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» H: the quaternion algebra over R

> v:H* — Ryg

> tr: H— R

» ) : R — C* nontrivial additive character

> N = {u— (1 ’{) € GLQ(H)}.

> Y (u) = P(tr(x))



» 7 an irreducible 5-dimensional representation of H*

» the normalized parabolic induction
™ X VT

has a unique irreducible subrepresentation (7).

Question
dim Hompy/(6(7), ¥n) =?
A 25
B 10
c1
DO



Uniqueness of Whittaker models, |

F: non-Archimedean local field

¥ : F — C*, a nontrivial additive character
GL, (more generally, quasi-split groups)
Write GL,, for GL,(F)

v =|det|: GL, — C*
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1
A generic character ¥, : N, — C* is of the form

Vo(u) = Y(u12 + 3 + -+ + Up—1,n)-



Uniqueness of Whittaker models, |l

Theorem (Uniqueness of Whittaker models)
For m € Irr(GL,),

Homy, (7, ¢¥n) = Homgy, (7, indﬁf”wn)
is of dimension < 1. Equivalently,

dim Jwan(TF) < 1.

When the dimension is 1, we say that 7 is generic (or ¥y-generic)
or m has a Whittaker model.



Uniqueness of Whittaker models, |lI

Applications

» Such properties play important roles in the construction of
many global integrals. (Use unique models to obtain Eulerian
integrals.)

» Can be used to study the analytic properties of certain
Langlands L-functions.

» For example, the Rankin-Selberg integrals and
Langlands-Shahidi method.



Non-generic representations

When 7 does not have any Whittaker model, we say that 7 is
non-generic.

Degenerate models

Non-generic representations admit unique models of degenerate
type.



Derivatives, |

» Mirabolic subgroup

_ g Vv B n—1
P,,_{<O 1>.geGL,,1,veF }
U. — /nfl vy c Fn—l

" o 1)" )

> P,, = GLn,;l X U,,

> the restriction of ¢, gives a character of U,



Derivatives, Il

Several functors
» V(1) = Jy,(m) =7/{(m(u)v — v :u € Uyv € 7). This gives

V™ : Rep(Pn) — Rep(GLj_1).

> O (7) = Ju, (7)) = 7/ {(m(u)v — Pp(u)v : u € Up, v Em)
and this gives

™ : Rep(P) — Rep(Pa_1):
P k-th derivative
7 =¥ o (7)< D(alp,)
This gives a functor

Rep(GL,) — Rep(GL;—k).



Derivatives, |l

» The n-th derivative is the functor Jy,, y,-

> Let kg be the maximal k such that 7(K) £ 0. Then 7(k) s
called the highest derivative of 7. Notation: kg = ht(r).

> If 7 is generic, then the highest derivative of 7 is the n-th
derivative.



Derivatives, 1V

Example (Speh representations)

If 7 € Irr(GL,,) is discrete series, then the normalized parabolic

induction

T><T1/><-~~><7'1/£_1

has a unique irreducible subrepresentation (7, ¢) € Irr(GLy).
In particular, if 7: GL; — C* is a character, then

O(r,0) = T o det.

Generally
If 7 € Irr(GL,) is generic and unitary, then 7 =73 X - -+ X 7p, for
T1,+ -+, Tm essentially discrete series. Define

O(r,0) = 0(11,£) X -+ X O(Tm, £).



Derivatives, V

> the highest derivative of (7, ¢) is 6(7,¢)(" " =" §(r,0 —1).
More generally,

Theorem (Zelevinsky)

If 7 is irreducible, then its highest derivative (k) is also irreducible.



Derivatives, VI

Given 7 € Irr(GL,), we can take highest derivatives repeatedly:

k]. — ht(ﬂ-), T = W(kl)’

ko = ht(m1), Ty = 7r£k2)

km = ht(Tm-1), Tm =T

This gives a partition (kikz - - km) of n.

» 7., is of the form Jwa(klmkm)(w) for some degenerate
character ¥, ...k

» By the Frobenius reciprocity, this gives a degenerate model for
.

» By the theorem of Zelevinsky, 7, is an irreducible
representation of GLg, which must be one-dimensional.



Nilpotent orbits, |

Summary:

» by computing derivatives, one can find a partition
(kika - - km) and a unique model for 7.

» (kika--- km) is the “maximal” partition (or nilpotent orbit)
that support nonzero models for 7.



Nilpotent orbits, |l

More generally, given a reductive group G, to every coadjoint
nilpotent orbit @ C g* and every m € Rep(G), we associate a
certain generalized Whittaker quotient mp.
> Let WO(7) denote the set of all nipotent orbit O with 7o # 0
» WS(7) denote the set of maximal orbits in WO(7) with
respect to the closure ordering.

Example
» Nilpotent orbits of GL, are classified by the partitions of n via
the Jordan canonical decomposition.

> WS(0(r.0)) = {(n)}.



Nilpotent orbits, Il

Character expansion

One can define the character x, of 7 as a distribution and we have
a charater expansion

Xn = Z COﬁO-
o
where the sum is over the set of nilpotent orbits.

Theorem (Moeglin-Waldspurger, Varma)

The set WS(7) is the same as the maximal elements such that

co 75 0.
Moreover, for O € WS(7), dimmp = co.



Nilpotent orbits, IV

Example
For 0(7,£), ¢(ry =1 and

X6(r,t) = Pynty + other terms.

Archimedean case
» There are irreducible representations without unique models.

» The Archimedean version of Moeglin-Waldspurger's theorem
has not been proven.



Division algebras, |

» D: central division algebra over F of dimension d?
» Consider GL, p

» Nilpotent orbits of GL, p are classified by partitions of n.
Notation: (ny---nm)p.

Unique models?

Unfortunately, uniqueness of models fails in general.



Division algebras, Il

Question
Find representations of GL, p with unique models.

Example (Case n = 1)

There is no non-trivial nilpotent elements in D* but there are
irreducible finite-dimensional representations of D* of dimension
greater than 1.

Only one-dimensional representations have unique models.



Jacquet-Langlands correspondence, |

How to construct representations of GL, p?
» For g’ € GL, p, one can define characteristic polynomial
> g€ GLnd- g/ € G’Ln,D

» Define: g <» g’ if and only if g and g’ are both regular
semi-simple and have the same characteristic polynomials.

> O =(n{---nd)in gl*, corresponds to O' = (ny---ny)p in
g[:,D

» D,: discrete series of GL,

» D;: discrete series of GL, p



Jacquet-Langlands correspondence, Il

Theorem (Deligne-Kazhdan-Vignéras)

There is a unique bijection C : D,y — D), such that for all
m € D,y we have

Xx(8) = (1) "xc(m)(g")
for all g € GLpg and g’ € GL,, p such that g <> g’.

Theorem (Badulescu, Badulescu-Renard)

If 7w is a ‘d-compatible’ irreducible unitary representation of GL,q,
then there exists a unique irreducible unitary representation 7’ of
GL,,p and a unique sign e, € {—1,1} such that

Xﬂ(g) = Ex Xn' (g/)

for all g’ <» g. Notation: 7’ = LJ(x).



Jacquet-Langlands correspondence, IlI

We will take the later version as it is compatible with a global
correspondence.

Non-Archimedean Strategy

» (Prasad’s result) character relation implies identities
co = excor, where O C gl corresponds to O C gl}, p.

» |dea: find representations of GL,4 with suitable size such that
O € WS() corresponds to O € WS(LJ(7)).

» (Important!) find representations such that e, =1



Jacquet-Langlands correspondence, IV

Definition
For a positive integer £ and an irreducible generic unitary 7, define

vvYyyvyy

Op (T, 0) = LI(O(r, db)).

0(r, d?) is d-compatible.

o(rde) = 1

WS(6(r, dt)) = (n)

one can check that WS(6p(7,¢)) = (n*)p with unique models.

If 7 is one-dimensional, then 6(7, d¢) = 7 o det and
Op(7,£) = 7 o Nm.



Jacquet-Langlands correspondence, V

» D: unique quaternion algebra over F

» 7 Steinberg representation of GLs.

» 1gr,, 1px: trivial representations
Then

» C(m) = 1px, but

Xx(8) = — X1, (g') forall g <+ g'.

> LJ(lGLg) = 1D>< and

Xiaw,(8) = X1, (g') for all g < &'.



Jacquet-Langlands correspondence, VI

Archimedean case
The definition of (7, ¢) works. Similar results are expected but a
different approach is required.

Global definition
Given a cuspidal representation 7 = ®/,7, of GL,(A), one can
define

HD(Tv 6) = ®</9DV(TV7 6)7

and this is a discrete series of GL,¢ p(A).

One can ask similar questions for global representations (in terms
of degenerate Whittaker coefficients).

Note: for central simple algebra D, = M,, (A,),

GDV(TV, 5) = QAV(TV, rvﬁ).



Archimedean case, |

Can be reduced to the case T discrete series.
Let 7 € D(GLy(R)) and let 7/ = C71(7) € Irr(H*). Assume that
dim7’ > 1.

The representation
Then 6y (T, £) is the unique irreducible subrepresentation of the
parabolic induction

=072 o 11,3=0/2 o 1,(E=1)/2
where v : H* — R+ is the reduced norm.

Then, WS(0w(7,£)) = (2°)m with unique model.



Archimedean case, I

The first known result was the case ¢ = 1.

Thecase / =1
The representation Oy(7,1) is the unique irreducible
subrepresentation of 7/v1/2 x 7/11/2 and

dim HomN(z)H(HH(T, 1)71/1(2)191) =1

where

Niay, = {u — (1 T)} and Yoy, (1) = B(tr(x)).



Archimedean case, Il

Hang Xue's idea
The construction
T+ Op(7, 1)

can be realized as the theta correspondence from SL, — SO(5,1).
Gomez-Zhu's result

There is an isomorphism between the Whittaker model for SL, and
the (2)g-model of (7, 1).

How about the case of general ¢? (This can be proved using a
global method.)



Kirillov models, |

Statement
For a generic representation 7w of GL,

indfy I, (7) X U < 7|,

Representation theory of P,
The group P, is the semi-direct GL,_1 x U,. The irreducible
representations of P, is classified by
» A orbit GL,_1 - X of U,, under the action of GL,_1 (only two
orbits)
» An irreducible representation 7x of the stabilizer Mx of ¥x in
GL,_1.

The construction is given by indll\ifxxun(TX X Px).



Kirillov models, |l

Observe that
> representations coming from different orbits are not
isomorphic.
P> As a result, the Kirillov model captures the generic part of of
7|p,
» the Kirillov model is a supercuspidal representation.
For a simple division algebra D, one can introduce
Pnp,NnD,%np, Unp etc. The theory of Kirillov models extends
to representations of GL,, p.



The global case

The general case can be reduced to case { =1 by induction in
stages.

the case / =1
Show that, for some ¢ € 0p(7,1),

W, (g) = (ug)n,p(u) du # 0.

/Nn,D(F)\Nn,D(A)

In other words, Op(7,1) is “D-generic”.
(We use ideas of Kazhdan-Patterson 1984.)

Note

If D = F, the argument below shows the following:

Let 7 be an automorphic representation of GL,(A). If 7, is a
generic representation for a non-Archimedean place vg, then 7 is
globally generic.



Fix a non-Archimedean place vy, we already know that
0p(7,1),, is “Dy,-generic”, and therefore has a Kirillov model
Ky, = 0p(7,1),. Itis “Dy,-cuspidal”.

Consider the P, p(A)-representation

T=K,® (®/V;£V00D(7—7 1),) C ®<,HD(7', 1),.

This is a cuspidal representation.

Fourier expansion. For ¢ € T and g € P, p(A)
_ W Y
(g) = > o )e)-
YENs—1,0(F)\GLp—1,0(F)

1P, (F)\Pyo(a) 7 0 since Zy p Py p(F)\Zn,p0Pn.n(A) is dense
in GL,,,D(F)\GL,LD(A).

One of W, <<7 1) g) £0.



Archimedean case, IV

We are now back to the Archimedean case.
> 7o € D(GL2(R))

» Embed 74, as the Archimedean component of
7 € Cusp(GL2(A)). (May assume F = Q).

» Then Op_ (7o, ) is a locally component of 6p(7,1) for a
suitable D. (So D, = My(H)).



Archimedean case, V

» For decomposable ¢, we have a decomposition

Wi(1) = Aoo(Poo) * Min(©fin)-

» Assume that the dimension of models for 0p__(7oo, £) is
greater than 1.

» The Kirillov model: there exists o, such that dimos, > 1,
Koo i= mdN Ooo X Yn.p = Op,(Too, £).
» We choose a slice of the Kirillov model such that A, vanishes:
Coo 1= ind® 0 ¢
Koo :=in /\/men,D — Doo(Toou )
» Consider the P, p(A)-representation
HD(T, g)fin ® laoo

Then W,(1) = 0 for ¢ in this subspace. Contradiction.



Application

» In the construction of the twisted doubling integrals (joint
with Friedberg, Ginzburg and Kaplan), it is important to use
the generalized Speh representations 6(r, ¢) from a cuspidal
representation of GL,(A):

» This is a generalization of the doubling integrals of
Piatetski-Shapiro and Rallis.

» This gives a family of Rankin-Selberg integrals for the tensor
product L-functions for a classical group and a general linear
group.

» To show that the global integral is Eulerian, we use the unique
degenerate model of 0(t, ¢).

To extend the twisted doubling integrals to the case of

quaternionic unitary groups, representations of GL, p with unique
models are required. (Analogues of the Speh representations.)



