CYCLIC CODES

Example of a Simple Cyclic Code Consider the binary code
C = {000,110, 011, 101}.

One easily checks that this is a linear code since the sum of any two codewords in C' is again
a codeword in C. Let us denote a codeword in C' by ¢ = (c1, ¢q, ¢3) where ¢; is either 0 or 1
forv=1,2,3.

The key property that makes this a cyclic code is that for any codeword ¢ = (¢1, ¢o,¢3) € C
we have (c3, ¢q, ¢2) is again a codeword in C.

Definition (Cyclic Code) A binary code is cyclic if it is a linear [n, k] code and if for every
codeword (¢1, ¢, ..., ¢,) € C we also have that (c,,cq, ..., cn1) is again a codeword in C.

Remark: The shift (¢, co,...,¢,) — (cn, 1, .., cn_1) is called a right cyclic shift.
Question: Is {000,100,010,001} a cyclic code?

Answer: The answer is NO because this code is not linear.

REALIZING CYCLIC CODES WITH POLYNOMIALS OVER F,

In the following we let F5[x] denote the set of all poynomials
ap + ax + -+ apa™

with a; € Fy for : =0,1,...,m. We note that these polynomials form an additive group.

Definition (Code Polynomial associated to a Cyclic Codeword) Let a = (ag, a1, ...,a, 1)
be a codeword in a cyclic [n, k] code C. We define the polynomial associated to a € C' to be

a(r) = ag+ a1x + -+ ap_ 12" € Fyla].

Notice that
z-a(z) = apx + a2 + - A a0+ ap2"™
This is almost a right cyclic shift of the polynomial which would have the representation

2 ~1
Q1+ apx + a12° + -+ ap_ox" .

But notice the following identity!

z-a(z) = a1+ aor + a2’ + -+ apoz™ ' (mod (2" — 1)). (1)
Furthermore, it immediately follows that we also have:
22 a(x) = an_g + aporx + apr? + a1+ a2 (mod (™ — 1))
2’ a(x) = anp-3+ anoo® + @y’ + oz’ + -+ + ap_g2" " (mod (2" — 1))

2t a(z) = anog + anoen1 @+ apopra® + -+ agr’ + -+ ap_1z™ ! (mod (2" — 1)).

Remark: The numbering a = (ag, ay, .. .,a,_1) starting with ag instead of a; is used because

it simplifies the statement of the modular relation (1).
1



CONSTRUCTING CYCLIC CODES WITH POLYNOMIALS OVER F,

CLAIM: Fiz an integer n > 1. Let g(x) € Fso[z] divide the polynomial 2™ — 1. Assume the
degree of g(x) is n — k for some 0 < k < n. Consider the set of polynomials

P, = {g(x) -a(z) (mod (z" — 1)) ’ a(x) € Fylz] with deg(a(x)) < /{:}

Every polynomial f(x) € P, can be written in the form

f(iL') =ag+ax+ -+ anilxnfl'

Then the set of all distinct {ag, a1, ..., an_1} coming from f(x) € P, form a cyclic [n, k] code.
Remark: The polynomial g is called a generator polynomial for the cyclic [n, k| code described

in the above theorem.

Example (1): Let n = 3. Then g(z) := z — 1 divides 2* — 1. Note that since we are over F
we see that g(x) is also equal to 1 + x. We now list all possible

g(z) - a(z) (mod (z* — 1))
with deg(a(z)) < 2. The only possible a(x) are 0,1,z,1 + z, 2% 1 + 2%,z + 22,1 + = + 22
Furthermore
=1 (mod 2° —1).
It follows that for this example

(14+2)-0 =0 (mod 2*—1) — 000,

(14+2)-1 =1+ (moda®—-1) — 110,
(1+z) -2 = r+2° (mod 2® —1) — 011,
(14+z)-(1+2) = 1+2* (mod 2*° —1) — 101,
(14+2)-22 = 1+2* (mod 2® —1) — 101,
(1+z)-(1+2%) = z+2* (mod2®>—1) — 011,

(1+2z)-(z+2%) 1+ (modz®—1) — 110,
(1+z)-(1+z+2*) =0 (mod 2®—1) — 000,

In the above we have taken a polynomial such as x + 2% and rewritten it as the codeword
— 011.

We see that we get the codewords {000, 101,110,011} which is a cyclic code. So the above
CLAIM holds for this example.

Remark: Note that in the above calculation we obtained each codeword in {000, 101,110,011}
exactly twice. This suggests that it is enough to consider polynomials a(z) € Fy[x] with
deg(a(z)) < k.
Explanation of why each code word is repeated twice:

We have (1+z)-(1+z+2?) =23 —1. Hence (1+2z)-2> = (1+2)? = 1+ 2? (mod 23 —1).
This means that (1 + x) - 2% is in the list of the first four code polynomials. It follows that
(1+x)-(1+2* and (1+2)- (x+2?) and (1 +2)- (1 + 2 + 2%) = 0 must also be in the list

of the first four code polynomials.
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Example (2): Let’s take n = 3 and g(x) := 1 + x + 2% which also divides 1 + 2% since
1+23=(1+z)- (14 2+ 2%). Note that we defined k so that deg(g(z)) = n — k. Tt follows
that since g(x) has degree 2 that k = 1. In this case there are only four possible polynomials
a(x) of degree < k = 1. These are {0,1,z,1 + x}. It follows that

(1+z+2%)-0 =0 (mod2®>—1) — 000,

(1+z+2%)-1 =1+x+2> (mod2®—-1) — 111,

(l+z+2%) -2 = 1+x+2° (mod2®—-1) — 111,
_l’_

(1+z+2%)-(1+2z) =0 (mod2*—1) — 000,

We see that the code generated is the [3,1] repetition code which is just {000,111}. The
codewords are repeated exactly twice.
We will now prove the following theorem.

Theorem (1): Fiz an integer n > 1. Let g(x) € Fy[x] divide the polynomial " — 1. Assume
the degree of g(x) is n — k for some 0 < k < n. Consider the set of polynomials

P, = {g(a:) -a(z) (mod (z" — 1)) ‘ a(x) € Fofz] with deg(a(x)) < k}

Every code polynomial f(x) € Py can be written in the form
flz)=ap+ax+---+ a1z L,

Then the set of all {ag,ay,...,an_1} coming from f(x) € P, form a cyclic [n, k] code.

Remark Note that the difference between Theorem (1) and the CLAIM on the previous

page is that we only need polynomials a(z) with deg(a(z)) < k. In the CLAIM we had
deg(a(x)) < k.

Proof of Theorem (1): Let C denote the code generated in the above theorem. First
of all every codeword in C' is associated to a code polynomial of the form g(z) - a(x) where
a(r) = ag + a1z + - - a1 € Fy[z] is a polynomial of degree < k. It follows that the sum
of any two codewords is again a codeword since the sum of any two polynomials of degree < k
must again be a polynomial of degree < k.

It remains to prove that the code C is cyclic. Let f(z) = a9+ a1z + -+ + ap_12"' € P,.
Then we may write

r- f(x) = apr + a12® + -+ Qp_ox™ " 4 ap_ 12"
=ap1+ar+ax®+-+a, 2" +a, (x" + 1)
= h(z) + an_1 (=" +1).

Since both x - f(z) and 2" + 1 are divisible by g(z) it follows that h(x) must also be divisible
by g(x). Hence h(x) (which represents the cyclic right shift of f(x)) must also be a code
polynomial in P,, and the code generated by g(x) is a cyclic code. O
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We shall next prove that every cyclic code can be constructed (as in Theorem (1)) from a
generating polynomial g(z) which divides 2" — 1.

Theorem (2): Let C be a cyclic code. Then there exists a uniquely determined code polynomial
g(x) of minimal degree in C which has the following properties.

(i) g(x) is unique.

(ii) g(x) divides ™ — 1.

(iii) The code C' can be constructed using g(x) as in Theorem (1).
The polynomial g(x) is called the generator polynomial for the code C.

Proof of Theorem (2):

(i) Assume there are two distinct code polynomials gi(x), g2(x) of minimal degree in C.
Then ¢;(z) — go(x) will have a smaller degree than g;(x) or go(z). This is a contradiction so
the polynomial g(z) of minimal degree must be unique.

(ii) Next, assume g(z) does not divide 2™ — 1. Then

2" —1 = g(x)B(x) +r(z), (5(1:), r(z) € fz[:c]),

where r(x) is the remainder polynomial which must have degree smaller than g(x). This implies
r(x) is also a code polynomial of smaller degree than g(z) which is a contradiction.

(iii) Once we have found g(z) it follows from (i), (ii), that we may construct the code C' as
in Theorem (1). O

HOW TO FIND ALL [7,k] CYCLIC CODES

We first factor 2" — 1= (z —1)- (z* + z + 1) - (2® + 2* + 1). Since we are only considering
binary codes (where +1 is the same as -1), we can rewrite the factorization as 1 + 27 =
(1+z) - (14+z+a*) - (14+2*+23). As there are 3 irrededucible factors there are 8 cyclic codes
(including 0 and F7) with the following generaor polynomials:

(1) g(z) =1, C =T = [7,7] code

(2) g(x) =1+ C = [7,6] code

(3) g(m):1+x+x C = [7,4] code

(4) g(x) =1+ 2 + 2%, C = [7,4] code

(5) g(z) = (1 +2)(1+a+2%) =14+2° + 2° + 2%, C = 1[7,3] code

(6) g(x) = (1+ )1 +2° +2°) =1+ 2+ 2% + 2%, C = [7,3] code

(7) g(x):(1+x+x Y1+2°+2%) =1+z+2°+2° + 2" +2° + 2%, C = [7,1] code
(8) g(z) =2+ 1,  C = {0000000} = [7,0] code.



