
CYCLIC CODES

Example of a Simple Cyclic Code Consider the binary code

C =
{

000, 110, 011, 101
}
.

One easily checks that this is a linear code since the sum of any two codewords in C is again
a codeword in C. Let us denote a codeword in C by c = (c1, c2, c3) where ci is either 0 or 1
for i = 1, 2, 3.

The key property that makes this a cyclic code is that for any codeword c = (c1, c2, c3) ∈ C
we have (c3, c1, c2) is again a codeword in C.

Definition (Cyclic Code) A binary code is cyclic if it is a linear [n, k] code and if for every
codeword (c1, c2, . . . , cn) ∈ C we also have that (cn, c1, . . . , cn−1) is again a codeword in C.

Remark: The shift (c1, c2, . . . , cn) −→ (cn, c1, . . . , cn−1) is called a right cyclic shift.

Question: Is
{

000, 100, 010, 001
}

a cyclic code?

Answer: The answer is NO because this code is not linear.

REALIZING CYCLIC CODES WITH POLYNOMIALS OVER F2

In the following we let F2[x] denote the set of all poynomials

a0 + a1x+ · · ·+ amx
m

with ai ∈ F2 for i = 0, 1, . . . ,m. We note that these polynomials form an additive group.

Definition (Code Polynomial associated to a Cyclic Codeword) Let a = (a0, a1, . . . , an−1)
be a codeword in a cyclic [n, k] code C. We define the polynomial associated to a ∈ C to be

a(x) := a0 + a1x+ · · ·+ an−1x
n−1 ∈ F2[x].

Notice that
x · a(x) = a0x+ a1x

2 + · · ·+ an−2x
n−1 + an−1x

n.

This is almost a right cyclic shift of the polynomial which would have the representation

an−1 + a0x+ a1x
2 + · · ·+ an−2x

n−1.

But notice the following identity!

x · a(x) ≡ an−1 + a0x+ a1x
2 + · · ·+ an−2x

n−1
(

mod (xn − 1)
)
. (1)

Furthermore, it immediately follows that we also have:

x2 · a(x) ≡ an−2 + an−1x+ a0x
2 + a1x

3 + · · ·+ an−3x
n−1

(
mod (xn − 1)

)
x3 · a(x) ≡ an−3 + an−2x+ an−1x

2 + a0x
3 + · · ·+ an−4x

n−1
(

mod (xn − 1)
)

...

x` · a(x) ≡ an−` + an−`+1x+ an−`+2x
2 + · · ·+ a0x

` + · · ·+ an−`−1x
n−1

(
mod (xn − 1)

)
.

Remark: The numbering a = (a0, a1, . . . , an−1) starting with a0 instead of a1 is used because
it simplifies the statement of the modular relation (1).

1



CONSTRUCTING CYCLIC CODES WITH POLYNOMIALS OVER F2

CLAIM: Fix an integer n > 1. Let g(x) ∈ F2[x] divide the polynomial xn − 1. Assume the
degree of g(x) is n− k for some 0 ≤ k ≤ n. Consider the set of polynomials

Pg :=
{
g(x) · α(x)

(
mod (xn − 1)

) ∣∣∣ α(x) ∈ F2[x] with deg(α(x)) ≤ k
}
.

Every polynomial f(x) ∈ Pg can be written in the form

f(x) = a0 + a1x+ · · ·+ an−1x
n−1.

Then the set of all distinct {a0, a1, . . . , an−1} coming from f(x) ∈ Pg form a cyclic [n, k] code.

Remark: The polynomial g is called a generator polynomial for the cyclic [n, k] code described
in the above theorem.

Example (1): Let n = 3. Then g(x) := x− 1 divides x3 − 1. Note that since we are over F2

we see that g(x) is also equal to 1 + x. We now list all possible

g(x) · α(x)
(

mod (x3 − 1)
)

with deg(α(x)) ≤ 2. The only possible α(x) are 0, 1, x, 1 + x, x2, 1 + x2, x + x2, 1 + x + x2.
Furthermore

x3 ≡ 1 (mod x3 − 1).

It follows that for this example

(1 + x) · 0 ≡ 0 (mod x3 − 1) −→ 000,

(1 + x) · 1 ≡ 1 + x (mod x3 − 1) −→ 110,

(1 + x) · x ≡ x+ x2 (mod x3 − 1) −→ 011,

(1 + x) · (1 + x) ≡ 1 + x2 (mod x3 − 1) −→ 101,

(1 + x) · x2 ≡ 1 + x2 (mod x3 − 1) −→ 101,

(1 + x) · (1 + x2) ≡ x+ x2 (mod x3 − 1) −→ 011,

(1 + x) · (x+ x2) ≡ 1 + x (mod x3 − 1) −→ 110,

(1 + x) · (1 + x+ x2) ≡ 0 (mod x3 − 1) −→ 000,

In the above we have taken a polynomial such as x + x2 and rewritten it as the codeword
−→ 011.

We see that we get the codewords {000, 101, 110, 011} which is a cyclic code. So the above
CLAIM holds for this example.

Remark: Note that in the above calculation we obtained each codeword in {000, 101, 110, 011}
exactly twice. This suggests that it is enough to consider polynomials α(x) ∈ F2[x] with
deg(α(x)) < k.

Explanation of why each code word is repeated twice:
We have (1 +x) · (1 +x+x2) = x3− 1. Hence (1 +x) ·x2 ≡ (1 +x)2 ≡ 1 +x2 (mod x3− 1).

This means that (1 + x) · x2 is in the list of the first four code polynomials. It follows that
(1 + x) · (1 + x2) and (1 + x) · (x+ x2) and (1 + x) · (1 + x+ x2) ≡ 0 must also be in the list
of the first four code polynomials.

2



Example (2): Let’s take n = 3 and g(x) := 1 + x + x2 which also divides 1 + x3 since
1 + x3 = (1 + x) · (1 + x + x2). Note that we defined k so that deg(g(x)) = n − k. It follows
that since g(x) has degree 2 that k = 1. In this case there are only four possible polynomials
α(x) of degree ≤ k = 1. These are {0, 1, x, 1 + x}. It follows that

(1 + x+ x2) · 0 ≡ 0 (mod x3 − 1) −→ 000,

(1 + x+ x2) · 1 ≡ 1 + x+ x2 (mod x3 − 1) −→ 111,

(1 + x+ x2) · x ≡ 1 + x+ x2 (mod x3 − 1) −→ 111,

(1 + x+ x2) · (1 + x) ≡ 0 (mod x3 − 1) −→ 000,

We see that the code generated is the [3,1] repetition code which is just {000, 111}. The
codewords are repeated exactly twice.

We will now prove the following theorem.

Theorem (1): Fix an integer n > 1. Let g(x) ∈ F2[x] divide the polynomial xn − 1. Assume
the degree of g(x) is n− k for some 0 ≤ k ≤ n. Consider the set of polynomials

Pg :=
{
g(x) · α(x)

(
mod (xn − 1)

) ∣∣∣ α(x) ∈ F2[x] with deg(α(x)) < k
}
.

Every code polynomial f(x) ∈ Pg can be written in the form

f(x) = a0 + a1x+ · · ·+ an−1x
n−1.

Then the set of all {a0, a1, . . . , an−1} coming from f(x) ∈ Pg form a cyclic [n, k] code.

Remark Note that the difference between Theorem (1) and the CLAIM on the previous
page is that we only need polynomials α(x) with deg(α(x)) < k. In the CLAIM we had
deg(α(x)) ≤ k.

Proof of Theorem (1): Let C denote the code generated in the above theorem. First
of all every codeword in C is associated to a code polynomial of the form g(x) · α(x) where
α(x) = a0 + a1x+ · · · ak−1x

k−1 ∈ F2[x] is a polynomial of degree < k. It follows that the sum
of any two codewords is again a codeword since the sum of any two polynomials of degree < k
must again be a polynomial of degree < k.

It remains to prove that the code C is cyclic. Let f(x) = a0 + a1x + · · · + an−1x
n−1 ∈ Pg.

Then we may write

x · f(x) = a0x+ a1x
2 + · · ·+ an−2x

n−1 + an−1x
n

= an−1 + a0x+ a1x
2 + · · ·+ an−2x

n−1 + an−1

(
xn + 1

)
= h(x) + an−1

(
xn + 1

)
.

Since both x ·f(x) and xn +1 are divisible by g(x) it follows that h(x) must also be divisible
by g(x). Hence h(x) (which represents the cyclic right shift of f(x)) must also be a code
polynomial in Pg, and the code generated by g(x) is a cyclic code. �

3



We shall next prove that every cyclic code can be constructed (as in Theorem (1)) from a
generating polynomial g(x) which divides xn − 1.

Theorem (2): Let C be a cyclic code. Then there exists a uniquely determined code polynomial
g(x) of minimal degree in C which has the following properties.

(i) g(x) is unique.
(ii) g(x) divides xn − 1.
(iii) The code C can be constructed using g(x) as in Theorem (1).

The polynomial g(x) is called the generator polynomial for the code C.

Proof of Theorem (2):

(i) Assume there are two distinct code polynomials g1(x), g2(x) of minimal degree in C.
Then g1(x) − g2(x) will have a smaller degree than g1(x) or g2(x). This is a contradiction so
the polynomial g(x) of minimal degree must be unique.

(ii) Next, assume g(x) does not divide xn − 1. Then

xn − 1 = g(x)β(x) + r(x),
(
β(x), r(x) ∈ F2[x]

)
,

where r(x) is the remainder polynomial which must have degree smaller than g(x). This implies
r(x) is also a code polynomial of smaller degree than g(x) which is a contradiction.

(iii) Once we have found g(x) it follows from (i), (ii), that we may construct the code C as
in Theorem (1). �

HOW TO FIND ALL [7,k] CYCLIC CODES

We first factor x7 − 1 = (x− 1) · (x3 + x+ 1) · (x2 + x2 + 1). Since we are only considering
binary codes (where +1 is the same as -1), we can rewrite the factorization as 1 + x7 =
(1 +x) · (1 +x+x3) · (1 +x2 +x3). As there are 3 irrededucible factors there are 8 cyclic codes
(including 0 and F7

2) with the following generaor polynomials:

(1) g(x) = 1, C = F7
2 = [7, 7] code

(2) g(x) = 1 + x, C = [7, 6] code

(3) g(x) = 1 + x+ x3, C = [7, 4] code

(4) g(x) = 1 + x2 + x3, C = [7, 4] code

(5) g(x) = (1 + x)(1 + x+ x3) = 1 + x2 + x3 + x4, C = [7, 3] code

(6) g(x) = (1 + x)(1 + x2 + x3) = 1 + x+ x2 + x4, C = [7, 3] code

(7) g(x) = (1 + x+ x3)(1 + x2 + x3) = 1 + x+ x2 + x3 + x4 + x5 + x6, C = [7, 1] code

(8) g(x) = x7 + 1, C = {0000000} = [7, 0] code.

4


