Variation of the Swan conductor of an Fy-sheaf on
a rigid disc

Amadou Bah

Paris-Saclay & IHES

December 18, 2020



" < p

t — 5w(\ﬂ§)(‘*')
Cmdvutfu\ W'I',“'tl 'Hl(— C‘m:{l‘(.\{';m
-H,‘MJ 0{ ALb“'SA;.*. .




W“eop
t— Sw(fm‘*’)
Constowched wyith the ru..:{u‘:.{'im

Litkebohmet :
Vmiatinm o{ the  dis timim ant
o ctovn o{ D

H'""A .{ Abbee-Saite .



13(1" c D
t— Sw(fm‘*')
Constructed ayith the rm:{l‘(.‘{»iq

Litkebohamat :
Vmiatinm q( the  dis timio ant

o cova n{ 'D . ‘Hnm’] ,{ Abbet-Saite .



"“Yeo
t— Sw(\ﬂ'g(")
Constoucteid wyith the n..:{.'(.f:..

Litkeboohmat :
Vmiatim .{ the  dis timivant

D-
o o covan -{ -H,,‘,.,'1 .{ Abbet-Saits .

K. ato -
ﬂ'lmi{iu"‘im ‘HA‘:J o_(

’(wa- A;MMimq‘ valualism

e

f™Mq$.



W“eop

Ers sw(Fio®)
Constenced ayith the rmi{n‘u{'im
‘Hnm'] v{ Abbed-Satte .

L.',erlooh mat:
Vmiatim a( the  dis vimior amt
o cova a{ D-

" Kmaﬂﬂ,’ ‘)Q H. K

K. Kato
ﬂ'lmu{ ication 'Ht\u- o_(
’cwa Aww‘lel v«lm.hm

mq5.



13(1" c D

Listkebohmint :
Vmiatin a{ the  dis imivant
o covar a{ D.

t— Sw(fmt‘*')
Constructed Wi*l\ ﬂu fm:{l'tgﬁm
‘Hnm,] o{ Abbet-Saite .

" Kmml-n’ ‘0'3 H. Ky

glmi{.‘u'km ‘H;M:J a{
{Wl- Aw%imql Vqlmn“ln

"q5.



Notation

|
We let

e K be a discrete valuation field



Notation

|
We let

e K be a discrete valuation field

e Oy its valuation ring, henselian



Notation

|
We let

e K be a discrete valuation field
e Oy its valuation ring, henselian

e L the residue field of characteristic p > 0



Notation

|
We let

e K be a discrete valuation field
e Oy its valuation ring, henselian
e L the residue field of characteristic p > 0

e 7 a uniformizer



Notation

We let
e K be a discrete valuation field
e Oy its valuation ring, henselian
e L the residue field of characteristic p > 0
e 7 a uniformizer

K a separable closure, with residue field &



Notation

|
We let

e K be a discrete valuation field

Og its valuation ring, henselian
e L the residue field of characteristic p > 0

7 a uniformizer

K a separable closure, with residue field &
Gk = Gal(K/K)



Notation

|
We let

e K be a discrete valuation field

Og its valuation ring, henselian

e L the residue field of characteristic p > 0

7 a uniformizer

K a separable closure, with residue field &
Gk = Gal(K/K)

e v: K" — Q the valuation map normalized by v(7) = 1.
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Logarithmic ramification filtration

m When k is perfect, we have the classical ramification theory.
m For general k, Abbes and Saito (~ 2000) defined the
logarithmic ramification filtration (G 1., )reqs, of Gk . For
re QZO, put
GTK—’:log = U5>7’G?{,log'

[ G(}(Jog = I the inertia subgroup of Gk and
G(}gflo = Pg C Ik the wild inertia subgroup.

m If K’fK is a finite extension, then G%, ., C G .- It is an
equality when K'/K is tame.

m When £ is perfect, (G 1,4)reqs, coincide with the classical
upper ramification filtration.

m Graded quotient

Gr{ogGK = }n(,log/G;(J,rlog (7" > 0)

is abelian and killed by p.

\log
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Theorem (Kato, Abbes-Saito, Saito)

Assume that k is of finite type over a perfect sub-field ky. For
every r > 0, there is an injective homomorphism, the refined Swan
conductor

rsw : Hom(Gry,, Gk, Fp) — HomE(m%/m’%, Q1 (log) @y k).

For r € Q, m (resp. m’T) is the set of elements z of K satisfying

v(z) > (resp. v(z) > 7f§ The k-vector space of logarithmic
differential 1-forms is

0 (log) = (1, © (k©z KX))/(da —a®a,a € OF).
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The Swan conductor

Let A be a finite field of char. £ # p, L C K a finite Galois ext. of
K of group G and p : G — Auty (M) a finite dim. cont. rep.
M has a unique slope decomposition into G i-stable sub-mod.

M = @ M)

r€Q>0
M(O) — MPK, (M(T))G%,log — 0 and (M(T))G’,I‘é:log — M(r) (r > 0) i

Definition

The (logarithmic) Swan conductor of M is

swa(M) = Z 7 dimy M),

r€Q>0

swg(M)=0< MPK = M.
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The characteristic cycle

Let ¢ : F, = A be a nontrivial character. For r > 0, M £0
has a central character decomposition

M = @ M>(<T)
X

indexed by a finite number of characters x : Grj,,Gx — A*. Each

x factors as Grj,,Gk X F, Py A

Definition

The Characteristic cycle of M is

CCy () = @ @Masw() ()™M € (O (log)@ik)*"

reQ>0 x

where m = dimy M/M©).



Theorem (H. Hu, 2015)

If L/K is of type (1l), i.e. Or/Ok is monogenic with purely
inseparable residue extension, then

CCy (M) € ()™
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m Assume that K is complete and k is algebraically closed.

m Let D= {x € K | v(x) > 0} be the closed rigid unit disc and
F a lisse sheaf of A-modules on D. By de Jong,

F«—|[f:X—=D + A—rep. pr of G = Aut(X/D)].
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We consider the Cartesian diagram (¢ € Qx>0)

(®)

gt —— X)) < X0 X
A
p —— oW <. DO —— D,

DY = {z € K | v(z) > t}, D) = Spf(0°(D))), Xif) = Spt(O°(X}Y))

The group G acts transitively on {ﬁ(t)}. The stabilizer G- is the
Galois group of a finite extension of type (Il) of a discrete valuation
field with imperfect residue field.

PF > Py Gam — AUtA(Ma(t))-

w SWGau)(Ma(”) and  CCy(Myw).
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Main theorem

Theorem

The function sw(F,-) : Q>0 — Q, t— SWG_, (Mﬁ(”) is

. . q .
continuous and piecewise linear, with finitely many slopes which are
all integers. Its right derivative is the locally constant function

@s(F,) 1 £ = = ordg (CCy (Myo)) + dima (Mo /ML),

where Mﬁ(g)) is the tame part of Ma(t) and ordﬁu) is the extension

to Q! ) of the normalized discrete valuation on the residue field
K

kP, which is the field of fraction of Opi0) 500
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REMEINS

(1) @s(F,t) is the dimension of the space of nearby cycles
Wo(F|pw) (Deligne-Kato formula).

(2) The function sw(F, ) should be convex.

(3) The theorem should also hold when F has "horizontal
ramification".

(4) Analogous result by Ramero. Baldassarri, Pulita,
Poineau-Pulita, Kedlaya proved an analogue for p-adic
differential equations.
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8(1
= 20 = Romxiy ooy = 11170 (0 € z0)



The discriminant of a rigid morphism

m X/K smooth affinoid space and f : X — D finite flat, étale
over an admissible open subset of D containing 0.

8
u af( ) | OO(X t))/OO(D(t) |Sup |7T| ® (t S QZO)

m Weierstrass preparation theorem: an ivertible function on

Alp.p') ={z € K| p=>wv(x) > p'} (p,p' € Q) can be
written in the form

£ (1 +n(€), with h(&)= Y h,

i€Z—{0}

where ¢ € K*, d € Z (the order of the function) and h such
that |h(&)|sup < 1.



m When X = A(r/d,r'/d) (r > 7' > 0), and
fA(r/d,r"/d) — A(r,r") C D finite étale of order d,
Liitkebohmert computes OJ‘%“ explicitly and observes that it is
affine and is
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where o is the order of f.



m When X = A(r/d,r'/d) (r > 7' > 0), and
fA(r/d,r"/d) — A(r,r") C D finite étale of order d,
Liitkebohmert computes OJ‘%“ explicitly and observes that it is
affine and is

d (6%
ﬁaf (t+)=0c—d+1, tel' r[NQ,

where o is the order of f.
m More generally, by the semi-stable reduction theorem, oy is
continuous and piecewise linear with finitely many slopes

(integers) given by
d .. .
aaf (t+) = 0i — d + 67(i),

for some partition 7,11 =0 <7, < --- <19 = +00 et
t e [Ti, Tz‘_l[.
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Ramification of Z?-valuation rings

GO s ) —— %;?,

[

o® 0

) s — Dy

| O,D(t) 5" = AcCV;C Ap(t) ~ V;h.
K/?
m K. Kato: ramification theory for monogenic extensions of V.

[ ] O%(t) 1) = BcCcW; C qu ~ Vth N Wth-
K/ax

= Ramification filtration of Gal(L?/K}') C G indexed by the value
group of V}* (isomorphic to Z2).

ag(t): G = Aut(X/D) > Q and sW[(t):G — Z.



The link

Assume Kx ~ Ox. Then, we have the identity
97 (t) = (a§(t), ra), (14.1)

where (-, -) is the usual pairing for class functions and r¢ is the
character of the regular representation of G.



The link

Assume Kx ~ Ox. Then, we have the identity
97 (t) = (a% (), ra), (15.1)

where (-, -) is the usual pairing for class functions and r¢ is the
character of the regular representation of G. The right derivative of
8]6} att € [’r‘i,’l”i_l[ is

%afx(m — oy — d+ 85(0) = (W(0), rc). (15.2)



m 14.1 is an incarnation of the classical equality of the valuation
of the different with the value of the Artin character at 1.

m 14.2 is deduced from a formula a la Raynaud for the dimension
of some nearby cycle involving o and 6¢(3).



A nearby cycles formula



J K’
ﬁ(t) D (t)

~ Ogm 50 = AW — B — O —-

K J

K7



J O 5w =AY — Bj(»t) = 0,0 -0

K K7
7 — o),
. Pj(t) = set of height 1 prime ideals of BJ(-t)



—(t t
R 3
5 o)

. Pj(t) = set of height 1 prime ideals of BJ(-t)
° B](ts) B](.t) /mKBj(.t) is reduced
B% normalization of B(-%

61" = dimy( ]O/B(t))

O —-
%K” J



—(t t
R 3
|~ Ooygn =49 =B =04 0.
0 00,

. Pj(t) = set of height 1 prime ideals of BJ(-t)
° B(.f) B](.t)/mKBj(.t) is reduced

B% normalization of B(-%
. t
61" = dimy( ]O/B())
t t _
o AW =A0 g0, K' — B% = AV @0, K.
Bilinear trace map B; g x Bj g1 — Ag?, well-defined
t)

~+ K'-linear determinant homomorphism Tj(

d\¥ = dim g (Coker(T\"))



For eachi=1,...,n and each t €]r;,r;—1[NQ, we have

S (d? =25 + | Py|) = 01 + 65(5). (16.1)
j



For eachi=1,...,n and each t €]r;,r;—1[NQ, we have

S (@ =26 + P]) = 0: + 5 (i) (18.1)

Remark

| Q-

Imagine Y(¥) = Z{g?, were a scheme over S’ = Spec(Ok). Then,
Kato proved that

26" — 1P| 41 = dimp HL (YY), x 7, A). (19.1)

@)
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Sketch of proof

| |
XM x® M, xl)
J{ O J,f(t) ~ J( 0 J{f(t)
DM s p® Dy — DY
(1) 85(i)
X[t] = H D[t/dij] ~ f[lt(]/ — H @[t/dij]
j=1 =
Y = ]_[ o) /Dl Dl Spf(O).

is a formal relative curve, normal, proper (flat); smooth rigid
generic fiber @gf,) and Sing(i}jg)) C %S) %[t] f(t (O( ).
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] @ proper flat formal curve = algebraizable (Grothendieck) :
there exists Yz((') normal, proper flat over S’ = Spec(Ok),

with smooth generic fiber, such that Y(t,) ~ @gt{),
m Approximation of f®): rigid Runge theorem (Raynaud)
= 3 ¢ [((,) — Py, s.t. gf?,) is close enough to f®)
Dl[? that df® and dgf?,) have the same zeros with same orders
of vanishing on DZ[;].
Then,
29(Y,") = 2lmo(Y, )| = deg(div(dgyy)).

n  deg(div(dgl))) = S, dY — oy — 264(i).









= 2mo(¥,)-200%") = x(%", 8) = x(V Uy, (4)

N

vi05/(8) = N0 —Zl dimy Hgt(Y(%)_) 7, )
]:

dimy H (V) x 7, A) = 265" = |P{'[+1  (Kato).
J



= 2mo(¥,)-200%") = x(%", 8) = x(V Uy, (4)

N

vi05/(8) = N0 —Zl dimy Hgt(Y(%)_) 7, )
]:

dimy Hélt(Y(g;) xm,A) =26 — [PY]41 (Kato).

Put together = QED.



Theorem
Let x € RA(G).Then, the map

W) Qo= Q te @@xe  (200)

is continuous and piecewise linear, with finitely many slopes which
are all integers. Its right derivative at t € Q> is

=207 0 t4) = (574 (1), X (20.2)



Conclusion

Let M be a A-valued representation of G. Then, we have the
identities
(@}, xm) = swg(M), (21.1)

(5w}, xar) = — ordy (CCy(M)) + dimy (M/M©).  (21.2)



Conclusion

Let M be a A-valued representation of G. Then, we have the
identities
(@}, xm) = swg(M), (22.1)

(5w}, xar) = —ordy (CCy(M)) + dimy (M/M©).  (22.2)

Deduced from a comparison theorem of H. Hu:

CCy(M) = KCCy1y(xnm)-



Thank you !



