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I H: the quaternion algebra over R
I ν : H× → R>0

I tr : H→ R
I ψ : R→ C× nontrivial additive character

I N =

{
u =

(
1 x

1

)
∈ GL2(H)

}
.

I ψN(u) = ψ(tr(x))



I π: an irreducible 5-dimensional representation of H×

I the normalized parabolic induction

π × νπ

has a unique irreducible subrepresentation θ(π).

Question
dimHomN(θ(π), ψN) =?

A 25

B 10

C 1

D 0



Uniqueness of Whittaker models, I

I F : non-Archimedean local field

I ψ : F → C×, a nontrivial additive character

I GLn (more generally, quasi-split groups)

I Write GLn for GLn(F )

I ν = | det | : GLn → C×

I

Nn =


u =


1 u12 ∗ · · · ∗

1 u23 · · · ∗
1 · · · ∗

...
1

 ∈ GLn


.

A generic character ψn : Nn → C× is of the form

ψn(u) = ψ(u12 + u23 + · · ·+ un−1,n).



Uniqueness of Whittaker models, II

Theorem (Uniqueness of Whittaker models)

For π ∈ Irr(GLn),

HomNn (π, ψn) = HomGLn (π, indGLn
Nn

ψn)

is of dimension ≤ 1. Equivalently,

dim JNn,ψn (π) ≤ 1.

When the dimension is 1, we say that π is generic (or ψN -generic)
or π has a Whittaker model.



Uniqueness of Whittaker models, III

Applications

I Such properties play important roles in the construction of
many global integrals. (Use unique models to obtain Eulerian
integrals.)

I Can be used to study the analytic properties of certain
Langlands L-functions.

I For example, the Rankin-Selberg integrals and
Langlands-Shahidi method.



Non-generic representations

When π does not have any Whittaker model, we say that π is
non-generic.

Degenerate models

Non-generic representations admit unique models of degenerate
type.



Derivatives, I

I Mirabolic subgroup

Pn =

{(
g v
0 1

)
: g ∈ GLn−1, v ∈ F n−1

}
.

I

Un =

{(
In−1 v

0 1

)
: v ∈ F n−1

}
.

I Pn = GLn−1 n Un

I the restriction of ψn gives a character of Un



Derivatives, II

Several functors
I Ψ−(π) = JUn (π) = π/〈π(u)v − v : u ∈ Un, v ∈ π〉. This gives

Ψ− : Rep(Pn)→ Rep(GLn−1).

I Φ−(π) = JUn,ψn (π) = π/〈π(u)v − ψn(u)v : u ∈ Un, v ∈ π〉
and this gives

Φ− : Rep(Pn)→ Rep(Pn−1).

I k-th derivative

π(k) = Ψ− ◦ (Φ−)(k−1)(π|Pn ).

This gives a functor

Rep(GLn)→ Rep(GLn−k ).



Derivatives, III

I The n-th derivative is the functor JNn,ψn .

I Let k0 be the maximal k such that π(k) 6= 0. Then π(k0) is
called the highest derivative of π. Notation: k0 = ht(π).

I If π is generic, then the highest derivative of π is the n-th
derivative.



Derivatives, IV

Example (Speh representations)

If τ ∈ Irr(GLn) is discrete series, then the normalized parabolic
induction

τ × τν × · · · × τν`−1

has a unique irreducible subrepresentation θ(τ, `) ∈ Irr(GLn`).

In particular, if τ : GL1 → C× is a character, then

θ(τ, `) = τ ◦ det .

Generally

If τ ∈ Irr(GLn) is generic and unitary, then τ = τ1 × · · · × τm for
τ1, · · · , τm essentially discrete series. Define

θ(τ, `) = θ(τ1, `)× · · · × θ(τm, `).



Derivatives, V

I the highest derivative of θ(τ, `) is θ(τ, `)(n)“ =′′ θ(τ, `− 1).

More generally,

Theorem (Zelevinsky)

If π is irreducible, then its highest derivative π(k) is also irreducible.



Derivatives, VI

Given π ∈ Irr(GLn), we can take highest derivatives repeatedly:

k1 = ht(π), π1 = π(k1),

k2 = ht(π1), π2 = π
(k2)
1 ,

· · ·

km = ht(πm−1), πm = π
(km)
m−1.

This gives a partition (k1k2 · · · km) of n.

I πm is of the form JNn,ψ(k1···km)
(π) for some degenerate

character ψ(k1···km).

I By the Frobenius reciprocity, this gives a degenerate model for
π.

I By the theorem of Zelevinsky, πm is an irreducible
representation of GL0, which must be one-dimensional.



Nilpotent orbits, I

Summary:

I by computing derivatives, one can find a partition
(k1k2 · · · km) and a unique model for π.

I (k1k2 · · · km) is the “maximal” partition (or nilpotent orbit)
that support nonzero models for π.



Nilpotent orbits, II

More generally, given a reductive group G , to every coadjoint
nilpotent orbit O ⊂ g∗ and every π ∈ Rep(G ), we associate a
certain generalized Whittaker quotient πO.

I Let WO(π) denote the set of all nipotent orbit O with πO 6= 0

I WS(π) denote the set of maximal orbits in WO(π) with
respect to the closure ordering.

Example

I Nilpotent orbits of GLn are classified by the partitions of n via
the Jordan canonical decomposition.

I WS(θ(τ, `)) = {(n`)}.



Nilpotent orbits, III

Character expansion

One can define the character χπ of π as a distribution and we have
a charater expansion

χπ =
∑
O

cOµ̂O.

where the sum is over the set of nilpotent orbits.

Theorem (Mœglin-Waldspurger, Varma)

The set WS(π) is the same as the maximal elements such that
cO 6= 0.
Moreover, for O ∈WS(π), dimπO = cO.



Nilpotent orbits, IV

Example

For θ(τ, `), c(n`) = 1 and

χθ(τ,`) = µ̂(n`) + other terms.

Archimedean case
I There are irreducible representations without unique models.

I The Archimedean version of Mœglin-Waldspurger’s theorem
has not been proven.



Division algebras, I

I D: central division algebra over F of dimension d2

I Consider GLn,D

I Nilpotent orbits of GLn,D are classified by partitions of n.
Notation: (n1 · · · nm)D .

Unique models?

Unfortunately, uniqueness of models fails in general.



Division algebras, II

Question
Find representations of GLn,D with unique models.

Example (Case n = 1)

There is no non-trivial nilpotent elements in D× but there are
irreducible finite-dimensional representations of D× of dimension
greater than 1.
Only one-dimensional representations have unique models.



Jacquet-Langlands correspondence, I

How to construct representations of GLn,D?

I For g ′ ∈ GLn,D , one can define characteristic polynomial

I g ∈ GLnd , g ′ ∈ GLn,D

I Define: g ↔ g ′ if and only if g and g ′ are both regular
semi-simple and have the same characteristic polynomials.

I O = (nd
1 · · · nd

m) in gl∗nd corresponds to O′ = (n1 · · · nm)D in
gl∗n,D

I Dn: discrete series of GLn

I D′n: discrete series of GLn,D



Jacquet-Langlands correspondence, II

Theorem (Deligne-Kazhdan-Vignéras)

There is a unique bijection C : Dnd → D′n such that for all
π ∈ Dnd we have

χπ(g) = (−1)nd−nχC(π)(g
′)

for all g ∈ GLnd and g ′ ∈ GLn,D such that g ↔ g ′.

Theorem (Badulescu, Badulescu-Renard)

If π is a ‘d-compatible’ irreducible unitary representation of GLnd ,
then there exists a unique irreducible unitary representation π′ of
GLn,D and a unique sign επ ∈ {−1, 1} such that

χπ(g) = επχπ′(g
′)

for all g ′ ↔ g . Notation: π′ = LJ(π).



Jacquet-Langlands correspondence, III

We will take the later version as it is compatible with a global
correspondence.

Non-Archimedean Strategy

I (Prasad’s result) character relation implies identities
cO = επcO′ , where O ⊂ gl∗nd corresponds to O′ ⊂ gl∗n,D .

I Idea: find representations of GLnd with suitable size such that
O ∈WS(π) corresponds to O′ ∈WS(LJ(π)).

I (Important!) find representations such that επ = 1



Jacquet-Langlands correspondence, IV

Definition
For a positive integer ` and an irreducible generic unitary τ , define

θD(τ, `) = LJ(θ(τ, d`)).

I θ(τ, d`) is d-compatible.

I εθ(τ,d`) = 1

I WS(θ(τ, d`)) = (nd`)

I one can check that WS(θD(τ, `)) = (n`)D with unique models.

I If τ is one-dimensional, then θ(τ, d`) = τ ◦ det and
θD(τ, `) = τ ◦Nm.



Jacquet-Langlands correspondence, V

I D: unique quaternion algebra over F

I π: Steinberg representation of GL2.

I 1GL2 , 1D× : trivial representations

Then

I C(π) = 1D× , but

χπ(g) = −χ1D×
(g ′) for all g ↔ g ′.

I LJ(1GL2) = 1D× and

χ1GL2
(g) = χ1D×

(g ′) for all g ↔ g ′.



Jacquet-Langlands correspondence, VI

Archimedean case
The definition of θH(τ, `) works. Similar results are expected but a
different approach is required.

Global definition
Given a cuspidal representation τ = ⊗′vτv of GLn(A), one can
define

θD(τ, `) = ⊗′vθDv (τv , `),

and this is a discrete series of GLn`,D(A).

One can ask similar questions for global representations (in terms
of degenerate Whittaker coefficients).

Note: for central simple algebra Dv = Mrv (Av ),

θDv (τv , `) = θAv (τv , rv `).



Archimedean case, I

Can be reduced to the case τ discrete series.
Let τ ∈ D(GL2(R)) and let τ ′ = C−1(τ) ∈ Irr(H×). Assume that
dim τ ′ > 1.

The representation

Then θH(τ, `) is the unique irreducible subrepresentation of the
parabolic induction

τ ′ν(1−`)/2 × τ ′ν(3−`)/2 × · · · × τ ′ν(`−1)/2

where ν : H× → R>0 is the reduced norm.

Then, WS(θH(τ, `)) = (2`)H with unique model.



Archimedean case, II

The first known result was the case ` = 1.

The case ` = 1
The representation θH(τ, 1) is the unique irreducible
subrepresentation of τ ′ν−1/2 × τ ′ν1/2 and

dimHomN(2)H
(θH(τ, 1), ψ(2)H) = 1

where

N(2)H =

{
u =

(
1 x

1

)}
and ψ(2)H(u) = ψ(tr(x)).



Archimedean case, III

Hang Xue’s idea

The construction
τ 7→ θH(τ, 1)

can be realized as the theta correspondence from SL2 → SO(5, 1).

Gomez-Zhu’s result
There is an isomorphism between the Whittaker model for SL2 and
the (2)H-model of θH(τ, 1).

How about the case of general `? (This can be proved using a
global method.)



Kirillov models, I

Statement
For a generic representation π of GLn

indPn
Nn
JNn,ψn (π) n ψn ↪→ π|Pn .

Representation theory of Pn

The group Pn is the semi-direct GLn−1 n Un. The irreducible
representations of Pn is classified by

I A orbit GLn−1 · X of Ûn under the action of GLn−1 (only two
orbits)

I An irreducible representation τX of the stabilizer MX of ψX in
GLn−1.

The construction is given by indPn
MXnUn

(τX n ψX ).



Kirillov models, II

Observe that

I representations coming from different orbits are not
isomorphic.

I As a result, the Kirillov model captures the generic part of of
π|Pn

I the Kirillov model is a supercuspidal representation.

For a simple division algebra D, one can introduce
Pn,D ,Nn,D , ψn,D ,Un,D etc. The theory of Kirillov models extends
to representations of GLn,D .



The global case

The general case can be reduced to case ` = 1 by induction in
stages.

the case ` = 1
Show that, for some ϕ ∈ θD(τ, 1),

Wϕ(g) :=

∫
Nn,D(F )\Nn,D(A)

ϕ(ug)ψn,D(u) du 6= 0.

In other words, θD(τ, 1) is “D-generic”.

(We use ideas of Kazhdan-Patterson 1984.)

Note
If D = F , the argument below shows the following:
Let τ be an automorphic representation of GLn(A). If τv0 is a
generic representation for a non-Archimedean place v0, then τ is
globally generic.



I Fix a non-Archimedean place v0, we already know that
θD(τ, 1)v0 is “Dv0-generic”, and therefore has a Kirillov model
Kv0 ↪→ θD(τ, 1)v0 . It is “Dv0-cuspidal”.

I Consider the Pn,D(A)-representation

T := Kv0 ⊗ (⊗′v 6=v0θD(τ, 1)v ) ⊂ ⊗′vθD(τ, 1)v .

This is a cuspidal representation.

I Fourier expansion. For ϕ ∈ T and g ∈ Pn,D(A)

ϕ(g) =
∑

γ∈Nn−1,D(F )\GLn−1,D(F )

Wϕ

((
γ

1

)
g

)
.

I ϕ|Pn,D(F )\Pn,D(A) 6= 0 since Zn,DPn,D(F )\Zn,DPn,D(A) is dense
in GLn,D(F )\GLn,D(A).

I One of Wϕ

((
γ

1

)
g

)
6= 0.



Archimedean case, IV

We are now back to the Archimedean case.

I τ∞ ∈ D(GL2(R))

I Embed τ∞ as the Archimedean component of
τ ∈ Cusp(GL2(A)). (May assume F = Q).

I Then θD∞(τ∞, `) is a locally component of θD(τ, 1) for a
suitable D. (So D∞ = M`(H)).



Archimedean case, V
I For decomposable ϕ, we have a decomposition

Wϕ(1) = λ∞(ϕ∞) · λfin(ϕfin).

I Assume that the dimension of models for θD∞(τ∞, `) is
greater than 1.

I The Kirillov model: there exists σ∞ such that dimσ∞ > 1,

K∞ := ind
Pn,D

Nn,D
σ∞ n ψn,D ↪→ θD∞(τ∞, `).

I We choose a slice of the Kirillov model such that λ∞ vanishes:

K̃∞ := ind
Pn,D

Nn,D
ψn,D ↪→ θD∞(τ∞, `)

I Consider the Pn,D(A)-representation

θD(τ, `)fin ⊗ K̃∞.

Then Wϕ(1) = 0 for ϕ in this subspace. Contradiction.



Application

I In the construction of the twisted doubling integrals (joint
with Friedberg, Ginzburg and Kaplan), it is important to use
the generalized Speh representations θ(τ, `) from a cuspidal
representation of GLn(A):

I This is a generalization of the doubling integrals of
Piatetski-Shapiro and Rallis.

I This gives a family of Rankin-Selberg integrals for the tensor
product L-functions for a classical group and a general linear
group.

I To show that the global integral is Eulerian, we use the unique
degenerate model of θ(τ, `).

To extend the twisted doubling integrals to the case of
quaternionic unitary groups, representations of GLn,D with unique
models are required. (Analogues of the Speh representations.)


