree 0
piece of the corresponding Hodge filtration is simply V −1,0.

For each σ ∈ ΣK, let aσ = dimC(V
0 ⊗O⊗C,σ C) and bσ = n − aσ. The signature

of h is defined as the collection of pairs {(aσ, bσ)σ∈ΣK}. Throughout this paper, we
assume :

HYPOTHESIS 2.1 (Ordinary hypothesis). For all embeddings σ, σ′ ∈ ΣK, if
pσ = pσ′ , then aσ = aσ′ .

Therefore, given a place w of K above p, one can define (aw, bw) := (aσ, bσ), where
σ ∈ ΣK is any embedding such that pσ = pw. Observe that (aσ, bσ) = (rσ, sσ) is
σ ∈ Σ. Otherwise, one has (aσ, bσ) = (sσ, rσ).

2.2. Structure of G over Zp. In this section, we introduce the preliminary notions
that allows us to later study automorphic representations that are ordinary with
respect to some parabolic subgroup of G.

2.2.1. Comparison to general linear groups. Consider the factorization O ⊗ Zp =∏
w|pOw as the product runs over all primes w of K above p. This induces a decom-

position L⊗ Zp =
∏

w|p Lw and a canonical Zp-isomorphism

(2) GLO⊗Zp(L⊗ Zp)
∼−→
∏
w|p

GLOw(Lw), g 7→ (gw) .

One obtains an isomorphism

(3) G/Zp

∼−→ Gm×
∏

w∈Σp

GLOw(Lw), (g, ν) 7→ (ν, (gw)) .

Our assumption above about the pairing ⟨·, ·⟩ implies that for each w | p, there is
an OB,w-decomposition of Lw = L+

w ⊕ L−
w such that

(1) rankOw L+
w = aw and rankOw L−

w = bw;
(2) Upon restricting ⟨·, ·⟩ to Lw × Lw̄, the annihilator of L±

w is L±
w̄ . Hence, one

has a perfect pairing L+
w ⊕ L−

w̄ → Zp(1), again denoted ⟨·, ·⟩.
Fix dual Ow-bases (with respect to the perfect pairing above) for L+

w and L−
w̄ .

They yield identifications

(4) GLOw(L
+
w) GLaw(Ow) GLbw̄(Ow̄) GLOw(L

−
w̄)

∼= ∼=

as well as an isomorphism GLOw(Lw) ∼= GLn(Ow) such that the obvious map

GLOw(L
+
w)×GLOw(L

−
w) ↪→ GLOw(Lw)
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is simply the diagonal embedding of block matrices.
Let H := GLO⊗Zp(L

+). Then, the identification (4) above induces a canonical
isomorphism

(5) H ∼=
∏
w|p

GLaw(Ow) =
∏

w∈Σp

GLaw(Ow)×GLbw(Ow)

2.2.2. Parabolic subgroups of G over Zp. For w | p, let

dw = (nw,1, . . . , nw,tw)

be a partition of aw = bw̄. Let Pdw ⊂ GLaw(Ow) denote the standard parabolic
subgroup corresponding to dw.

Let PH ⊂ H be the Zp-parabolic that corresponds to the products of all the Pdw

via the isomorphism (5). We denote the unipotent radical of PH by P u
H .

We work with the Levi factor LH = PH/P u
H of PH as well as its maximal subtorus

TH . Note that TH does not depend on the choice of partitions. Furthermore,
elements of LH are identified with collections of block-diagonal matrices, with respect
to the partitions dw, via (5).

Let P+ ⊂ G/Zp
be the parabolic subgroup that stabilizes L+ and such that

(6) P+ ↠ Gm×PH ⊂ Gm×H

where the map to the first factor is the similitude character ν and the map to the
second factor is projection to H.

For w ∈ Σp, let Pw be the parabolic subgroup of GLn(Ow) given by

(7) Pw =

{(
A B
0 D

)
∈ GLn(Ow) | A ∈ Pdw , D ∈ P op

dw

}
and set P =

∏
w∈Σp

Pw.

We naturally identify P as a subgroup of G/Zp
. Let P u be the unipotent radical

of P , LP = P/P u be its Levi factor and TP be its maximal subtorus. The projection
P+ ↠ Gm×PH induces a natural isomorphism LP

∼= LH . Its restrictions to maximal
subtori yields the identity map TP = TH .

Remark 2.2. The trivial partition of aw is (1, . . . , 1) (of length tw = aw). If the
partitions dw and dw̄ are both trivial, we write Bw instead of Pw. In that case,
LB = TB = TH .

Our choices of bases above imply that under the isomorphisms (3) and (4), P+

corresponds to

(8) P+ ∼−−→ Gm×P .

Definition 2.3. We define the P -Iwahori subgroup of G of level r ≥ 0 as

I0r = I0P,r :=
{
g ∈ G(Zp) | g mod pr ∈ P+(Zp/p

rZp)
}
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and the pro-p P -Iwahori subgroup Ir = IP,r of G of level r as

Ir = IP,r :=
{
g ∈ G(Zp) | g mod pr ∈ (Zp/p

rZp)
× × P u(Zp/p

rZp)
}
.

Note that for r = 0, we simply have IP,0 = I0P,0 = G(Zp).

Remark 2.4. We refrain from referring to I0r as a parahoric subgroup of G. This
terminology is usually reserved for stabilizers of points in Bruhat-Tits building. We
make no attempt here to introduce our construction from the point of view of these
combinatorial and geometric structures.

The inclusion of LP (Zp) in I0r yields a canonical isomorphism

(9) LP (Zp/p
rZp)

∼−→ I0r /Ir .

For each w ∈ Σp, one similarly defines I0w,r and Iw,r by replacing P+ by Pw and
working in GLn(Ow) instead of G(Zp). Let

IGL
r =

∏
w∈Σp

Iw,r and I0,GL
r =

∏
w∈Σp

I0w,r ,

so that Ir and I0r correspond to Z×
p × IGL

P,r and Z×
p × I0,GL

P,r respectively, via the

isomorphisms (3) and (4).

Remark 2.5. Later, we will consider various modules with an action of G and
define “P -ordinary” submodules. Technically, it would be more accurate to refer
to them as P+-ordinary submodules. Similarly, the groups defined above could be
called (pro-p) P+-Iwahori subgroups. In any case, there should not be any confusion
between P and P+.

2.2.3. Conventions for the opposite unitary group of G. Consider the PEL datum
P = (K, c,O, L, ⟨·, ·⟩, h) of unitary type associated to a finite-dimensional hermitian
K-vector space (V, ⟨·, ·⟩) as above. Recall that there is a fixed O⊗Zp-decomposition
L⊗ Zp = L+ ⊕ L−.

We sometimes write P1 for P and similarly set L1 :=, ⟨·, ·⟩1 := ⟨·, ·⟩ and h1 := h.
Define

P2 = (K, c,O, L2, ⟨·, ·⟩2, h2) := (K, c,O, L,−⟨·, ·⟩, h ◦ (·))
which is clearly the datum associated to V but equipped with the opposite Hermitian
pairing −⟨·, ·⟩. When we wish to distinguish those PEL datum, we write G1 := GP1

and G2 := GP2 . One has an obvious canonical identification G1(A) = G2(A).
All of the definitions above can therefore be made with P2 instead of P1. To

compare the relevant results on these two groups, we choose the fixed O ⊗ Zp-
decomposition for L2 ⊗ Zp = L+

2 ⊕ L−
2 to be L±

2 := L∓. Furthermore, the signature
of G2 at w ∈ Σp is now (aw, bw) = (bw, aw). Therefore, when working with G2, we
fix the partition of aw to be the partition dw of bw chosen above.

Remark 2.6. We often refer to (V, ⟨·, ·⟩) simply by V and (V,−⟨·, ·⟩) simply by
−V . The objects associated to each of them sometimes have subscripts V or −V to
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emphasize the relevant PEL datum. This convention will be reminded several times
throughout the article to avoid confusion, especially in Section 4.2.

2.3. Unitary Shimura varieties of level IP,r at p. The results of Sections 3 and
4 can be obtained while only working with moduli spaces associated to P over F , the
reflex field of P = P1. However, in Section 5, we use these results to compare “P -
ordinary subspaces” (to be defined later) with p-integral spaces of modular forms.
Therefore, in this section, we introduce the relevant spaces over F and over OF⊗Z(p)

simultaneously, where OF denotes the ring of integers of F .

Remark 2.7. In the p-integral case, we assume first that our level K is hyper-
special at p, so our treatment here follows [EHLS20, Section 2.2] and introduces
the notions relevant to our situation. However, in Section 2.3.2, we introduce level
structures at p that are more general than the one considered in [EHLS20].

Let □ = {p} or ∅ and define S□ = OF ⊗ Z(□). Let K□ ⊂ G(A□
f ) be any open

compact subgroup and set

K =

{
K□, if □ = {0},
G(Zp)K

□, otherwise.

Then, one may define the moduli problem MK,□ = MK,□(P) as the functor that
assigns to any locally noetherian S□ scheme T the set of equivalence classes of
quadruples A = (A, λ, ι, α), where

(1) A is an abelian scheme over A;
(2) λ : A → A∨ is a polarization. If □ = {p}, this polarization is prime-to-p;
(3) ι : S□ ↪→ EndT A⊗ Z(□) such that ι(b)∨ ◦ λ = λ∨ ◦ ι(b);
(4) α is a K□-level structure, see [EHLS20, Section 2.1];
(5) LieT A satisfies the Kottwitz determinant condition defined by (L⊗R, ⟨·, ·⟩, h),

see [Lan13, Definition 1.3.4.1];

and two quadruples (A, λ, ι, α) and (A′, λ′, ι′, α′) are equivalent if there exists some
prime-to-□ isogeny f : A → A′ such that

(1) λ and f∨ ◦ λ′ ◦ f are equal, up to multiplication by some positive element in
Z×
(□);

(2) ι′(b) ◦ f = f ◦ ι(b), for all b ∈ OF ;
(3) α′ = f ◦ α.

If K is neat (see [Lan13, Definition 1.4.1.8.]), then there exists a smooth, quasi-
projective S□-scheme that represents this moduli problem, which we still denote by
MK,□. One readily sees that MK,∅ is canonically isomorphic to the base change of
MK,{p} from OF ⊗Z(p) to F . Therefore, when the base ring S□ is clear from context,
we simply write MK for MK,□.

2.3.1. Toroidal compactifications. We recall the existence of toroidal compactifica-
tions of the moduli spaces above constructed in [Lan13]. When □ = {p}, these
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generalizes the known toroidal compactifications for □ = ∅. Note that these are
associated to smooth projective polyhedral cone decompostions. Since the exact def-
inition of the later plays no role in this article, we do not introduce this notion
precisely.

The only properties relevant for us are that given such a polyhedral cone decom-
position Ω, there exists a smooth toroidal compactification Mtor

K,Ω of MK over S□, for

both □ = ∅ and {p}, and that there exists a partial ordering on the set of such Ω’s
by refinements. Given two polyhedral cone decompositions Ω and Ω′, if Ω′ refines
Ω, then there is a canonical proper surjective map πΩ′,Ω : Mtor

K,Ω′ → Mtor
K,Ω which

restricts to the identity on MK . We denote the tower {Mtor
K,Ω} by Mtor

K . We often
refer to the tower as if it were a single scheme and do not emphasize the specific
compatible choices of Ω in some constructions. See [EHLS20, Section 2.4] for more
details.

2.3.2. Compactified Shimura varieties of level KP,r. Over the reflex field F , the
moduli space MK(P) is the union of finitely many copies of the canonical model of
the Shimura variety associated to (G,XP), where XP denote the G(R)-conjugacy
class of h, see [Kot92, Section 8] for details.

More precisely, let V (1), . . . , V (k) be representatives for the isomorphism classes of
all hermitian vector spaces that are locally isomorphic to V at every place of Q. As
explained in [CEF+16, Section 2.3.2], it is well-known that there are finitely many
such classes, in fact k = | ker1(Q, G)|, where

ker1(Q, G) = ker

(
H1(Q, G) →

∏
v

H1(Qv, G)

)
.

Then, MK = MK,∅ is the disjoint union of isomorphic F -schemes MK,V (j) naturally

indexed by the V (j). Assume that V (1) = V and denote the scheme-theoretic of MK,V

in MK,□ by KSh□(V ). Again, we often simplify the notation to KSh(V ) (or even

KSh) when the choice of □ = ∅ or {p} is clear from context. In particular, KSh is a
smooth, quasi-projective S□-scheme. We refer to KSh as a Shimura variety of level
K (associated to P) and MK as a moduli space.

In what follows, we work with □ = {p}, hence K = G(Zp)K
p as in the beginning

of Section 2.3. We now introduce a more general level structure at p. To do so, we
first need to introduce covers of MK and Mtor

K .
Let A = (A, λ, ι, α) be the universal abelian scheme over MK . Using [Lan13,

Theorem 6.4.1.1], A can be extended to a semiabelian scheme over Mtor
K that is part

of a degenerating family and which we still denote A. By [Lan13, Theorem 3.4.3.2],
there exists a dual semiabelian scheme A∨ together with homomorphisms A → A∨,
OF ⊗ Z(p) → EndMtor

K
A and a K(p)-level structure on A that extend λ, ι and α

respectively.
Define an OF ⊗ Z(p)-scheme MKr over Mtor

K whose S-points classify the P u
H(Zp)-

orbits of O ⊗ Zp-injections ϕ : L+ ⊗ µpr ↪→ A∨[pr]/S of group schemes with image
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an isotropic subgroup scheme. Let MKr denote its pullback over MK . We have the
commutative diagram

MKr MKr

MK Mtor
K

where the vertical arrows are Lr-torsors, where Lr denotes LP (Zp/p
rZp) = LH(Zp/p

rZp).
After base change from OF ⊗ Z(p) to F , a choice of basis of Zp(1) induces a

canonical identification between MKr/F
and the moduli space (MIrKp)/F . Moreover,

the normalization of (Mtor
K )/F in (MKr)/F is MKr/F

. In other words, given any open

compact subgroup Kp ⊂ G(Ap
f ), we may define Kr = IrK

p and there should be

no confusion when working over S□, for □ = {p} or ∅. We sometimes write KP,r

instead of Kr if we want to emphasize its dependence on P .
To define modular forms of level Kr, we only need to work with the components

over KSh. More precisely, for any polyhedral cone decomposition Ω, denote the
scheme-theoretic closure of KSh in Mtor

K,Ω by KShtorΩ . Again, we denote the tower

{KShtorΩ }Ω by KShtor and describe our construction as if this tower was a single
scheme. In particular, we have a canonical inclusion (of towers) sK : KShtor ↪→ Mtor

K
in the obvious sense. Its restriction to KSh is the natural inclusion KSh ↪→ MK

described above, which we denote by sK again.
As discussed in [Lan12, Sections 3-4] and [EHLS20, Section 2.4], this is a smooth

toroidal compactification of KSh. Furthermore, over F (i.e. when □ = ∅), it is equal
to the usual toroidal compactification of the canonical model of the Shimura variety
associated to (G,XP).

Define Kr
Sh (resp. Kr

Sh) as the pullback of MKr (resp. MKr) via sK , i.e. we
have the commutative diagrams

Kr
Sh MKr Kr

Sh MKr

KSh MK KShtor Mtor
K

By abusing notation, we denote all four of the horizontal inclusions by sK . All
four vertical arrows are covers by Lr-torsors.

2.3.3. Complex uniformization. We first recall the description of natural complex
structure on X = XP . Let VC = L ⊗ C with its pure Hodge decomposition VC =
V −1,0 ⊕ V 0,−1 of weight −1, as in section 2.1.1. Let W = V/V 0,−1, a space defined
over the reflex field F of P.
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Fix an S□-submodule Λ0 of W such that Λ0 ⊗S□
C = W and consider the S□-

module Λ∨
0 = HomZ(p)

(Λ0,Z(p)(1)). Define Λ = Λ0 ⊕ Λ∨
0 and

⟨·, ·⟩can : Λ× Λ → Z(p)(1)

⟨(f1, x1), (f2, x2)⟩can = f2(x1)− f1(x2)

so that both Λ0 and Λ∨
0 are isotropic submodules of Λ. One has ⟨bx, y⟩can =

⟨x, by⟩can, for b ∈ OF .
The pair (Λ, ⟨·, ·⟩can) induces an S□-group scheme G0 whose R-points are given

by

G0(R) =
{
(g, ν) ∈ GLR(Λ⊗S□

R)×R× | ⟨gx, gy⟩can = ν⟨x, y⟩can, x, y ∈ Λ⊗R
}

,

for any S□-algebra R.
One readily checks that there is an isomorphism V ∼= Λ⊗S□

C of C-vector spaces
that identifies V −1,0 (resp. V 0,−1) with Λ0 ⊗S□

C (resp. Λ∨
0 ⊗S□

C) and the pairing
⟨·, ·⟩ with ⟨·, ·⟩can. In other words, it yields an identification between G/C and G0/C.

Let H0 ⊂ G0 be the stabilizer of the polarization Λ = Λ0 ⊕ Λ∨
0 . The algebraic

representations of H0 will describe the cohomological weights of the automorphic
representations considered below. The natural projection

H0 → Gm×GLOF⊗S□
(Λ0)

is an isomorphism.
Under the identification above, H0(C) corresponds to C(C), where C is the real

algebraic subgroup of G/R whose real points U∞ = C(R) is the stabilizer of h ∈ X
under the conjugation action of G(R).

Let P0 ⊂ G0 be the parabolic subgroup defined as the stabilizer of Λ0; its Levi
factor is H0. Then, the identification above embeds G(R)/U∞

∼−→ X as an open
subspace of G0(C)/P0(C), which yields a complex structure on X. As discussed in
[Kot92, Section 8], the complex analytic space KSh(C) is naturally isomorphic to

G(Q)\X ×G(Af )/K .

Note that P0/C corresponds to Ph/C, where Ph ⊂ G/R be is the stabilizer of the
Hodge filtration on V = L⊗ R determined by h, as explained in Section 2.1.1.

2.4. Weight and p-type of automorphic vector bundles.

2.4.1. The canonical bundles. In this section, □ can be either ∅ or {p}. In both
cases, let K = G(Zp)K

p and for any r ≥ 1, let Kr = IrK
p. When □ = ∅, some of

the definitions below can be adapted for any level structure at p but these will not
be pertinent for our work.

Let ω be the OMtor
K
-dual of LieMtor

K
A∨ over S□. The Kottwitz determinant con-

dition mentioned in the definition of the moduli problem MK(P) implies that ω is
locally isomorphic to Λ∨

0 ⊗S□
OMtor

K
over OK ⊗OMtor

K
. Define

E = IsomOK⊗O
Mtor

K

((ω,OMtor
K
(1)), (Λ∨

0 ⊗S□
OMtor

K
,OMtor

K
(1))) ,
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over Mtor
K . The natural structure map is an H0-torsor π : E → Mtor

K . Set Er =
E ×Mtor

K
M̄Kr , an Lr-torsor of E , so

Er MKr

E Mtor
K

H0

Lr Lr

H0

and denote the structure map Er → MKr by πr.
Let τ be a smooth finite-dimensional representation of LP (Zp) that factors through

Lr. Let Mτ denote the associated complex vector space. In fact, there exists a finite
ring extension S□[τ ] of S□ on which τ is well defined.

Define Er,τ as the S□[τ ]-scheme over Er whose R-points are given by

Er,τ (R) = Er(R)×τ (Mτ )/R := (Er(R)× (Mτ )/R)/∼τ

for any S□[τ ]-algebra R. The equivalence relation ∼τ is given by

(ϵ,m) ∼τ (gϵ, τ(g)m) ,

for all ε ∈ Er, m ∈ (Mτ )/R and g ∈ LH(Zp). Let πr,τ be the structure map

Er,τ → MKr .

2.4.2. Weights of modular forms. Let K′ be the Galois closure of K and p′ ⊂ OK′

be the prime above p determined by ιp. Moreover, let

S0
□ = S□ ⊗OF,(p)

OK′,(p′) =

{
K′ , if □ = ∅
OK′,(p′) , if □ = {p}

Over S0
□, we have an isomorphism

(10) H0/S0
□

∼−→ Gm×
∏

σ∈ΣK

GLO⊗O,σS
0
□
(Λ∨

0,σ)
∼= Gm×

∏
σ∈ΣK

GLbσ(S
0
□) .

Let BH0 ⊂ H0 be the Borel subgroup (defined over S0
□) that corresponds to

the product of the lower-triangular Borel subgroups via the isomorphism (10). Let
TH0 ⊂ BH0 denote its maximal subtorus and let Bu

H0
denote its unipotent radical

subgroup.
Given an S0

□-algebra R, a character κ of TH0 over R is identified via the isomor-
phism (10) with a tuple

κ = (κ0, (κσ)σ∈ΣK,) ,

where κ0 ∈ Z and κσ = (κσ,j) ∈ Zbσ . Namely, for

t = (t0, (diag(tσ,i,1, . . . , tσ,i,bσ,i))σ∈ΣK) ∈ TH0 ,

one has

κ(t) = tκ0
0

∏
σ∈ΣK

bσ∏
j=1

t
κσ,j

σ,j
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We say that κ is dominant if it is dominant with respect to the opposite Borel Bop
H0

(of upper-triangular matrices). This is equivalent to κσ,j−1 ≥ κσ,j for all σ ∈ ΣK,
2 ≤ j ≤ bσ.

Given a dominant character κ of TH0 over an S0
□-algebra R, extend it trivially to

BH0 . Define

Wκ = Wκ(R) = IndH0
BH0

κ = {ϕ : H0/R → Ga | ϕ(bh) = κ(b)ϕ(h), ∀b ∈ BH0} .

with its natural structure as a left H0-module via multiplication on the right. Since
H0 is the Levi factor of P0, we inflate it to an irreducible algebraic representation
of P0.

As explained in [Jan03, Part II. Chapter 2] and [Hid04, Section 8.1.2], if R is flat
over S0

□, this is an R-model for the highest weight representation of H0 with respect
to (TH0 , B

op
H0

) of weight κ.

Now, assume that □ = ∅ and hence, R is a K′-algebra. Via the identification of P0

and Ph over C, Wκ is a representation of Ph. As explained in [Har86, Section 7.1],
it therefore corresponds to an homogeneous G-vector bundle over X̌, the compact
dual of X. The latter induces an automorphic vector bundle ωWκ on KSh, for any
K as in Section 2.4.1. As explained in [EHLS20, Section 6.1.1], it has a canonical
model over some finite field extension F (κ) of F contained in K′. Its base change
to K′ has a canonical extension to the toroidal compactification KShtorΩ of KSh, for
any polyhedral cone decomposition Ω.

Indeed, the restriction of

ωκ = ωκ,Ω = s∗K,Ωπ∗(OE [κ]) ,

where sK,Ω is the canonical inclusion KShtorΩ ↪→ Mtor
K,Ω, to KSh is canonically isomor-

phic to ωWκ . We denote both by ωκ when no confusion arises.
Furthermore, the subcanonical bundle of ωWκ corresponds to the twist ωκ(−DΩ),

where DΩ is the ideal sheaf of the boundaries. In other words, it is the Cartier
divisor KShtorΩ − KSh equipped with its structure of reduced closed subscheme.

The space of modular forms (for G) of weight κ and level K is

Mκ(K;R) := H0(KShtor/R, ωκ) = lim−→
Ω

H0(KShtorΩ /R, ωκ) ,

where the limit runs over all polyhedral cone decompostion Ω, partially ordered via
refinements. Similarly, the space of cusp forms Sκ(K;R) is defined as

H0(KShtor/R, ω
sub
κ ) = lim−→

Ω

H0(KShtorΩ /R, ωκ(−DΩ)) .

2.4.3. P -nebentypus. In this chapter, we set □ = {p}, so let S0 := S0
□ = OK′,(p′).

Fix an S0-algebra R ⊂ C. Observe that the objects from the section above are all
well-defined over S0

{p} = OK′,(p′) if we restrict our attention to level subgroups K of

the form K = G(Zp)K
p or K = Kr = IrK

p for some r ≥ 1.
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As in section 2.4.1, let τ be a smooth finite-dimensional representation of LP (Zp)
that factors through Lr = LP (Zp/p

rZp). Let Mτ denote the associated module over
a finite ring extension of OF ⊗Z(p) contained in C. Enlarging the latter if necessary,

we assume that it contains S0 and denote it S0[τ ] ⊂ C.
Define

ωκ,r,τ = s∗K(πr,τ )∗(OEr,τ [κ])

as a sheaf over Kr
Sh. We denote its restriction to Kr

Sh by ωκ,r,τ as well.

Definition 2.8. For any S0[τ ] algebra R, a modular form over R on G of weight κ,
level Kr and P -nebentypus τ is a global section of ωκ,r,τ over Kr

Sh. The R-module
of all such forms is denoted Mκ(Kr, τ ;R).

The R-module Sκ(Kr, τ ;R) of cuspidal forms over R on G of weight κ, level Kr

and P -nebentypus τ is similarly defined by replacing ωκ,r,τ with its twist by the
ideal sheaf of the boundaries.

A modular form f ∈ Mκ(Kr, τ ;R) can be interpreted as a functorial rule that
assigns to a tuple (A, ε, ϕ) ∈ Er,τ (R′), over an R-algebra R′, an element f(A, ϵ, ϕ) ∈
(Mτ )/R′ such that

f(A, bϵ, ϕ ◦ l) = κ(b)τ(l)f(A, ϵ, ϕ)

for all b ∈ BH0(R
′) and l ∈ LP (Zp).

Remark 2.9. Classically, the nebentypus of a modular form is a finite-order char-
acter of the maximal torus TH(Zp) of H. In our terminology, this is equivalent to a
B-nebentypus.

One similarly defines ωκ,r as the pullback to Kr
Sh of (πr)∗OEr [κ] and ωsub

κ,r as its
twist by the ideal sheaf of the boundaries. Define

Mκ(Kr;R) = H0(Kr
Sh/R, ωr,κ) and Sκ(Kr;R) = H0(Kr

Sh/R, ω
sub
r,κ ) .

Since LP (Zp) is a compact group, one readily sees that

Mκ(Kr;R) =
⊕
τ

Mκ(Kr, τ ;R) and Sκ(Kr;R) =
⊕
τ

Sκ(Kr, τ ;R)

where the direct sum runs over all smooth irreducible representations over R of
LP (Zp) that factor through Lr.

2.5. Weight types of (anti-)holomorphic automorphic representations. Let
G = G1 = GU(V ) be the unitary group (over Z) associated to the PEL datum
P = P1. Recall that its signature is a collection of pairs of integers {(aσ, bσ)σ∈ΣK}.

Let □ = ∅ or {p} and fix a neat open compact subgroup K as in Section 2.3. The
dimension of KSh(V ) is equal to the C-dimension of XP , namely

d =
∑
σ∈ΣK

aσbσ .
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For any i = 0, . . . , d, we write

H i(Sh(V ), ωκ) = lim−→
K

H i(KShtor/R, ωκ) and H i(Sh(V ), ωsub
κ ) = lim−→

K

H i(KShtor/R, ω
sub
κ )

and define

H i
! (Sh(V ), ωκ) = Im

(
H i(Sh(V ), ωsub

κ ) → H i(Sh(V ), ωκ)
)

as modules over S0
□.

2.5.1. Comparison to (Ph,Kh)-cohomology. In this section, we recall some of the
results of [EHLS20, Section 6.2] that are relevant for us later, especially in Section
5.

We use the identification of P0 (resp. H0) and Ph (resp. C) over C without
comments. Therefore, we identify modules equipped with actions from these groups
(or their Lie algebra) repeatedly. Moreover, we write Kh instead of U∞ for the real
points of C.

Let g = Lie(G(R))C. The adjoint action of Ad(h(
√
−1)) induces the Harish-

Chandra decomposition g = p−h ⊕ kh⊕p+h . The Lie algebra of Ph(C) is Ph = p−h ⊕ kh.
Therefore, for any dominant weight κ of TH0 , the highest weight representation

Wκ as a natural structure as a (Ph,Kh)-module. Over C, there is a canonical
isomorphism

(11) H i
! (Sh(V ), ωκ)

∼−→ H i(Ph,Kh;A0(G)⊗Wκ) (for i = 0 and d)

of G(Af )-modules, where A0(G) is the space of cusp forms on G.

For any ϕ ∈ A0(G), let ϕ(g) = ϕ(g). As explained in [EHLS20, Section 6.2.1], the
map ϕ 7→ ϕ induces a c-semilinear G(Af )-equivariant isomorphism

cB : H0
! (Ph,Kh;A0(G)⊗Wκ)

∼−→ Hd
! (Ph,Kh;A0(G)⊗WκD) .

Here, κD is again a dominant weight of TH0 (depending on κ and the signature
of G at archimedean places) defined in [EHLS20, Section 6.1.3] but whose exact
formula is not relevant for us.

Let π = π∞ ⊗ πf be an irreducible (g,Kh)×G(Af )-subrepresentation of A0(G).
From now on, we refer to such an object as a cuspidal automorphic representations
(without mentioning its irreducibility).

Definition 2.10. Let π and κ be as above and K be any open compact subgroup
of G(Af ). We say that π is holomorphic of weight type (κ,K) if

πK
f ̸= 0 and H0(Ph,Kh;π∞ ⊗Wκ)

On the other hand, we say that π is anti-holomorphic of weight type (κ,K) if

πK
f ̸= 0 and Hd(Ph,Kh;π∞ ⊗WκD) ̸= 0
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Remark 2.11. As explained in [BHR94], if π is holomorphic or anti-holomorphic,
then πf is defined over some number field E(π). Enlarging it if necessary, we always
assume it contains K′.

Let π be the image of π via the c-semilinear map ϕ 7→ ϕ on A0(G). The isomor-
phism cB induces an involution π 7→ π on the set of cuspidal automorphic repre-
sentations of G. By definition, it interchanges holomorphic and anti-holomorphic
representations but preserves weight type.

As explained in [EHLS20, Section 6.5.3], if π has weight type (κ,K), there is an
isomorphism

π ∼= π∨ ⊗ ||ν||a(κ) =: π♭ ,

where ν is the similitude character on G and

a(κ) = 2κ0 +
∑
σ∈ΣK

bσ∑
j=1

κσ,j .

In the next sections, we consider certain (anti-)holomorphic cuspidal automorphic
representations π of weight type (κ,K) whose local factor at p has a non-zero fixed
IP,r-vector for some r ≫ 0. In that case, π is of weight type (κ,KP,r) for all r ≫ 0.

If the representation satisfies further conditions with respect to certain Hecke
operators at p, we say that such π is P -ordinary or P -anti-ordinary. We compare
structures of P -ordinary and P -anti-ordinary representations using pairs of contra-
gredient representations. Therefore, the involution π 7→ π♭ is more convenient than
π 7→ π to analyze these dual notions.

3. Structure theorem for P -ordinary representations.

In this section, we finally introduce the notion of “P -ordinary” holomorphic au-
tomorphic representations on G = G1. The main results are Theorems 3.10 and
3.13.

We obtain direct consequences for the dual notion of P -anti-ordinary vectors in
the next section. Furthermore, all statements can be adapted for G2, the opposite
group of G1 introduced in Section 2.2.3. We study the theory on G2 more carefully
in Section 4.2.1.

3.1. P -ordinary representations. Given w ∈ Σp and 1 ≤ j ≤ n, let tw,j ∈
GLn(Ow) denote the diagonal matrix

tw,j =

{
diag(p1j , 1n−j), if j ≤ aw

diag(p1aw , 1n−j , p1j−aw), if j > aw

It corresponds to an element of G(Qp) under (3), which we denote t+w,j (namely,

all its other components are equal to 1). Set

Uw,j = Krt
+
w,jKr
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We normalize these operators as follows. Fix an S0-algebra R ⊂ C as in Section
2.4.3. Given a character κ = (κ0, (κσ)σ∈ΣK) of TH0 over R, let κp be the character
of TP (Zp) = TH(Zp) such that

κp(t) =
∏
w|p

∏
σ∈ΣK
pσ=pw

aw∏
j=1

σ(tw,j)
κσc,j ,

where t = (diag(tw,1, . . . , tw,aw))w|p via (5).
We also define the TH0-character κnorm = (κ0, (κnorm,σ)σ∈ΣK), where

(12) κnorm,σ = (κσ,1 − bσ, . . . , κσ,bσ − bσ) .

Let κ′ = (κnorm)p, viewed as a character of TP (Zp). Then, the j-th normalized
Hecke operator at p of weight κ is defined as

(13) uw,j = uw,j,κ :=
∣∣κ′(tw,j)

∣∣−1

p
Uw,j .

These operators can be interpreted as correspondences on the Igusa tower asso-
ciated to G (see [EHLS20, Section 2.9.5], [Hid04, Section 8.3.1] or [SU02]) but this
point of view will not be relevant for us in this article.

For w ∈ Σp, recall that we fixed partitions

dw = (nw,1, . . . , nw,tw) and dw = (nw,1, . . . , nw,tw)

of aw and bw in Section 2.2.2. Let rw = tw + tw and consider

d̃w =
(
d̃w,1, . . . , d̃w,tw ; d̃w,tw+1, . . . , d̃w,rw

)
:= (nw,1, . . . , nw,tw ;nw,tw , . . . , nw,1) ,

a partition of n = aw+bw. For j = 1, . . . , rw, letDw(j) be the partial sum
∑j

i=1 d̃w,i.
Furthermore, set

uP,p = uP,p,κ :=
∏

w∈Σp

rw∏
j=1

uw,Dw(j),κ

Definition 3.1. The P -ordinary projector of weight κ as

eP = eP,κ := lim−→
n

un!P,p,κ

Let π = π∞⊗πf be a holomorphic cuspidal automorphic representation of weight

type (κ,Kr) for some r ≥ 0. The double coset operator Uw,Dw(j) acts on πKr
f via

the action of G(Af ) on πf . In fact, writing

πf = πp ⊗

⊗
l ̸=p

πl

 ,

it acts as the double coset operator UGL
w,Dw(j),κ := IP,rtw,Dw(j)IP,r on πIr

p . It is well

known that the generalized eigenvalues of uw,j,κ are p-adically integral. Therefore,

the P -ordinary projector eP is well-defined as an operator on πKr
f and πIr

p .
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Definition 3.2. We say that π is P -ordinary (at p) of level r ≥ 0 if its local factor
πp contains a non-zero vector ϕ fixed by Ir = IP,r such that ePϕ = ϕ. The space

πP−ord
p,r = ePπ

IP,r
p is called the P -ordinary subspace of πp (or of π) of level r. We say

that its elements are the P -ordinary vectors of πp of level r.

If πp is P -ordinary of some level r, then it is P -ordinary of all levels r ≫ 0. In
particular, π has weight type (κ,Kr) for all r ≫ 0.

Remark 3.3. When P = B, a result of Hida (see [Hid98, Corollary 8.3] or
[EHLS20, Theorem 6.6.9]) implies that the space of B-ordinary vectors (or sim-
ply ordinary vectors) is at most 1-dimensional and does not depend on r. This is
no longer true for general parabolic subgroups P . However, Theorem 3.13 yields an
analogous result for P -ordinary subspaces.

Clearly, ϕ ∈ πp is P -ordinary if and only if ϕ ∈ πIr
p , for all r ≫ 0, such that ϕ is

a simultaneous eigenvector for all operators uw,Dw(j) such that each eigenvalue is a
p-adic unit.

Since Ir is normal in I0r , the space π
Ir
p is stable under the action of I0r /Ir

∼= Lr. Let
τ be an irreducible finite-dimensional smooth representation of LP (Zp) that factors
through Lr. If a P -ordinary vector ϕ ∈ πIr

p lies in the τ -isotypic component of πIr
p ,

we say that ϕ is (P, τ)-ordinary or that it is P -ordinary of type τ . Let π
(P,τ)
p,r denote

the subspace consisting of all (P, τ)-ordinary vectors.
One readily sees that any P -ordinary vector is the finite sum of (P, τ)-ordinary

vectors for finitely many different representations τ as above. In particular,

πP−ord
p,r =

⊕
τ

π(P,τ)
p,r ,

as τ runs over all irreducible smooth representations of LP (Zp) that factor through
Lr.

Remark 3.4. In Definition 2.3, one could replace IP,r with the collection of g ∈
G(Zp) such that g mod pr is in (Zp/p

rZp)
××SP (Zp/p

rZp). Here, SP is the derived
subgroup of P or equivalently, it is the product in P over w ∈ Σp of the subgroups
SPw ⊂ Pw consisting of upper-block triangular matrices whose diagonal blocks all
have determinant 1. Let us write the corresponding group by ISP,r momentarily, in
which case we have IP,r ⊂ ISP,r ⊂ I0P,r.

Then, one can define P -ordinary representations of G using ISP,r instead of IP,r.
By doing so, the space of P -ordinary vectors decomposes a direct sum over all P -
nebentypus of τ that factor through det : LP (Zp) → Z×

p . Doing so is obviously less
general but has the advantage of simplify the theory as only characters of LP (Zp)
occur as types of P -ordinary vectors. On the other hand, systematically developing
the more general theory (with P u instead of SP ) has the advantage that any holo-
morphic cuspidal representation π of G is trivially GL(n)-ordinary. We discussed
our motivation to study this more general notion in the introduction of this paper.
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3.2. Local factors at places w | p. The identifications (3) and (4) induce the
isomorphism

(14) G(Qp)
∼−→ Q×

p ×
∏

w∈Σp

Gw ,

where Gw = GLn(Kw).
Consider the groups Iw,r, I

0
w,r, Pw ⊂ Gw constructed in Section 2.2.2. Recall that

the decompositions (3) and (4) yield identifications

P
∼−→

∏
w∈Σp

Pw ; I0r
∼−→ Z×

p ×
∏

w∈Σp

I0w,r ; Ir
∼−→ Z×

p ×
∏

w∈Σp

Iw,r

Let π be a holomorphic cuspidal automorphic representation of G(A) of type
(κ,Kr). Recall that the character κ of TH0 is identifies with a tuple (κ0, (κσ)σ∈ΣK)
such that κ0 ∈ Z and κσ ∈ Zbσ .

The above discussion allows one to factor the p-component πp of π as

(15) πp ∼= µp ⊗
⊗
w∈Σp

πw ,

where µp is a character of Q×
p and πw is an irreducible admissible representation of

Gw.
Let uGL

w,Dw(j),κ := |κ′(tw,j)|−1
p UGL

w,Dw(j),κ, where κ′ related to κ as in equation (13).

Then, the Hecke operators uw,Dw(j),κ from Section 3.1 act on

πIr
p

∼= (µp)
Z×
p ⊗

⊗
w∈Σp

π
Iw,r
w .

via the action of uGL
w,Dw(j),κ on π

Iw,r
w . Again, this action is compatible as r increases,

hence we do not include it in the notation of the operator and the generalized
eigenvalues of uGL

w,Dw(j),κ are all p-adically integral.

For the remainder of Section 3, we assume that π is P -ordinary and that

(16) κσ,bσ + κσc,aσ ≥ n, ∀σ ∈ ΣK .

The fact that π is P -ordinary is equivalent to µp being unramified and that, for

each w ∈ Σp and r ≫ 0, there exists some non-zero ϕ ∈ π
Iw,r
w such that

uGL
w,Dw(j),κϕ = cw,Dw(j)ϕ ,

where is cw,Dw(j) a p-adic unit, for all 1 ≤ j ≤ rw.
In that case, we say that πw is Pw-ordinary and that such a vector ϕ is Pw-

ordinary (of level r). We denote the subspace of all Pw-ordinary vectors as πPw−ord
w .

Note that ϕ ∈ πIr
w is Pw-ordinary if and only if ewϕ = ϕ, where ew is the Pw-ordinary

projector

ew = lim
n→∞

 rw∏
j=1

un!w,Dw(j)

 ,
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which has a well-defined action on π
Iw,r
w .

3.2.1. Explicit computations. To clarify arguments in later proofs, we now describe
explicit left coset representatives for UGL

w,Dw(j). For simplicity, we only compute the

left coset representatives when j ≤ tw. The same conclusion applies for j > tw but
writing down the matrices is simply more cumbersome. In any case, fix j ≤ tw and
write i = Dw(j) (making the dependence on j implicit).

Fix a uniformizer ϖ ∈ pw. Given any matrix X ∈ Iw,r, write it as

X =

(
A B

ϖrC D

)
where A ∈ GLi(Ow), D ∈ GLi(Ow) and B ∈ Mi×(n−i)(Ow) and C ∈ M(n−i)×i(Ow).

Fix a set Sw of representatives in Ow for Ow/pOw. Let B′, B′′ ∈ Mi×(n−i)(Ow)

be the unique matrices such that B′ has entries in Sw and BD−1 = B′+pB′′. Then,
we have

X =

(
1j B′

0 1n−j

)(
A−ϖrB′C pB′′D

ϖrC ′ D

)
=: X ′X ′′

In particular, t−1
w,iX

′′tw,i is in Iw,r. Therefore,

Iw,rtw,iIw,r =
⊔

x∈Mj

xtw,iIw,r

where Mj ⊂ GLn(Kw) is the subset of matrices

(
1i B
0 1n−i

)
such that the entries of

B are in Sw.
In particular, this set of representative does not depend on r and one obtains the

same result by replacing Iw,r with Nw = ∩rIw,r = P u
w(Kw)∩GLn(Ow). One readily

convinces themselves that the calculations above still apply for tw < j ≤ rw.
Let Vw be the Kw-vector space associated to πw. By continuity, its Nw-invariant

subspace V Nw
w is equal to ∪rV

Iw,r
w .

Lemma 3.5. There is a decomposition V Nw
w = V Nw

w,inv ⊕ V Nw
w,nil such that, for 1 ≤

j ≤ rw, U
GL
w,Dw(j) is invertible on V Nw

w,inv and nilpotent on V Nw
w,nil. Moreover, UGL

w,Dw(j) =

Iw,rtw,Dw(j)Iw,r acts as δPw(tDw(j))
−1tDw(j) on V Nw

w,inv.

Proof. We keep writing i = Dw(j) in this proof and omit the subscript w in what
follows.

The first part is a consequence of the explanations in [Hid98, Section 5.2]. More-
over, [Hid98, Proposition 5.1] shows that the natural projection from V to its P -
Jacquet module VP induces an isomorphism V N

inv
∼= VP that is equivariant for the

action of all the UGL
i operators.

From our explicit computations above, it is clear that UGL
i acts on VP via |Mj |ti,

where |Mj | is the cardinality of Mj . To see this, simply note that given any x ∈ Mj ,
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t−1
i xti ∈ P u

w(Kw) fixes VP . Therefore, the result follows since Mj contains exactly

|p|−i(n−i)
w = δP (ti)

−1 elements. □

It is clear from Lemma 3.5 that any Pw-ordinary vector ϕ ∈ V Nw
w lies in V Nw

w,inv

and

(17) πw(tw,Dw(j))(ϕ) = |κ′(tw,Dw(j))|pδPw(tw,Dw(j))cw,Dw(j)ϕ ,

where cw,Dw(j) is its u
GL
w,Dw(j)-eigenvalue (a p-adic unit). In particular, ϕ is a simul-

taneous eigenvector under the action of πw for all matrices tw,Dw(j).

3.2.2. Bernstein-Zelevinsky geometric lemma for Pw-ordinary representations. In
Section 3.3, we obtain results about the structure of the Pw-ordinary subspace of πw
via its relation to its Pw-Jacquet module, see the proof of Lemma 3.5. To understand
further the Pw-Jacquet module of πw, we use a version of the Bernstein-Zelevinsky
geometric lemma (see [Ren10, Section VI.5.1] or [Cas95, Theorem 6.3.5]) that is
adapted to our setting, see Lemma 3.7. However, we first need to introduce some
notation.

Lemma 3.6. Let πw be a Pw-ordinary representation of Gw. There exists a par-
abolic subgroup Qw ⊂ Pw of Gw and a supercuspidal representation σw of Q such
that πw ⊂ ιGw

Qw
σw.

Proof. The following is a minor modification of the proof of Jacquet’s theorem
[Cas95, Theorem 5.1.2]. Moreover, we omit the subscript w to lighten the nota-
tion.

The fact that π is P -ordinary implies that rGP π ̸= 0. By [Cas95, Theorem 3.3.1],
the latter is both admissible and finitely generated so it admits an irreducible ad-
missible quotient τ as a representation of L.

By Frobenius reciprocity [Cas95, Theorem 2.4.1] and the irreducibility of π, it
follows that π ⊂ ιGP τ . Then, it is a theorem of Jacquet [Cas95, Theorem 5.1.2]
that there exists a parabolic QL ⊂ L and a supercuspidal representation σ of its
Levi factor such that τ ⊂ ιLQL

σ. By transitivity of parabolic induction, the result
follows. □

Fix an embedding πw ↪→ ιGw
Qw

σw with the notation as in Lemma 3.6. Let Mw and
Qu

w denote the Levi factor and unipotent radical of Qw.
Moreover, let Bw denote the Borel subgroup of Gw corresponding to the trivial

partitions, as in Remark 2.2. Let Tw denote the Levi factor of Bw. In particular,
Tw is the maximal torus of Gw.

Let W be the Weil group of Gw with respect to (Bw, Tw) and consider

W (Pw, Qw) = {x ∈ W | x−1(Lw ∩Bw)x ⊂ Bw, x(Mw ∩Bw)x
−1 ⊂ Bw} .

According to [Ren10, Section V.4.7], for each x ∈ W (Pw, Qw), xPwx
−1 ∩Mw is a

parabolic subgroup of Mw with Levi factor equal to xLwx
−1 ∩ Mw. Similarly, the

Levi factor of the parabolic subgroup Lw ∩ x−1Qwx ⊂ Lw is Lw ∩ x−1Mwx.
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Denote the natural conjugation-by-x functor that sends a representation of xLx−1∩
Mw to a representation of Lw ∩ x−1Mwx by (·)x. Moreover, let W (Lw,Mw) be the
subset of x ∈ W (Pw, Qw) such that xLwx

−1 ∩Mw = Mw, and so Lw ∩ x−1Mwx =
x−1Mwx. Note that this does not imply that Lw ∩ x−1Qwx is equal to x−1Qwx but
rather that its Levi subgroup is x−1Mwx.

The following is a version of [Cas95, Theorem 6.3.5] that is adapted to our setting
and notation.

Lemma 3.7. Let Qw ⊂ Pw denote standard parabolic subgroups of Gw as above
and let σw be an irreducible supercuspidal representation of Mw.

There exists a filtration, indexed byW (Lw,Mw), of the Lw-representation rGw
Pw

ιGw
Qw

σw

such that the subquotient corresponding to x ∈ WLw is isomorphic to ιLw

Lw∩x−1Qwx
σx
w

and the one corresponding to x = 1 is a subrepresentation.

Proof. In this proof, we drop the subscript w to lighten the notation.
The Bernstein-Zelevinsky geometric lemma (see [Ren10, Section VI.5.1]) states

that there exits a filtration of rGP ιGQ σ such that the corresponding graded pieces are
isomorphic to

ιLL∩x−1Qx

(
rMxPx−1∩M σ

)x
as x runs over all elements of W (P,Q). Moreover, one can order the filtration so
that the factor corresponding to σ (i.e. the graded piece corresponding to x = 1) is
a subrepresentation of rGP ιGQ σ.

Since σ is supercuspidal, the graded piece corresponding to x ∈ W (P,Q) is
nonzero if and only if xLx−1 ∩ M = M , i.e. x ∈ W (L,M). For such an x, the
graded piece is clearly isomorphic to ιLL∩x−1Qx σ

x. □

3.3. Main Theorems. For simplicity, we assume that πp satisfies the following
hypothesis :

HYPOTHESIS 3.8. The parabolic subgroup Qw for πw from Lemma 3.6 is equal
to Pw for all w ∈ Σp. In particular σw is a supercuspidal representation of Lw.

Remark 3.9. This hypothesis is certainly restrictive in our context. For instance,
if πp is B-ordinary, then Lemma 3.6 implies that all local factors πw lie in a principal
series. Furthermore, if πp is B-ordinary (i.e. ordinary in the usual sense) then it
follows immediately from our definitions that it is also P -ordinary. Therefore, the
case Qw ̸= Pw can certainly occurs.

One can argue that this is not a major issue since in the situation above, if πp is
B-ordinary than there is little interest in considering its structure as a P -ordinary
representation. One only obtains less information this way. However, if πp is a
general P -ordinary representation whose local factors πw lie in a principal series, it
is not necessarily true that πp is also B-ordinary. In general, if πp is P -ordinary
and the supercuspidal support of all πw is Qw, then πp might not be Q-ordinary,
where Q =

∏
w Qw. Therefore, the hypothesis above restricts us to study certain
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P -ordinary representations that are not Q-ordinary with respect to any smaller
parabolic B ⊂ Q ⊊ P .

In subsequent work, the author plans to generalize the theory and results below
for any parabolic subgroup Qw ⊂ Pw using the theory of covers of types developed
in [BK98, BK99] and typical representations as in [Lat21].

Theorem 3.10. Let π be a P -ordinary representation as above such that its weight
κ satisfies Inequality (16). Let πw ⊂ ιGw

Pw
σw be its component at w ∈ Σp as above,

a Pw-ordinary representation.

(i) For r ≫ 0, let ϕ, ϕ′ ∈ πIr
w be Pw-ordinary vectors. Let φ and φ′ be their

respective image in ιGw
Pw

σw. If ϕ ̸= ϕ′, then φ(1) ̸= φ′(1).

(ii) For r ≫ 0, let ϕ ∈ πIr
w be a simultaneous eigenvector for the uw,Dw(j)-

operators that is not Pw-ordinary. Let φ be its image in ιGw
Pw

σw. Then,
φ(1) = 0.

(iii) Let τw be a smooth irreducible representation of Lw(Ow). Assume there
exists an embedding τw ↪→ σw over Lw(Ow). Let Xw be the vector space
associated to τw, viewed as a subspace of the one associated to σw.

Then, given α ∈ Xw, there exists some r ≫ 0 such that τw factors through
Lw(Ow/p

r
wOw) and some (necessarily unique) Pw-ordinary ϕr,α ∈ πIr

w such

that φr,α(1) = α, where φr,α is the image of ϕr,α in ιGw
Pw

σw. Furthermore,
the support of φr,α contains PwIw,r. The map α 7→ ϕr,α yields an embedding
of Lw(Ow)-representations

τw ↪→ πPw−ord
w,r .

Proof. This proof is inspired by the one of [EHLS20, Lemma 8.3.2] which is itself
inspired by arguments in [Hid98, Section 5]. By abuse of notation, we will always
write L when we mean L(Kw). However, we still write L(Ow) when referring to its
maximal compact subgroup. From now on, we omit the subscript w in this proof.

As explained above, the space of P -ordinary vector is contained in V N
inv and prP :

V → VP induces an isomorphism on V N
inv

∼−→ VP which is equivariant for the action
of L(O) and the uGL

D(j)-operators. Let sP : VP → V N
inv denote its inverse.

Consider the natural inclusion V ↪→ ιGP σ and the corresponding embedding VP ↪→
(ιGP σ)P as representations of L, using the fact that the P -Jacquet module functor
is exact. Note here that we are using the unnormalized version of the P -Jacquet
functor.

Consider the filtration indexed by W (L,L) of (ιGP σ)P from Lemma 3.7. We use a
version with unnormalized P -Jacquet functor, hence the graded piece corresponding

to x ∈ W (L,L) is isomorphic to σxδ
1/2
P .

First, we claim that prP maps any simultaneous eigenvector for the uD(j)-operators
whose eigenvalues are all p-adic units inside that subrepresentation.

One readily checks that x ∈ W (P, P ) is in W (L,L) if and only if it simply
permutes the GLnk

(Kw)-blocks of L of the same size. In particular, exactly one
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such x ∈ W (L,L) acts trivially on the center Z(L) of L, namely x = 1, while any
other 1 ̸= x ∈ W (L,L) stabilizes but acts non-trivially on Z(L).

The operator uGL
D(j) acts on σxδ

1/2
P via multiplication by

βx(sj) =
∣∣κ′(sj)∣∣−1

p
δ
−1/2
P (sj)ω

x
σ(sj)

where sj = tD(j) and ωσ : Z(L) → C× is the central character of σ.
These βx define characters of Z(L). The P -ordinarity assumption implies that

β1(sj) is a p-adic unit for all 1 ≤ j ≤ t + r and therefore β1(s) is a p-adic unit for
all s ∈ Z(L). We claim that given any x ∈ W (L,L), the values of βx on Z(L) are
all p-adic units if and only if x = 1.

By recalling that δP and δB agree on Z(L) and proceeding exactly as in the proof
of [EHLS20, Lemma 8.3.2], one uses Inequality (16) to show that

θ = |κ′|−1δ
−1/2
P

is a regular character of Z(L) and βx satisfies the above property if and only if
θx = θ. By regularity, this only occurs when x = 1.

The argument above shows that under the natural map

(18) V N
inv ↪→ V ↠ VP ↪→ (ιGP σ)P ,

the subspace of P -ordinary vector of V injects into the subrepresentation σδ
1/2
P of

(ιGP σ)P .

This map is exactly the composition of sP : V N
inv

∼−→ VP with the map i : VP →
σδ

1/2
P corresponding under the Frobenius reciprocity to the inclusion v 7→ fv of V

into ιGP σ. In other words, this map is v 7→ fv(1). Therefore, a P -ordinary vector
v ∈ V N is uniquely determined by fv(1). This shows part (i).

For part (ii), pick a simultaneous eigenvector v ∈ V N
inv for the uGL

D(j)-operators that

is not P -ordinary. Then, as above, the map i ◦ sP : V N
inv → σδ

1/2
P maps v to fv(1).

By equivariance of the action of the uGL
D(j)-operators on both sides, we must have

fv(1) = 0.
To show part (iii), consider α as an element of the vector space associated to σ,

which is also the one associated to σδ
1/2
P ⊂ VP . Let ϕ = sP (α) ∈ V N

inv. In particular,

ϕ ∈ πIr for some r ≫ 0. We may assume that r is sufficiently large so that τ factors
through L(O/prO).

Finally, since prP is equivariant under the action of the uGL
D(j)-operators and these

act on prP (ϕ) = α via multiplication by the p-adic unit β(sj), one concludes that ϕ
is P -ordinary. Proceeding as in the proof of part (i), we obtain φ(1) = prPϕ = α,
where φ ∈ ιGP σ is the function corresponding to ϕ.

Therefore, ϕr,α := ϕ is the desired vector, necessarily unique by part (i). The last
statement holds because sP is L(Ow)-equivariant. □
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Remark 3.11. As a consequence of the proof for part (i) above, we see that πw
is Pw-ordinary (of level r ≫ 0) if and only if

(19) β(s) =
∣∣κ′(s)∣∣−1

p
δ
−1/2
Pw

(s)ωσ(s)

is a p-adic unit for all s ∈ Z(Lw(Kw)). In other words, not all supercuspidal repre-
sentation σw can occur. Furthermore, when πw is Pw-ordinary (of level r ≫ 0), the
uGL
w,Dw(j),κ-eigenvalue of all the Pw-ordinary vectors is β(tw,Dw(j)).

Remark 3.12. We now view τw as as a representation of I0w,r via the identity

I0w,r/Iw,r = Lw(Ow/P
r
wOw). Clearly, the embedding constructed in (iii) of Theorem

3.10 is an embedding of I0w,r. This shows that πw contains a cover of τw from Lw

to GLn(Ow), in the sense of [BK98, BK99], in its subspace of Pw-ordinary vectors.
In fact, the above theorem shows that this cover is exactly the space of Pw-ordinary
vectors of type τw, i.e. the τw-isotypic subspace πPw−ord

w,r [τw] for all r ≫ 0.

Consider the BK-type (Lw(Ow), τw) of the supercuspidal representation σw, as
defined in Section 1.2.2. Let τ be the representation of LP (Zp) corresponding to
⊗w∈Σpτw under the natural isomorphism LP =

∏
w∈Σp Lw induced by the identifi-

cation (14). We refer to τ as the BK-type of πp.

Theorem 3.13. Let π be a holomorphic P -ordinary representation of weight type
(κ,K) such that Inequality (16) holds. Let τ be the BK-type of πp. Then,

HomLP (Zp)(τ, π
P−ord
p,r )

is 1-dimensional for all r ≫ 0. In other words, the space π
(P,τ)
p = π

(P,τ)
p,r of P -ordinary

vectors of type τ is independent of r ≫ 0 and

dim
(
π(P,τ)
p

)
= dim τ

Proof. Fix w ∈ Σp and consider πPw−ord
w,r = ewπ

Iw,r
w for r ≫ 0. By Theorem 3.10

(iii), there is a natural isomorphism

HomLw(Ow)(τw, σw) = HomLw(Ow)(τw, π
Pw−ord
w,r [τw]) ,

where τw is any smooth irreducible representation of Lw(Ow). From [BK98, Propo-
sition 5.6], we know that the BK-type τw of πw has multiplicity one in σw. Therefore,
the result follows by applying the above to τw = τw. □

4. P -anti-ordinary representations and opposite unitary groups.

In this section, we first define the dual notion of P -anti-ordinary representations
and analyze the structure of P -anti-ordinary subspaces using our results above.
Then, we again follow the material of [EHLS20, Section 6.2] to compare the P -
(anti-)ordinary representations on G = G1 and its opposite unitary group G2

The results on G1 directly apply to G2 simply by replacing P with its opposite
parabolic P op. However, using standard intertwining operators, one obtains results
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with respect to P once more. Our results are greatly inspired by [EHLS20, Sections
8.3-8.4].

Moreover, as explained in the introduction of this paper, our motivation is to use
the results here for explicit calculations of zeta integrals in upcoming work of the
author.

4.1. P -anti-ordinary representations on G1. Let π be an anti-holomorphic cus-
pidal representation on G = G1 of weight type (κ,Kr). For each w ∈ Σp and

1 ≤ j ≤ n, let t−w,j = t−1
w,j ∈ G(Qp), where tw,j is the element constructed in Section

3.1. Proceeding as in that section, we define

U−
w,j ; u−w,j,κ ; u−P,p,κ ; e−P,κ

by replacing t+w,j by t−w,j in the definitions of Uw,j , uw,j,κ, uP,p,κ and eP,κ. We also

consider the partition d̃w of n of length rw as well as its partial sums Dw(j) for
1 ≤ j ≤ rw.

As in Section 3.1, the generalized eigenvalues of the action of u−w,Dw(j),κ on πKr
f

are all p-adically integral. Therefore, the P -anti-ordinary projector e−P,κ has a well-

defined action on πKr
f . We say that π is P -anti-ordinary (of level r) if e−P,κ(π

Kr
f ) ̸= 0.

Remark 4.1. Note that the action of U−
w,j (and therefore all the other operators

as well) does depend on r. However, by abuse of notation, we do not include r in
the already long list of subscripts.

By definition, for each w ∈ Σp, 1 ≤ j ≤ rw and r ≥ 0, the operator U−
w,j acts on

πKr
f = πIr

p ⊗

⊗
l ̸=p

πl

Kp

via its action on πIr
p . Furthermore, by writing πp ∼= µp ⊗

⊗
w∈Σp

πw using isomor-

phism (15), its action on πIr
p =

⊗
w∈Σp

πIw,r
w is induced by the action of the double

coset operator UGL,−
w,Dw(j) = Iw,rt

−
w,rIw,r on π

Iw,r
w .

Let uGL,−
w,Dw(j) = |κ′(tw,j)|pUGL,−

w,Dw(j), where κ′ related to κ as in equation (13), and

e−w = lim
m→∞

 ∏
w∈Σp

rw∏
j=1

uGL,−
w,Dw(j),κ

m!

It follows from the discussion above that the generalized eigenvalues of uGL,−
w,Dw(j)

are all p-adically integral and e−w defines a projector on π
Iw,r
w .

One readily sees that π is P -anti-ordinary (at p) over level r if µp is unramified

and each πw is Pw-anti-ordinary of level r, in the sense that e−wπ
Iw,r
w ̸= 0.
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Lemma 4.2. Let πw as above. Then, the representation πw is Pw-anti-ordinary
of some level r ≥ 0 if and only if its contragredient π∨

w is Pw-ordinary of level r. In
that case, πw is P -anti-ordinary of all level r ≫ 0.

Proof. This is a simple generalization of [EHLS20, Lemma 8.3.6 (i)]. The proof goes
through verbatim by replacing the pro-p Iwahori subgroup (also denoted Iw,r) by

IPw,w,r and only considering the Hecke operators uGL,−
w,Dw(j) and uGL

w,Dw(j), for 1 ≤ j ≤
rw. The key part is that all these operators commute with one another. □

4.1.1. Conventions on contragredient pairings. In what follows, given any represen-
tation ρ, we denote its contragredient representation by ρ∨. For instance, let σw be
an admissible irreducible supercuspidal representation of Lw(Kw) and σ∨

w be its con-
tragredient, also an admissible irreducible supercuspidal representation of Lw(Kw).

Let ⟨·, ·⟩σw : σw × σ∨
w → C be the tautological pairing on a pair of contragredient

representations. Define

⟨·, ·⟩w : ιGw
Pw

σw × ιGw
Pw

σ∨
w → C

⟨φ,φ∨⟩w =

∫
Gw(Ow)

⟨φ(k), φ∨(k)⟩σwdk ,

a perfect Gw(Kw)-equivariant pairing. Here dk is the Haar measure on Gw(Ow)
that such that vol(Gw(Ow)) = 1 with respect to dk. Then ⟨·, ·⟩w naturally identifies

ιGw
Pw

σ∨
w as the contragredient of ιGw

Pw
σw.

Let πw be a the constituent at w ∈ Σp of πp as above. From now on, we assume

πw is the unique irreducible quotient ιGw
Pw

σw ↠ πw. Equivalently, π∨
w is the unique

irreducible subrepresentation π∨
w ↪→ ιGw

Pw
σ∨
w, see Remark 3.9. If one restricts the

second argument of ⟨·, ·⟩w to π∨
w, then the first argument factors through πw. In

other words, ⟨·, ·⟩w induces the tautological pairing ⟨·, ·⟩πw : πw × π∨
w → C and

⟨ϕ, ϕ∨⟩πw =

∫
Gw(Ow)

⟨φ(k), φ∨(k)⟩σwdk , ∀ϕ ∈ πw, ϕ
∨ ∈ π∨

w ,

where φ is any lift of ϕ and φ∨ is the image of ϕ∨.
Let (τw, Xw) be the BK-type of σw, a representation of Lw(Ow). Then, its contra-

gredient (τ∨w , X
∨
w) is the BK-type of σ∨

w. One can find Lw(Ow)-embeddings τw ↪→ σw
and τ∨w ↪→ σ∨

w (both unique up to scalar) such that for all α ∈ Xw, α
∨ ∈ X∨

w ,

⟨α, α∨⟩σw = ⟨α, α∨⟩τw .

More generally, upon restriction of σw and σ∨
w to representations of Lw(Ow), there

are a direct sum decomposition

σw =
⊕
τw

σw[τw] and σ∨
w =

⊕
τw

σ∨
w[τw]

where τw runs over all smooth irreducible representations of Lw(Ow) and the square
brackets [·] denote isotypic subspaces. The restriction of ⟨·, ·⟩σw to σw[τw]× σ∨

w[τ
′
w]
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is identically zero if τ′w ̸∼= τ∨w. On the other hand, its restriction to σw[τw]× σ∨
w[τ

∨
w]

is a perfect Lw(Ow)-invariant pairings.

4.1.2. Structure theorem for P -anti-ordinary representations. Since π
Iw,r
w is stable

under the action of I0w,r/Iw,r
∼= Lw(Ow/p

r
wOw), it decomposes as a direct sum of

isotypic subspaces over all irreducible representations of Lw(Ow/p
r
wOw). Given such

a representation τw, we say that ϕ ∈ π
Iw,r
w is Pw-anti-ordinary of type τw if it is Pw-

anti-ordinary and it lies in the isotypic subspace π
Iw,r
w [τw].

Theorem 4.3. Let w ∈ Σp and πw be a constituent of π as above. Assume that
the weight κ of π satisfies Inequality (16). Assume that πw is Pw-anti-ordinary of

level r ≫ 0 and is the unique irreducible quotient ιGw
Pw

σw ↠ πw as above. Assume
that the BK-type (τw, Xw) of πw factors through Lw(Ow/p

r
wOw). Given any α ∈

Xw, let φPw−a.ord
w,r ∈ ιGw

Pw
σw be the unique vector with support PwIw,r such that

φPw−a.ord
w,r (1) = α and φPw−a.ord

w,r is fixed by Iw,r.

The image ϕPw−a.ord
w,r ∈ π

Iw,r
w of φPw−a.ord

w,r is Pw-anti-ordinary of level r for any r
such that τw factors through Lw(Ow/p

r
wOw). It satisfies :

(i) Let ϕ∨ ∈ π
∨,Iw,r
w and denote its image in ιGw

Pw
σw by φ∨. Then,

⟨ϕPw−a.ord
w,r , ϕ∨⟩πw = vol(I0w,r)⟨α,φ∨(1)⟩σw

In particular, ⟨ϕPw−a.ord
w,r , ϕ⟩πw ̸= 0 if and ony if ϕ∨ is Pw-ordinary and the

component of φ∨(1) in σ∨
w[τ

∨
w ] is non-zero.

(ii) The vector ϕPw−a.ord
w,r lies in the τw-isotypic space of π

Iw,r
w . Moreover, any

other Pw-anti-ordinary vector of type τw is obtained as above for some other
choice of α′ ∈ Xw.

(iii) One can pick different choices of α for each r′ ≥ r so that∑
γ∈Iw,r/(I0w,r′∩Iw,r)

πw(γ)ϕ
Pw−a.ord
w,r′ = ϕPw−a.ord

w,r

Proof. Write ϕw,r and φw,r instead of ϕPw−a.ord
w,r and φPw−a.ord

w,r respectively. We first
show that property (i) holds. By Lemma 4.2, π∨

w is Pw-ordinary of level r. Write

π
∨,Iw,r
w =

A⊕
a=1

Va ,

where each Va is a simultaneous generalized eigenspace for the Hecke operators
uGL
w,Dw(j).

From the proof of Theorem 3.10 and the remark that follow, exactly one Va has
generalized eigenvalues that are all p-adic units. We may assume that this holds
true for V1. The exact eigenvalue of uGL

w,Dw(j) is given by Equation (19), denote it

βw,Dw(j). For 1 < a ≤ A, at least one generalized eigenvalue for Va is not a p-adic
unit.
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Given ϕ∨ ∈ π
∨,Iw,r
w , write it as a sum

ϕ∨ =
A∑

a=1

ϕ∨
a ,

with ϕ∨
a ∈ Va. Let φ

∨
a denote the images of ϕ∨

a in ιGw
Pw

σ∨
w. Then,

⟨ϕw,r, ϕ
∨⟩πw =

A∑
a=1

⟨ϕw,r, ϕ
∨
a ⟩πw =

A∑
a=1

∫
Gw(Ow)

⟨φw,r(k), φ
∨
a (k)⟩σwdk

Recall that the support of φw,r is PwIw,r. Also, the intersection of PwIw,r with
Gw(Ow) is equal to I0w,r and by Theorem 3.10 (ii), φ∨

a (I
0
w,r) = 0 for all a ̸= 1.

Therefore,

⟨ϕw,r, ϕ
∨⟩πw =

∫
I0w,r

⟨φw,r(k), φ
∨
1 (k)⟩σwdk

Since I0w,r = Lw(Ow)Iw,r and φPw−a.ord
w,r , φ∨

1 are both fixed by Iw,r, one obtains

⟨ϕw,r, ϕ
∨⟩πw =

∫
I0w,r

⟨φw,r(1), φ
∨
1 (1)⟩σwdk = vol(I0w,r)⟨α,φ∨

1 (1)⟩σw .

The desired relation holds by noting that φ∨
1 (1) = φ∨(1). The second part of

(i) follows immediately from the discussion about isotypic subspaces at the end of
Section 4.1.1.

As a consequence of property (i), we immediately obtain ⟨ϕw,r, Va⟩πw = 0 for all
a > 1. Furthermore, for all ϕ∨ ∈ V1, we have

⟨uGL,−
w,Dw(j)ϕw,r, ϕ

∨⟩πw = ⟨ϕw,r, u
GL
w,Dw(j)ϕ

∨⟩πw = βw,Dw(j)⟨ϕw,r, ϕ
∨⟩πw .

By combining these two facts, we obtain

⟨uGL,−
w,Dw(j)ϕw,r, ϕ

∨⟩πw = βw,Dw(j)⟨ϕw,r, ϕ
∨⟩πw .

for all ϕ∨ in π
∨,Iw,r
w . In other words, ϕw,r is Pw-anti-ordinary.

Furthermore, note that the argument above implies that the subspace of Pw-anti-

ordinary vectors of type τw in π
Iw,r
w is dual to the subspace of Pw-ordinary vectors

of type τ∨w . From Theorem 3.10, they both have dimension dim τw = dim τ∨w . Since
the space generated by the action of Lw(Ow/p

r
wOw) on ϕw,r is of dimension dim τw

and consists of Pw-anti-ordinary vectors of type τw. Given l ∈ Lw(Ow/p
r
wOw),

one readily sees that πw(l)ϕw,r is the Pw-anti-ordinary vector obtained by picking
α′ = τw(l)α in Xw instead of α. This proves the second sentence of part (ii).

Finally, part (iii) and the first statement of part (ii) follow immediately from the
fact that the analogous properties hold for φw,r. □

Keeping the assumption and notation of Lemma 4.3, fix a vector α ∈ X. Using
Lemma 4.2, π∨

w ↪→ ιGw
Pw

σ∨
w is Pw-ordinary. Let (τ∨w , X

∨) be the BK-type of π∨
w and
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fix any α∨ ∈ X∨ such that ⟨α, α∨⟩τw = 1. Let ϕ∨,Pw−ord
w,r be the Pw-ordinary vector

associated to α∨ obtained from Theorem 3.10 (iii).
In fact, as r increases, one may pick compatible choices of α so that property (iii)

of Theorem 4.3 holds and compatible choices of α∨ such that ⟨α, α∨⟩τw = 1 for all
r ≫ 0. Then, as a consequence of Theorem 4.3 (i),

⟨ϕPw−a.ord
w,r , ϕ∨,Pw−ord

w,r ⟩w
vol(I0w,r)

= ⟨α, α∨⟩σw = ⟨α, α∨⟩τw = 1

is independent of r ≫ 0.
Furthermore, one readily obtains a result analogous to Theorem 3.13 from Theo-

rem 4.3. Let τ =
⊗

w∈Σp
τw be the BK-type of πp, using the identification (14), as

explained ahead of Theorem 3.13.

Corollary 4.4. Let π be an anti-holomorphic cuspidal representation of G of
weight type (κ,Kr) for some r ≫ 0. Suppose κ satisfies Inequality (16). Then,

π is P -anti-ordinary if and only if π♭ is P -ordinary. Let τ =
⊗

w∈Σp
τw be the

BK-type of π.
There exists a unique (up to the action of LP (Zp)) P -anti-ordinary vector ϕP−a.ord

r

of level r and type τ in π
IP,r
p . Furthermore, there exists Pw-ordinary vectors ϕPw−a.ord

w,r

of level r and type τw as in Theorem 4.3 such that, under the identification πp =

µp ⊗
⊗

w∈Σp
πw, ϕ

P−a.ord
r =

⊗
w∈Σp

ϕPw−a.ord
w,r .

4.2. P -(anti-)ordinary representations on G2. In this section we compare the
theory of P -(anti-)ordinary representations on G1 and G2, where Gi is the unitary
group associated to the PEL datum Pi introduced in Section 2.2.3. We add a
subscript V (resp. −V ) in our notation whenever we want to emphasize that we are
working with G1 (resp. G2).

4.2.1. Comparison between representations of G1 and G2. Note that there is a canon-
ical identification G1(A) = G2(A). Furthermore, the identification from isomor-
phism (3) remains the same for both G1 and G2. However, the opposite choices of
OK ⊗ Zp-lattices L

±
1 = L∓

2 introduce many changes in the notation.
For instance, under the identification G1(A) = G2(A), the group H0,−V = H0

for G1 corresponds to H0,−V (by switching the roles of Λ0 and Λ∨
0 .) However, the

identification from isomorphism (10) interchanges the role of σ ∈ ΣK and σc (where
c denotes complex conjugation).

Given a dominant weight κ of T1 := TH0,V , it is identified with a tuple (κ0, (κσ)σ)

where κ0 ∈ Z and κσ ∈ Zbσ . The torus T2 := TH0,−V is equal to T1 but the
corresponding isomorphism (10) for G2 identifies κ with (κ0, (κσc)σ). We denote the

latter by κ♭. In particular, κσc ∈ Zaσ = Zbσc and κ♭ is dominant with respect to
Bop

H0,−V .

As explained in [EHLS20, Sections 6.2.1-6.2.2], if π is a cuspidal (anti-)holomorphic

automorphic representation for G1 of weight κ, then π♭ = π∨⊗||ν||a(κ) (as in Section
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2.5.1) is naturally a cuspidal (anti-)holomorphic automorphic representation for G2

of weight κ.
Furthermore, by choosing the same partitions dw introduced in Section 2.2.2, the

parabolic subgroup Pw ⊂ GLn(Ow) for G1 corresponding to w ∈ Σp is replaced by
the opposite parabolic subgroups, which in our case is simply its transpose tPw ⊂
GLn(Ow), when working with G2. Similarly, P is replaced by tP and the (pro-p)
P -Iwahori subgroup of level r is replaced by the (pro-p) tP -Iwahori subgroup of level
r.

In particular, if πp ∼= µp ⊗
⊗

w∈Σp
πw is the identification obtained from (14) for

G1, the corresponding factorization on G2 induces

π♭
p
∼= µ♭

p ⊗
⊗
w∈Σp

π♭
w ,

where π♭
w = π∨

w and µ♭
p = µ−1

p |ν|a(κ)p .

4.2.2. Holomorphic and tP -ordinary representations for G2. We keep the notation
of Section 4.2.1. The discussion above shows that πw is Pw-ordinary of level r ≫ 0
if and only if π♭

w is tPw-ordinary of level r ≫ 0. Note that, adapting our definitions
in Section 3.1 from G1 to G2, the latter notion requires to change Pw for tPw and

the double coset operators UGL
w,j for U ♭,GL

w,j = tIw,rt
−1
w,j

tIw,r.
We assume that πw is Pw-ordinary of level r ≫ 0, that πw is the unique irre-

ducible subrepresentation of ιGw
Pw

σw for some admissible irreducible supercuspidal
representation σw, and κ satisfies Inequality (16). The analogue of Theorem 3.10 is
the following.

Lemma 4.5. Using the notation above, let (τw, Xw) be the BK-type of πw.

(i) The unique irreducible quotient of ιGw
Pw

σ∨
w is isomorphic to π♭

w.

(ii) Let (τ∨w , X
∨
w) be the contragredient of (τw, Xw), the BK-type of σ∨

w. Consider
X∨

w as a subspace of the vector space associated to σ∨
w, via a fix embedding

(unique up to scalar) τ∨w ↪→ σ∨
w.

For any α∨ ∈ X∨
w , let φ♭

w ∈ ιGw
Pw

σ∨
w be the unique function with support

Pw
tIw,r (for all r ≫ 0) such that φ♭

w(1) = α∨ and φ♭
w is fixed by tIw,r (for

all r ≫ 0). Let ϕ♭
w denote its image in π♭

w.

Then, ϕ♭
w is tPw-ordinary of type τ∨w of level r ≫ 0. This induces a natural

isomorphism between τ∨w and the subspace of tPw-ordinary vectors of type
τ∨w of level r ≫ 0. In particular, the latter is independent of r ≫ 0 and has
dimension dim τ∨w = dim τw.

Proof. Consider the composition of πw ↪→ ιGw
Pw

σw with the map (of vector spaces)

ιGw
Pw

σw → ιGw
tPw

σ∨
w

ϕ 7→ ϕ∨(g) := ϕ(tg−1)
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Its image is π♭
w = π∨

w and realizes π♭
w as the unique irreducible subrepresentation

of ιGw
tPw

σ∨
w. In particular, all the consequences of Theorem 3.10 hold for π♭

w by

replacing Pw by tPw and σ∨
w by σ∨

w.

Given α∨ ∈ X∨
w as above, let ϕ∨

w ∈ π
♭,Iw,r
w and φ∨

w ∈ ιGw
tPw

σ∨
w be the vectors

obtained from Theorem 3.10 (iii) associated to α∨. In particular, ϕ∨
w is a tPw-

ordinary vector of type τ∨w and the subspace generated by the action of Lw(Ow)
on ϕ∨

w is exactly of all tPw-ordinary vectors of type τ∨w . In particular, the latter is
independent of r ≫ 0 and isomorphic to τ∨w over Lw(Ow).

Now, consider the standard intertwining operator ιGw
Pw

σ∨
w

∼−→ ιGw
tPw

σ∨
w. It identifies

π♭
w as the unique irreducible quotient of ιGw

tPw
σ∨
w. Furthermore, the vector φ∨

w ∈
ιGw
tPw

σ∨
w exactly corresponds to the vector φ♭

w ∈ ιGw
Pw

σ∨
w described above. Then,

ϕ♭
w = ϕ∨

w is the desired vector and this concludes the proof. □

4.2.3. Anti-holomorphic and tP -anti-ordinary representations for G2. Going back
to the discussion of Section 4.2.1, we know that πw is Pw-anti-ordinary of level
r ≫ 0 (for G1) if and only if π♭

w is tPw-anti-ordinary of level r ≫ 0 (for G2).
Again, adapting our definitions in Section 3.1 from G1 to G2, the latter notion

requires to change Pw for tPw and the double coset operators UGL,−
w,j for U ♭,GL,−

w,j =
tIw,rtw,j

tIw,r.
We assume that πw is Pw-anti-ordinary of level r ≫ 0, that πw is the unique

irreducible quotient of ιGw
Pw

σw for some admissible irreducible supercuspidal repre-
sentation σw, and κ satisfies Inequality (16). The analogue of Theorem 4.3 is the
following.

Lemma 4.6. Using the notation above, let (τw, Xw) be the BK-type of πw.

(i) The unique irreducible subrepresentation of ιGw
Pw

σ∨
w is isomorphic to π♭

w.

(ii) Let (τ∨w , X
∨
w) be the contragredient of (τw, Xw), the BK-type of σ∨

w. Consider
X∨

w as a subspace of the vector space associated to σ∨
w, via a fix embedding

(unique up to scalar) τ∨w ↪→ σ∨
w.

For each r ≫ 0 and α ∈ X∨
w , there exists some unique tPw-anti-ordinary

ϕ♭
w,r ∈ πIr

w of type τ∨w and level r such that φ♭
w,r(1) = α, where φ♭

w,r is the

image of ϕ♭
w,r in ιGw

Pw
σ∨
w, and the support of ϕ♭

w,r contains Pw
tIw,r.

(iii) For r′ > r ≫ 0, one can choose α, α′ ∈ X∨
w such that the vectors ϕ♭

w,r and

ϕ♭
w,r′ corresponding to α and α′ respectively satisfy

∑
γ∈tIw,r/(tI0w,r′∩

tIw,r)

π♭
w(γ)ϕ

♭
w,r′ = ϕ♭

w,r
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Proof. As in the proof of Lemma 4.5, the map

ιGw
tPw

σ∨
w → ιGw

Pw
σw

ϕ 7→ ϕ∨(g) := ϕ(tg−1) ,

realizes π♭
w = π∨

w as the unique irreducible quotient of ιGw
tPw

σ∨
w.

In particular, all the consequences of Theorem 4.3 hold for π♭
w by replacing Pw

by tPw and σw by σ∨
w. Given α ∈ X∨

w as above, let φ′
w,r ∈ ιGw

tPw
σ∨
w be the vectors

obtained from Theorem 4.3 associated to α.
Furthermore, consider the standard intertwining operator ιGw

tPw
σ∨
w

∼−→ ιGw
Pw

σ∨
w. Its

image is both the unique irreducible quotient of ιGw
tPw

σ∨
w, namely π♭

w, and the unique

irreducible subrepresentation of ιGw
Pw

σ∨
w. This proves part (i).

To conclude, let ϕ♭
w,r (resp. φ♭

w,r) be the image of φ′
w,r in π∨

w (resp. ιGw
Pw

σ∨
w) via

this intertwining operator. The fact that ϕ♭
w,r is tPw-anti-ordinary of type τ∨w and

level r follows from Theorem 4.3 (ii). Similarly, part (iii) follows from Theorem 4.3
(iii) (upon making the appropriate adjustement between G1 and G2). The properties
of φ′

w,r are obtained from an easy computation using the definition of φ′
w,r and the

exact formula for the intertwining operator above. □

Remark 4.7. In Theorem 4.3, Lemma 4.5 and Lemma 4.6, more general statement
can be made for any type. However, for applications to computations of zeta integrals
in forthcoming work of the author, [Mar23], the results above only involving the BK-
type of a fixed representation are sufficient.

5. Comparison of P -(anti-)ordinary modular and automorphic forms.

In this section, we work with G = G1 and we use the same notation as in Section
3.1 without comments. The material here adapts some of the theory of [EHLS20,
Section 6.6] for any parabolic subgroup P as in Section 2.2.2.

In particular, we identify integral spaces of P -ordinary cusp forms of level Kr

with a fixed weight κ and P -nebentypus τ as lattices inside certain holomorphic
P -ordinary cuspidal automorphic representations π of weight type (κ,Kr) whose
BK-type is τ . Using characters of Hecke algebra associated to π one can study
congruences between such P -ordinary cusp forms modulo p.

5.1. Hecke algebras. Let κ be a dominant character of TH0 and τ be an irre-
ducible smooth representation of LP (Zp). Fix r ≫ 0 such that τ factors through
LP (Zp/p

rZp) and let K = Kr = KpIr ⊂ G(Af ) be a neat compact open level
subgroup. Let R ⊂ C be an S0[τ ]-algebra.

5.1.1. Hecke algebras on cusp forms. As in [EHLS20, Section 2.6.8], for all g ∈
G(Ap

f ), the double coset operator Tr(g) = [KrgKr] naturally acts as an endomor-

phism of Mκ(Kr;R). The subspace of cusp forms and the subspace of P -nebentypus
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τ are both stable under the action of Tr. The material of [EHLS20] only considers
the case where P is a Borel subgroup but the same arguments and formulas remain
valid in our case using our moduli interpretation of Er,τ from Section 2.4.3. This is
because Tr(g) only acts on the PEL datum of a given point and not on its p-level
structure.

Furthermore, assume that R is a p-adic domain. In that case, the arguments of
Hida [Hid04, 8.3.1] show that the Hecke operator uw,Dw(j) = uw,Dw(j),κ also acts as
an endomorphism of Mκ(Kr;R), see also [EHLS20, Sections 2.6.9, 2.9.5]. Again, the
action of uw,Dw(j) stabilizes the subspace of cusp forms and the subspace of forms
with P -nebentypus τ .

We now construct the Hecke algebra (of levelKr) generated by all Hecke operators
at unramified places and at p. More precisely, let l ̸= p be any prime of Q and
consider the set Pl of all primes of K+ above l. Write Pl = Pl,1

∐
Pl,2, where Pl,1

is the subset of such primes that split in K and Pl,2 is the complement. Therefore,
one naturally has an identification

G(Ql) =
∏

v∈Pl,1

GLn(K+
v )×Gl,2 ,

where Gl,2 is the subgroup of elements ((xw), t) ∈
∏

w∈P2
GLn(Kw)×Q×

l such that
each xw preserve the Hermitian form on V ×K ×Kw with the same similitude factor
t. In particular Kl ⊂ G(Ql) is a product of local factors over all places in Pl. Let
Sl = Sl(K

l) be the subset of Pl consisting of all places for which the local factor of
Kl is not the maximal hyperspecial subgroup. Let Sl,i = Sl ∩ PPl,i and define

G(Ql)
Sl =

{∏
v∈Pl,1\Sl,1

GLn(K+
v )×Gl,2 , if Sl,2 = ∅∏

v∈Pl,1\Sl,1
GLn(K+

v ) , otherwise.

Finally, let S = S(Kp) =
⋃

l ̸=p Sl(K
l) and define

G(AS
f ) =

∏
l ̸=p

G(Ql)
Sl .

Let TKr,κ,R be the R-subalgebra of EndC(Sκ(Kr;C)) generated by the operators

T (g) = Tr(g) for all g ∈ G(Af )
S and uw,Dw(j) for all w ∈ Σp, 1 ≤ j ≤ rw. Similarly,

one defines TKr,κ,τ,R as the quotient algebra obtained by restricting each operator
to an endomorphism of Sκ(Kr, τ ;C).

5.1.2. Serre duality and Hecke algebras on anti-ordinary cusp forms. Going back to
G = G1, the space of anti-holomorphic cuspidal forms of weight κ and level Kr is
defined as

Hd
κ(Kr;C) := Hd

! (Kr
Sh, ωκ,r)

and its subspace of P -nebentypus τ is

Hd
κ(Kr, τ ;C) := Hd

! (Kr
Sh, ωκ,r,τ ) .
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One can define an R-integral structure on these spaces by considering the integral
models of KSh. However, we instead follow [EHLS20, Section 6.4.2] and define its
integral structure via duality from a normalized Serre duality pairing.

By definition of κD, one can construct a canonical perfect pairing

⟨·, ·⟩Serκ,Kr
:= H0

! (Kr
Sh(V ), ωκ,r)⊗Hd

! (Kr
Sh(V ), ωκD,r) → C

Let vol(I0r ) be the volume of K0
r = KpI0r with respect to the Tamagawa measure

dg from [EHLS20, Section 6.3]. We define ⟨·, ·⟩κ,Kr as the normalized Serre pairing

H0
! (Kr

Sh(V ), ωκ,r)⊗Hd
! (Kr

Sh(V ), ωκD,r) → C

⟨·, ·⟩κ,Kr :=
1

vol(I0r )
⟨·, ·⟩Serκ,Kr

This identifies Hd
κ(Kr;C) as the dual of Sκ(Kr;C), and via this identification we

define

Hd
κ(Kr;R) := HomR(Sκ(Kr;R), R)

Similarly, Hd
κ(Kr, τ ;R) is defined by replacing Sκ(Kr;R) with Sκ(Kr, τ

∨;R).
Then, one defines the R-Hecke algebra Td

Kr,κ,R
by proceeding as in the definition of

Td
Kr,κ,R

but replacing Sκ(Kr;R) with Hd
κ(Kr;R) and uw,Dw(j) by u−w,Dw(j). Upon

restriction to Hd
κ(Kr;R), one obtains the quotient algebra Td

Kr,κ,τ,R
.

Lemma 5.1. Let R ⊂ C be an S0-algebra as above. There exists a unique R-
algebra isomorphism TKr,κ,R

∼−→ Td
Kr,κD,R

such that uw,Dw(j) is mapped to u−w,Dw(j)

and T (g) to ||ν(g)||a(κ) · T (g−1). If R is an S0[τ ]-algebra, it induces an isomorphism

of R-algebra TKr,κ,τ,R
∼−→ Td

Kr,κD,τ,R
.

Proof. The proof is exactly the same as the one of Lemma 6.6.1 (i) in [EHLS20]. It
is an immediate consequence of Serre duality. □

5.1.3. Automorphic representations as Hecke modules. In what follows, for all the

Hecke algebras T?
•, let T

?,p
• denote the R-subalgebra generated only by the operators

T (g) for g ∈ G(AS
f ). Moreover, we omit the subscript R when it R = S0 (or S0[τ ]).

We also use the notation from Section 2.5.1 without comments.
Let π be a holomorphic cuspidal automorphic representation of G of weight type

(κ,Kr). Recall that it is defined over some number field E(π) containing K′, see Re-
mark 2.11. Recall the definition of S = S(Kp) above and consider the factorization

π = π∞ ⊗ πf ; πf = πp ⊗ πS ⊗ πS
f ,

By definition, KS is the factor of Kp over all places of K+ where Kp contains

an hyperspecial maximal subgroup. In particular, (πS
f )

KS
is a 1-dimensional space

spanned by an E(π)-rational spherical vector. The natural action of T (g) for all

g ∈ G(AS
f ) on πKr

f is through its action as a character on πKS

f . In other words, this

defines a character λp
π of Tp

Kr,κ
. Although this definition technically depends on r
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these homomorphisms are compatible as r increases in the obvious sense, hence we
do not include it in the notation of λp

π.
Now, fix a choice of E(π)-rational spherical vector in πS

f and a choice of basis

for the 1-dimensional H0(Ph,Kh;π∞ ⊗ Wκ). Let Sκ(Kr,C)(π) be the λp
π-isotypic

subspace of Sκ(Kr,C) as a Tp
Kr,κ

-module. Then, the isomorphism (11) induces an
embedding

jπ : πKS
S ⊗ πIr

p ↪→ Sκ(Kr,C)(π)
of Tp

Kr,κ
-module.

HYPOTHESIS 5.2 (Multiplicity one). We say that π satisfies the multiplicity
one hypothesis (for π) if for any holomorphic cuspidal π′ ̸= π of type (κ,Kr), the
characters λp

π′ and λp
π are distinct.

One immediately obtains that if π satisfies the multiplicity one hypothesis, then
the embedding jπ is in fact an isomorphism.

5.2. P -ordinary case. In this section, we extend the study of the isomorphism jπ
by also considering the action of the Hecke operator at p. To do so, we assume that
R ⊂ C is the localization of a finite S0-algebra (or S0[τ ]-algebra when considering
a fixed P -nebentypus τ) at the maximal ideal determined by inclp or that ιp(R) is
p-adically complete (in the latter case, we say that R is a p-adic algebra).

If R is a p-adic algebra, the P -ordinary projector eP,κ = eκ defined in Section 3.1

has a well-defined action on TKr,κ,R and we set TP−ord
Kr,κ,R

:= eκTKr,κ,R. Similarly, let

TP−ord
Kr,κ,τ,R

:= eκTKr,κ,τ,R. These are equal to the quotient algebras obtained from

TKr,κ,R and TKr,κ,τ,R upon restriction of the operators to the (stable) subspaces

SP−ord
κ (Kr;R) := eκSκ(Kr;R) and SP−ord

κ (Kr, τ ;R) := eκSκ(Kr, τ ;R).
Similarly, when R is not p-adic, we can define the latter spaces as the intersec-

tion of Sκ(Kr;R) and Sκ(Kr, τ ;R) with the P -ordinary spaces over the (p-adic)
completion of inclp(R).

Assume the holomorphic representation π from Section 5.1.1 is P -ordinary at p.
Assume that πp satisfies the Hypothesis 3.8 on supercuspidal support as in Section

3.3. Therefore it has a well-defined BK-type τ . Let π
(P,τ)
p be the subspace of P -

ordinary vectors in πIr
p of type τ , as in Theorem 3.13.

The Hecke algebra TKr,κ,R acts on π
(P,τ)
p ⊗ πp,Kp

via a character λπ that extends

λp
π. Clearly, the character λπ factors through TP−ord

Kr,κ,τ,R
. Let E(λπ) be the finite

extension of E(π) generated by the values of λπ and let R(λπ) be the localization of
the ring of integers of E(λπ) at the maximal ideal determined by inclp. One readily
sees that λπ is R(λπ)-valued.

Let λπ be the reduction of λπ modulo the maximal ideal of R(λπ), viewed as a
character valued in Z(p). Denote its kernel by mπ and let

S(Kr, κ, τ, π) =
{

ordinary holomorphic cuspidal π′ of weight type (κ,Kr),

satisfying Hypothesis 3.8 with BK type τ , such that λπ = λπ′

}
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Clearly, the condition λπ = λπ′ is equivalent to mπ = mπ′ .

Lemma 5.3. Let π be a holomorphic P -ordinary cuspidal automorphic form of
weight type (κ,Kr) and BK-type τ as above. Suppose that π satisfies the multiplicity
one Hypothesis 5.2. Let R ⊂ C be the localization of a finite extension of R(λπ) or
the p-adic completion of such a ring. Let E = R[1p ].

(i) Let SP−ord
κ (Kr, τ ;E)[λπ] = eκSκ(Kr, τ ;E)[λπ], where [λπ] denotes λπ-isotypic

component. Then, jπ restricts to an isomorphim

jπ : π(P,τ)
p ⊗ πKS

S
∼−→ SP−ord

κ (Kr, τ ;E)[λπ]⊗E C

(ii) Let SP−ord
κ (Kr, τ ;R)π be the localization of SP−ord

κ (Kr, τ ;R) at mπ and

SP−ord
κ (Kr, τ ;R)[π] := SP−ord

κ (Kr, τ ;R)π ∩ SP−ord
κ (Kr, τ ;E)[λπ]

Then, jπ identifies SP−ord
κ (Kr, τ ;R)[π] as an R-lattice in π

(P,τ)
p ⊗ πKS

S .

Similarly, SP−ord
κ (Kr, τ ;R)π is identified with an R-lattice in⊕

π′∈S(Kr,κ,τ,π)

(π′
p)

(P,τ) ⊗ (π′
S)

KS

via ⊕π′jπ′ .

5.3. P -anti-ordinary case. In this section, we carry a similar analysis as in the
previous section for anti-holomorphic and P -anti-ordinary representations.

Assume that R ⊂ C is as in the beginning of Section 5.2. Then, one can define

Hd,P−a.ord
κ (Kr;R) and Hd,P−a.ord

κ (Kr, τ ;R) by replacing Sκ(Kr;R) and Sκ(Kr, τ ;R)
with Hd

κ(Kr;R) and Hd
κ(Kr, τ ;R) respectively, and eκ by e−κ (see Section 4.1).

Restriction of the operators in Td
Kr,κ,R

to these P -anti-ordinary subspaces yields

Td,P−a.ord
Kr,κ,R

:= eκT
d
Kr,κ,R

and Td,P−a.ord
Kr,κ,τ,R

:= eκT
d
Kr,κ,τ,R

as quotient R-algebras. The
following is obvious from the definitions.

Lemma 5.4. For R as above, the isomorphisms of Lemma 5.1 induce R-algebra
isomorphisms

TP−ord
Kr,κ,R

∼−→ Td,P−a.ord
Kr,κD,R

and TP−ord
Kr,κ,τ,R

∼−→ Td,P−a.ord
Kr,κD,τ∨,R

Proceeding as in the previous sections, let π be a holomorphic cuspidal automor-
phic representation of weight type (κ,Kr). Then, π♭ is anti-holomorphic of type
(κ,Kr).

Again, the choice of an E(π)-rational spherical vector in π♭,S
f and a choice of basis

for the 1-dimensional Hd(Ph,Kh;π
♭
∞ ⊗WκD) induces an inclusion

j∨
π♭ : π

♭,KS
S ⊗ π♭,Ir

p ↪→ Hd
κd(Kr;C)

Furthermore, if we assume that π is P -ordinary and satisfies Hypothesis 3.8, hence
has a well-defined BK-type τ . In that case, π♭ is P -anti-ordinary and determines

a character λπ♭ of Td,P−a.ord
Kr,κD,τ∨

as well as a maximal ideal mπ♭ . Via the isomorphism
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TP−ord
Kr,κ,τ,R

∼−→ Td,P−a.ord
Kr,κD,τ∨,R

, we have λπ♭ = λπ and mπ = mπ♭ . Let π
♭,(P,τ∨)
p,r denote

the subspace of π♭,Ir
p of P -anti-ordinary vector of level r and type τ∨ (see Corollary

4.4).

Lemma 5.5. Let π, κ,Kr, τ , R and E be as in Lemma 5.3. LetHd,P−a.ord
κD (Kr, τ

∨;R)π

be the localization of Hd,P−a.ord
κD (Kr, τ

∨;R) at mπ and let

Hd,P−a.ord
κD (Kr, τ

∨;R)[π] := Hd,P−a.ord
κD (Kr, τ

∨;R)π ∩Hd,P−a.ord
κD (Kr, τ

∨;E)[λπ] ,

where [λpi] denotes λπ-isotypic subspace again. Then, if π satisfies the multiplicity
one Hypothesis 5.2,

(i) The inclusion j∨
π♭ restricts to an isomorphism

π♭,KS
S ⊗ π♭,(P,τ∨)

p,r ↪→ Hd
κd,P−a.ord(Kr, τ ;E)[λπ]⊗E C

(ii) The map j∨
π♭ identifies H

d,P−a.ord
κD (Kr, τ

∨;R)[π] with an R-lattice in π♭,KS
S ⊗

π
♭,(P,τ∨)
p,r . Furthermore, Hd,P−a.ord

κD (Kr, τ
∨;R)π is identified with an R-lattice

in ⊕
π′∈S(Kr,κ,τ,π)

(π′
S)

♭,KS ⊗ (π′
p,r)

♭,(P,τ∨)

via ⊕π′j∨
(π′)♭

.

(iii) The normalized Serre duality pairing induces a perfect TP−ord
Kr,κ,τ,R

-equivariant
pairings

SP−ord
κ (Kr, τ ;R)[π]⊗R Hd,P−a.ord

κD (Kr, τ
∨;R)[π] → R and

SP−ord
κ (Kr, τ ;R)π ⊗R Hd,P−a.ord

κD (Kr, τ
∨;R)π →R .
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