Certain representations with unique models

Yuanqing Cai
Kyoto University

November 2020
New York

- \mathbb{H} : the quaternion algebra over \mathbb{R}
- $\nu: \mathbb{H}^{\times} \rightarrow \mathbb{R}_{>0}$
- tr: $\mathbb{H} \rightarrow \mathbb{R}$
- $\psi: \mathbb{R} \rightarrow \mathbb{C}^{\times}$nontrivial additive character
- $N=\left\{u=\left(\begin{array}{ll}1 & x \\ & 1\end{array}\right) \in \operatorname{GL}_{2}(\mathbb{H})\right\}$.
- $\psi_{N}(u)=\psi(\operatorname{tr}(x))$
- π : an irreducible 5-dimensional representation of \mathbb{H}^{\times}
- the normalized parabolic induction

$$
\pi \times \nu \pi
$$

has a unique irreducible subrepresentation $\theta(\pi)$.
Question
$\operatorname{dim} \operatorname{Hom}_{N}\left(\theta(\pi), \psi_{N}\right)=$?
A 25
B 10
C 1
D 0

Uniqueness of Whittaker models, I

- F: non-Archimedean local field
- $\psi: F \rightarrow \mathbb{C}^{\times}$, a nontrivial additive character
- GL_{n} (more generally, quasi-split groups)
- Write GL_{n} for $\mathrm{GL}_{n}(F)$
- $\nu=|\operatorname{det}|: \mathrm{GL}_{n} \rightarrow \mathbb{C}^{\times}$

$$
N_{n}=\left\{u=\left(\begin{array}{ccccc}
1 & u_{12} & * & \cdots & * \\
& 1 & u_{23} & \cdots & * \\
& & 1 & \cdots & * \\
& & & & \vdots \\
& & & & 1
\end{array}\right) \in \mathrm{GL}_{n}\right\}
$$

A generic character $\psi_{n}: N_{n} \rightarrow \mathbb{C}^{\times}$is of the form

$$
\psi_{n}(u)=\psi\left(u_{12}+u_{23}+\cdots+u_{n-1, n}\right) .
$$

Uniqueness of Whittaker models, II

Theorem (Uniqueness of Whittaker models)
For $\pi \in \operatorname{Irr}\left(\mathrm{GL}_{n}\right)$,

$$
\operatorname{Hom}_{N_{n}}\left(\pi, \psi_{n}\right)=\operatorname{Hom}_{\mathrm{GL}_{n}}\left(\pi, \operatorname{ind}_{N_{n}}^{\mathrm{GL}_{n}} \psi_{n}\right)
$$

is of dimension ≤ 1. Equivalently,

$$
\operatorname{dim} J_{N_{n}, \psi_{n}}(\pi) \leq 1
$$

When the dimension is 1 , we say that π is generic (or ψ_{N}-generic) or π has a Whittaker model.

Uniqueness of Whittaker models, III

Applications

- Such properties play important roles in the construction of many global integrals. (Use unique models to obtain Eulerian integrals.)
- Can be used to study the analytic properties of certain Langlands L-functions.
- For example, the Rankin-Selberg integrals and Langlands-Shahidi method.

Non-generic representations

When π does not have any Whittaker model, we say that π is non-generic.

Degenerate models
Non-generic representations admit unique models of degenerate type.

Derivatives, I

- Mirabolic subgroup

$$
\begin{gathered}
P_{n}=\left\{\left(\begin{array}{ll}
g & v \\
0 & 1
\end{array}\right): g \in \mathrm{GL}_{n-1}, v \in F^{n-1}\right\} . \\
U_{n}=\left\{\left(\begin{array}{cc}
I_{n-1} & v \\
0 & 1
\end{array}\right): v \in F^{n-1}\right\} .
\end{gathered}
$$

- $P_{n}=\mathrm{GL}_{n-1} \ltimes U_{n}$
- the restriction of ψ_{n} gives a character of U_{n}

Derivatives, II

Several functors

- $\Psi^{-}(\pi)=J_{U_{n}}(\pi)=\pi /\left\langle\pi(u) v-v: u \in U_{n}, v \in \pi\right\rangle$. This gives

$$
\Psi^{-}: \operatorname{Rep}\left(P_{n}\right) \rightarrow \operatorname{Rep}\left(\mathrm{GL}_{n-1}\right)
$$

- $\Phi^{-}(\pi)=J_{U_{n}, \psi_{n}}(\pi)=\pi /\left\langle\pi(u) v-\psi_{n}(u) v: u \in U_{n}, v \in \pi\right\rangle$ and this gives

$$
\Phi^{-}: \operatorname{Rep}\left(P_{n}\right) \rightarrow \operatorname{Rep}\left(P_{n-1}\right)
$$

- k-th derivative

$$
\pi^{(k)}=\Psi^{-} \circ\left(\Phi^{-}\right)^{(k-1)}\left(\left.\pi\right|_{P_{n}}\right)
$$

This gives a functor

$$
\operatorname{Rep}\left(\mathrm{GL}_{n}\right) \rightarrow \operatorname{Rep}\left(\mathrm{GL}_{n-k}\right)
$$

Derivatives, III

- The n-th derivative is the functor $J_{N_{n}, \psi_{n}}$.
- Let k_{0} be the maximal k such that $\pi^{(k)} \neq 0$. Then $\pi^{\left(k_{0}\right)}$ is called the highest derivative of π. Notation: $k_{0}=h t(\pi)$.
- If π is generic, then the highest derivative of π is the n-th derivative.

Derivatives, IV

Example (Speh representations)
If $\tau \in \operatorname{Irr}\left(\mathrm{GL}_{n}\right)$ is discrete series, then the normalized parabolic induction

$$
\tau \times \tau \nu \times \cdots \times \tau \nu^{\ell-1}
$$

has a unique irreducible subrepresentation $\theta(\tau, \ell) \in \operatorname{Irr}\left(\mathrm{GL}_{n \ell}\right)$. In particular, if $\tau: \mathrm{GL}_{1} \rightarrow \mathbb{C}^{\times}$is a character, then

$$
\theta(\tau, \ell)=\tau \circ \operatorname{det}
$$

Generally

If $\tau \in \operatorname{Irr}\left(\mathrm{GL}_{n}\right)$ is generic and unitary, then $\tau=\tau_{1} \times \cdots \times \tau_{m}$ for $\tau_{1}, \cdots, \tau_{m}$ essentially discrete series. Define

$$
\theta(\tau, \ell)=\theta\left(\tau_{1}, \ell\right) \times \cdots \times \theta\left(\tau_{m}, \ell\right)
$$

Derivatives, V

- the highest derivative of $\theta(\tau, \ell)$ is $\theta(\tau, \ell)^{(n)}{ }^{\prime \prime}={ }^{\prime \prime} \theta(\tau, \ell-1)$.

More generally,
Theorem (Zelevinsky)
If π is irreducible, then its highest derivative $\pi^{(k)}$ is also irreducible.

Derivatives, VI

Given $\pi \in \operatorname{Irr}\left(\mathrm{GL}_{n}\right)$, we can take highest derivatives repeatedly:

$$
\begin{array}{ll}
k_{1}=h t(\pi), & \pi_{1}=\pi^{\left(k_{1}\right)}, \\
k_{2}=h t\left(\pi_{1}\right), & \pi_{2}=\pi_{1}^{\left(k_{2}\right)}, \\
\quad \ldots & \\
k_{m}=h t\left(\pi_{m-1}\right), & \pi_{m}=\pi_{m-1}^{\left(k_{m}\right)}
\end{array}
$$

This gives a partition $\left(k_{1} k_{2} \cdots k_{m}\right)$ of n.

- π_{m} is of the form $J_{N_{n}, \psi_{\left(k_{1} \cdots k_{m}\right)}}(\pi)$ for some degenerate character $\psi_{\left(k_{1} \cdots k_{m}\right)}$.
- By the Frobenius reciprocity, this gives a degenerate model for π.
- By the theorem of Zelevinsky, π_{m} is an irreducible representation of GL_{0}, which must be one-dimensional.

Nilpotent orbits, I

Summary:

- by computing derivatives, one can find a partition
($k_{1} k_{2} \cdots k_{m}$) and a unique model for π.
- ($k_{1} k_{2} \cdots k_{m}$) is the "maximal" partition (or nilpotent orbit) that support nonzero models for π.

Nilpotent orbits, II

More generally, given a reductive group G, to every coadjoint nilpotent orbit $\mathcal{O} \subset \mathfrak{g}^{*}$ and every $\pi \in \operatorname{Rep}(G)$, we associate a certain generalized Whittaker quotient $\pi_{\mathcal{O}}$.

- Let $\mathrm{WO}(\pi)$ denote the set of all nipotent orbit \mathcal{O} with $\pi_{\mathcal{O}} \neq 0$
- $\mathrm{WS}(\pi)$ denote the set of maximal orbits in $\mathrm{WO}(\pi)$ with respect to the closure ordering.

Example

- Nilpotent orbits of GL_{n} are classified by the partitions of n via the Jordan canonical decomposition.
- $\operatorname{WS}(\theta(\tau, \ell))=\left\{\left(n^{\ell}\right)\right\}$.

Nilpotent orbits, III

Character expansion

One can define the character χ_{π} of π as a distribution and we have a charater expansion

$$
\chi_{\pi}=\sum_{\mathcal{O}} c_{\mathcal{O}} \hat{\mu}_{\mathcal{O}}
$$

where the sum is over the set of nilpotent orbits.
Theorem (Mœglin-Waldspurger, Varma)
The set $\mathrm{WS}(\pi)$ is the same as the maximal elements such that $c_{\mathcal{O}} \neq 0$.
Moreover, for $\mathcal{O} \in \operatorname{WS}(\pi), \operatorname{dim} \pi_{\mathcal{O}}=c_{\mathcal{O}}$.

Nilpotent orbits, IV

Example

For $\theta(\tau, \ell), c_{\left(n^{\ell}\right)}=1$ and

$$
\chi_{\theta(\tau, \ell)}=\hat{\mu}_{\left(n^{\ell}\right)}+\text { other terms. }
$$

Archimedean case

- There are irreducible representations without unique models.
- The Archimedean version of Mœglin-Waldspurger's theorem has not been proven.

Division algebras, I

- D : central division algebra over F of dimension d^{2}
- Consider $\mathrm{GL}_{n, D}$
- Nilpotent orbits of $\mathrm{GL}_{n, D}$ are classified by partitions of n. Notation: $\left(n_{1} \cdots n_{m}\right)_{D}$.

Unique models?
Unfortunately, uniqueness of models fails in general.

Division algebras, II

Question

Find representations of $\mathrm{GL}_{n, D}$ with unique models.
Example (Case $n=1$)
There is no non-trivial nilpotent elements in D^{\times}but there are irreducible finite-dimensional representations of D^{\times}of dimension greater than 1.
Only one-dimensional representations have unique models.

Jacquet-Langlands correspondence, I

How to construct representations of $\mathrm{GL}_{n, D}$?

- For $g^{\prime} \in \mathrm{GL}_{n, D}$, one can define characteristic polynomial
- $g \in \mathrm{GL}_{n d}, g^{\prime} \in \mathrm{GL}_{n, D}$
- Define: $g \leftrightarrow g^{\prime}$ if and only if g and g^{\prime} are both regular semi-simple and have the same characteristic polynomials.
- $\mathcal{O}=\left(n_{1}^{d} \cdots n_{m}^{d}\right)$ in $\mathfrak{g l}_{n d}^{*}$ corresponds to $\mathcal{O}^{\prime}=\left(n_{1} \cdots n_{m}\right)_{D}$ in $\mathfrak{g l}_{n, D}^{*}$
- \mathcal{D}_{n} : discrete series of GL_{n}
- \mathcal{D}_{n}^{\prime} : discrete series of $\mathrm{GL}_{n, D}$

Jacquet-Langlands correspondence, II

Theorem (Deligne-Kazhdan-Vignéras)
There is a unique bijection $\mathrm{C}: \mathcal{D}_{n d} \rightarrow \mathcal{D}_{n}^{\prime}$ such that for all $\pi \in \mathcal{D}_{n d}$ we have

$$
\chi_{\pi}(g)=(-1)^{n d-n} \chi_{\mathrm{C}(\pi)}\left(g^{\prime}\right)
$$

for all $g \in \mathrm{GL}_{n d}$ and $g^{\prime} \in \mathrm{GL}_{n, D}$ such that $g \leftrightarrow g^{\prime}$.
Theorem (Badulescu, Badulescu-Renard)
If π is a ' d-compatible' irreducible unitary representation of $\mathrm{GL}_{n d}$, then there exists a unique irreducible unitary representation π^{\prime} of $\mathrm{GL}_{n, D}$ and a unique sign $\varepsilon_{\pi} \in\{-1,1\}$ such that

$$
\chi_{\pi}(g)=\varepsilon_{\pi} \chi_{\pi^{\prime}}\left(g^{\prime}\right)
$$

for all $g^{\prime} \leftrightarrow g$. Notation: $\pi^{\prime}=\operatorname{LJ}(\pi)$.

Jacquet-Langlands correspondence, III

We will take the later version as it is compatible with a global correspondence.

Non-Archimedean Strategy

- (Prasad's result) character relation implies identities $c_{\mathcal{O}}=\varepsilon_{\pi} c_{\mathcal{O}^{\prime}}$, where $\mathcal{O} \subset \mathfrak{g l}_{n d}^{*}$ corresponds to $\mathcal{O}^{\prime} \subset \mathfrak{g l}_{n, D}^{*}$.
- Idea: find representations of $\mathrm{GL}_{n d}$ with suitable size such that $\mathcal{O} \in \mathrm{WS}(\pi)$ corresponds to $\mathcal{O}^{\prime} \in \mathrm{WS}(\operatorname{LJ}(\pi))$.
- (Important!) find representations such that $\varepsilon_{\pi}=1$

Jacquet-Langlands correspondence, IV

Definition

For a positive integer ℓ and an irreducible generic unitary τ, define

$$
\theta_{D}(\tau, \ell)=\operatorname{LJ}(\theta(\tau, d \ell))
$$

- $\theta(\tau, d \ell)$ is d-compatible.
- $\varepsilon_{\theta(\tau, d \ell)}=1$
- $\operatorname{WS}(\theta(\tau, d \ell))=\left(n^{d \ell}\right)$
- one can check that $\mathrm{WS}\left(\theta_{D}(\tau, \ell)\right)=\left(n^{\ell}\right)_{D}$ with unique models.
- If τ is one-dimensional, then $\theta(\tau, d \ell)=\tau \circ \operatorname{det}$ and $\theta_{D}(\tau, \ell)=\tau \circ \mathrm{Nm}$.

Jacquet-Langlands correspondence, V

- D : unique quaternion algebra over F
- π : Steinberg representation of GL_{2}.
- $1_{\mathrm{GL}_{2}}, 1_{D^{\times}}$: trivial representations

Then

- $C(\pi)=1_{D^{\times}}$, but

$$
\chi_{\pi}(g)=-\chi_{1_{D \times}}\left(g^{\prime}\right) \text { for all } g \leftrightarrow g^{\prime}
$$

- $\operatorname{LJ}\left(1_{\mathrm{GL}_{2}}\right)=1_{D \times}$ and

$$
\chi_{1_{\mathrm{GL}_{2}}}(g)=\chi_{1_{D \times} \times}\left(g^{\prime}\right) \text { for all } g \leftrightarrow g^{\prime} .
$$

Jacquet-Langlands correspondence, VI

Archimedean case
The definition of $\theta_{\mathbb{H}}(\tau, \ell)$ works. Similar results are expected but a different approach is required.

Global definition
Given a cuspidal representation $\tau=\otimes_{v}^{\prime} \tau_{v}$ of $\mathrm{GL}_{n}(\mathbb{A})$, one can define

$$
\theta_{D}(\tau, \ell)=\otimes_{v}^{\prime} \theta_{D_{v}}\left(\tau_{v}, \ell\right)
$$

and this is a discrete series of $\mathrm{GL}_{n \ell, D}(\mathbb{A})$.
One can ask similar questions for global representations (in terms of degenerate Whittaker coefficients).

Note: for central simple algebra $D_{v}=\mathrm{M}_{r_{v}}\left(A_{v}\right)$,

$$
\theta_{D_{v}}\left(\tau_{v}, \ell\right)=\theta_{A_{v}}\left(\tau_{v}, r_{v} \ell\right)
$$

Archimedean case, I

Can be reduced to the case τ discrete series. Let $\tau \in \mathcal{D}\left(\mathrm{GL}_{2}(\mathbb{R})\right)$ and let $\tau^{\prime}=\mathrm{C}^{-1}(\tau) \in \operatorname{Irr}\left(\mathbb{H}^{\times}\right)$. Assume that $\operatorname{dim} \tau^{\prime}>1$.

The representation
Then $\theta_{\mathbb{H}}(\tau, \ell)$ is the unique irreducible subrepresentation of the parabolic induction

$$
\tau^{\prime} \nu^{(1-\ell) / 2} \times \tau^{\prime} \nu^{(3-\ell) / 2} \times \cdots \times \tau^{\prime} \nu^{(\ell-1) / 2}
$$

where $\nu: \mathbb{H}^{\times} \rightarrow \mathbb{R}_{>0}$ is the reduced norm.
Then, $\operatorname{WS}\left(\theta_{\mathbb{H}}(\tau, \ell)\right)=\left(2^{\ell}\right)_{\mathbb{H}}$ with unique model.

Archimedean case, II

The first known result was the case $\ell=1$.
The case $\ell=1$
The representation $\theta_{\mathbb{H}}(\tau, 1)$ is the unique irreducible subrepresentation of $\tau^{\prime} \nu^{-1 / 2} \times \tau^{\prime} \nu^{1 / 2}$ and

$$
\operatorname{dim} \operatorname{Hom}_{N_{(2)_{\mathbb{H}}}}\left(\theta_{\mathbb{H}}(\tau, 1), \psi_{(2)_{\mathbb{H}}}\right)=1
$$

where

$$
N_{(2)_{\mathbb{H}}}=\left\{u=\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\right\} \text { and } \psi_{(2)_{\mathbb{H}}}(u)=\psi(\operatorname{tr}(x)) .
$$

Archimedean case, III

Hang Xue's idea
The construction

$$
\tau \mapsto \theta_{\mathbb{H}}(\tau, 1)
$$

can be realized as the theta correspondence from $\mathrm{SL}_{2} \rightarrow \mathrm{SO}(5,1)$.
Gomez-Zhu's result
There is an isomorphism between the Whittaker model for SL_{2} and the $(2)_{\mathbb{H}}$-model of $\theta_{\mathbb{H}}(\tau, 1)$.

How about the case of general ℓ ? (This can be proved using a global method.)

Kirillov models, I

Statement

For a generic representation π of GL_{n}

$$
\left.\operatorname{ind}_{N_{n}}^{P_{n}} J_{N_{n}, \psi_{n}}(\pi) \ltimes \psi_{n} \hookrightarrow \pi\right|_{P_{n}} .
$$

Representation theory of P_{n}
The group P_{n} is the semi-direct $\mathrm{GL}_{n-1} \ltimes U_{n}$. The irreducible representations of P_{n} is classified by

- A orbit $\mathrm{GL}_{n-1} \cdot X$ of \widehat{U}_{n} under the action of GL_{n-1} (only two orbits)
- An irreducible representation τ_{X} of the stabilizer M_{X} of ψ_{X} in GL_{n-1}.
The construction is given by $\operatorname{ind}_{M_{X} \ltimes U_{n}}^{P_{n}}\left(\tau_{X} \ltimes \psi_{X}\right)$.

Kirillov models, II

Observe that

- representations coming from different orbits are not isomorphic.
- As a result, the Kirillov model captures the generic part of of $\left.\pi\right|_{P_{n}}$
- the Kirillov model is a supercuspidal representation.

For a simple division algebra D, one can introduce $P_{n, D}, N_{n, D}, \psi_{n, D}, U_{n, D}$ etc. The theory of Kirillov models extends to representations of $\mathrm{GL}_{n, D}$.

The global case

The general case can be reduced to case $\ell=1$ by induction in stages.
the case $\ell=1$
Show that, for some $\varphi \in \theta_{D}(\tau, 1)$,

$$
W_{\varphi}(g):=\int_{N_{n, D}(F) \backslash N_{n, D}(\mathbb{A})} \varphi(u g) \psi_{n, D}(u) d u \neq 0
$$

In other words, $\theta_{D}(\tau, 1)$ is " D-generic".
(We use ideas of Kazhdan-Patterson 1984.)

Note

If $D=F$, the argument below shows the following: Let τ be an automorphic representation of $\mathrm{GL}_{n}(\mathbb{A})$. If $\tau_{v_{0}}$ is a generic representation for a non-Archimedean place v_{0}, then τ is globally generic.

- Fix a non-Archimedean place v_{0}, we already know that $\theta_{D}(\tau, 1)_{v_{0}}$ is " $D_{v_{0}}$-generic", and therefore has a Kirillov model $\mathcal{K}_{v_{0}} \hookrightarrow \theta_{D}(\tau, 1)_{v_{0}}$. It is " $D_{v_{0}}$-cuspidal".
- Consider the $P_{n, D}(\mathbb{A})$-representation

$$
T:=\mathcal{K}_{v_{0}} \otimes\left(\otimes_{v \neq v_{0}}^{\prime} \theta_{D}(\tau, 1)_{v}\right) \subset \otimes_{v}^{\prime} \theta_{D}(\tau, 1)_{v}
$$

This is a cuspidal representation.

- Fourier expansion. For $\varphi \in T$ and $g \in P_{n, D}(\mathbb{A})$

$$
\varphi(g)=\sum_{\gamma \in N_{n-1, D}(F) \backslash \mathrm{GL}_{n-1, D}(F)} W_{\varphi}\left(\left(\begin{array}{ll}
\gamma & \\
& 1
\end{array}\right) g\right) .
$$

$-\left.\varphi\right|_{P_{n, D}(F) \backslash P_{n, D}(\mathbb{A})} \neq 0$ since $Z_{n, D} P_{n, D}(F) \backslash Z_{n, D} P_{n, D}(\mathbb{A})$ is dense in $\mathrm{GL}_{n, D}(F) \backslash \mathrm{GL}_{n, D}(\mathbb{A})$.

- One of $W_{\varphi}\left(\left(\begin{array}{ll}\gamma & \\ & 1\end{array}\right) g\right) \neq 0$.

Archimedean case, IV

We are now back to the Archimedean case.

- $\tau_{\infty} \in \mathcal{D}\left(\mathrm{GL}_{2}(\mathbb{R})\right)$
- Embed τ_{∞} as the Archimedean component of $\tau \in \operatorname{Cusp}\left(\mathrm{GL}_{2}(\mathbb{A})\right.$). (May assume $F=\mathbb{Q}$).
- Then $\theta_{D_{\infty}}\left(\tau_{\infty}, \ell\right)$ is a locally component of $\theta_{D}(\tau, 1)$ for a suitable D. (So $D_{\infty}=\mathrm{M}_{\ell}(\mathbb{H})$).

Archimedean case, V

- For decomposable φ, we have a decomposition

$$
W_{\varphi}(1)=\lambda_{\infty}\left(\varphi_{\infty}\right) \cdot \lambda_{\text {fin }}\left(\varphi_{\text {fin }}\right)
$$

- Assume that the dimension of models for $\theta_{D_{\infty}}\left(\tau_{\infty}, \ell\right)$ is greater than 1.
- The Kirillov model: there exists σ_{∞} such that $\operatorname{dim} \sigma_{\infty}>1$,

$$
\mathcal{K}_{\infty}:=\operatorname{ind}_{N_{n, D}}^{P_{n, D}} \sigma_{\infty} \ltimes \psi_{n, D} \hookrightarrow \theta_{D_{\infty}}\left(\tau_{\infty}, \ell\right) .
$$

- We choose a slice of the Kirillov model such that λ_{∞} vanishes:

$$
\tilde{\mathcal{K}}_{\infty}:=\operatorname{ind}_{N_{n, D}}^{P_{n, D}} \psi_{n, D} \hookrightarrow \theta_{D_{\infty}}\left(\tau_{\infty}, \ell\right)
$$

- Consider the $P_{n, D}(\mathbb{A})$-representation

$$
\theta_{D}(\tau, \ell)_{f i n} \otimes \tilde{\mathcal{K}}_{\infty}
$$

Then $W_{\varphi}(1)=0$ for φ in this subspace. Contradiction.

Application

- In the construction of the twisted doubling integrals (joint with Friedberg, Ginzburg and Kaplan), it is important to use the generalized Speh representations $\theta(\tau, \ell)$ from a cuspidal representation of $\mathrm{GL}_{n}(\mathbb{A})$:
- This is a generalization of the doubling integrals of Piatetski-Shapiro and Rallis.
- This gives a family of Rankin-Selberg integrals for the tensor product L-functions for a classical group and a general linear group.
- To show that the global integral is Eulerian, we use the unique degenerate model of $\theta(\tau, \ell)$.
To extend the twisted doubling integrals to the case of quaternionic unitary groups, representations of $\mathrm{GL}_{n, D}$ with unique models are required. (Analogues of the Speh representations.)

