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Spherical harmonics

I
SO2(R) ↪→ SO3(R) compact.

I
m(π) = dimHomSO2(R)(π,C), π ∈ Irr(SO3(R)).

I By Frobenius reciprocity,

m(π) = dimHomSO3(R)(π, Ind
SO3(R)
SO2(R)(C)).

I
Ind

SO3(R)
SO2(R)(C) ' L2(S2).

I
L2(S2) x SO3(R) spectral decomposition.
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Spherical harmonics

I By the theory of spherical harmonics,

L2(S2) '
⊕̂∞

l=0
Hl ,

Hl =spherical harmonics of deg. l , dim = 2l + 1,

Hl is an irr. rep. of SO3(R).

I

dimHomSO3(R)(π, L2(S2)) = 1, for any π ∈ Irr(SO3(R)).

I

m(π) =

∫
SO2(R) Θπ(h)dh

vol(SO2(R), dh)
, by Schur’s orthogonality.
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Set up

I F local field of char. zero.

I W ↪→ V quadratic spaces /F .

I W⊥ = 〈v0〉 ⊕ Z split of odd dim.

I N = unipotent radical of the parabolic subgroup of SO(V )
stabilizing the full isotropic flag determined by W⊥.

I G = SO(W )× SO(V ).

I H = SO(W ) n N ↪→ G , with ∆ : SO(W ) ↪→ G .

I ξ = a generic character of N extending to H.

I (G ,H, ξ) is called a Gan-Gross-Prasad triple.
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Multiplicity one

I Set

m(π) = dimHomH(F )(π, ξF ), π ∈ Irr(G (F ))

Theorem.
m(π) ≤ 1.

I For F p-adic, proved by A. Aizenbud-D. Gourevitch-S.
Rallis-G. Schiffmann for r = 0, and W. Gan-B.Gross-D.Prasad
reducing the general case to r = 0.

I For F Archimedean, proved by B. Sun-C. Zhu for r = 0, and
D. Jiang-Sun-Zhu reducing the general case to r = 0.
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Local Gan-Gross-Prasad conjecture

I The local Gan-Gross-Prasad conjecture suggests that m(π)
has more stable behavior by considering the local Vogan
packet attached to (G ,H, ξ).

I To introduce local Vogan packets, consider pure inner forms
of SO(W ), parametrized by H1(F ,SO(W )) ' H1(F ,H)

I For α ∈ H1(F ,H), there exists

(Wα,Vα = Wα ⊕W⊥)

dimWα = dimW , discWα = discW ,
with a GGP triple

(Gα,Hα, ξα).

Moreover
LGα ' LG .
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Local Gan-Gross-Prasad conjecture

Conjecture.(Gan-Gross-Prasad)
For any generic L-parameter ϕ :WF → LG with L-packet ΠG (ϕ),∑

α∈H1(F ,H)

∑
π∈ΠGα (ϕ)

m(π) = 1.

Moreover, the non-vanishing of m(π) is detected by
representations of the component group Aϕ attached to ϕ, which
is related to the sign of the relevant local symplectic root numbers.

I

ϕ is

{
generic, L(s, ϕ,Ad) is holomorphic at s = 1

tempered, Im(ϕ) is bounded



Local Gan-Gross-Prasad conjecture: p-adic

I J.-L. Waldspurger (tempered) and C. Moeglin-Waldspurger
(generic) proved the conjecture completely when F is p-adic
(Assuming LLC for non quasi-split SO and quasi-split SO2n).

I The local GGP conjecture speculates parallel behaviors for
unitary groups. R. Beuzart-Plessis (tempered) and Gan-A.
Ichino (generic) proved the conjecture when F is p-adic.

I There are parallel conjectures for skew-hermitian unitary
groups and symplectic-metaplectic groups.
Gan-Ichino proved the conjecture for skew-hermitian unitary
groups, and H. Atobe for symplectic-metaplectic groups, via
theta correspondence when F is p-adic.
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Local Gan-Gross-Prasad conjecture: Archimedean

I For unitary groups, when F = R,
Beuzart-Plessis proved the multiplicity part of the conjecture
for ϕ tempered.
H. He proved the conjecture for discrete series representations.
H. Xue proved the conjecture for ϕ tempered.

I For special orthogonal groups, when F = C,
J. Möllers proved the conjecture for SO(n)× SO(n + 1).



Local Gan-Gross-Prasad conjecture: Archimedean

I For unitary groups, when F = R,
Beuzart-Plessis proved the multiplicity part of the conjecture
for ϕ tempered.
H. He proved the conjecture for discrete series representations.
H. Xue proved the conjecture for ϕ tempered.

I For special orthogonal groups, when F = C,
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The theorem

In the special orthogonal groups setting, we prove the following
theorem.

Theorem (L.)

For any tempered L-parameter ϕ :WF → LG,∑
α∈H1(F ,H)

∑
π∈ΠGα (ϕ)

m(π) = 1.

I We follow the approach of Waldspurger and Beuzart-Plessis.



Local trace formula

I For π ∈ Temp(G (F )), by Frobenius reciprocity for unitary
representations,

HomH(F )(π, ξF ) ' HomG(F )(π, IndGHξF )

where IndGHξ = L2(H(F )\G (F ), ξF ).

I

L2(H(F )\G (F ), ξF ) x G (F ) spectral decomposition.
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Local trace formula

I Following Arthur,

L2(H(F )\G (F ), ξ) x C∞c (G (F )) via convolution.

I For f ∈ C∞c (G (F )), x ∈ G (F ), ϕ ∈ L2(H(F )\G (F ), ξF ),

(R(f )ϕ)(x) =

∫
G(F )

f (g)ϕ(xg)dg =

∫
H(F )\G(F )

Kf (x , y)ϕ(y)dy

where

Kf (x , y) =

∫
H(F )

f (x−1hy)ξF (h)dh, x , y ∈ G (F ).

I R(f ) has an integral kernel Kf (x , y).
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Local trace formula

I Formally,

Tr(R(f )) ∼
∫
H(F )\G(F )

K (x , x)dx .

I In general, RHS is not absolutely convergent.

I Work with strongly cuspidal functions.

I f ∈ C∞c (G (F )) is called strongly cuspidal if∫
U(F )

f (mu)du = 0, m ∈ M(F )

for any proper parabolic subgroup P = MU of G .

I Similarly, define strongly cuspidal functions in the
Harish-Chandra Schwartz space C(G (F )) of G (F ), denoted as
Cscusp(G (F )).
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Local trace formula

Theorem (L.)

For f ∈ Cscusp(G (F )),

J(f ) =

∫
H(F )\G(F )

Kf (x , x)dx

is absolutely convergent.

I Establish spectral and geometric expansions for J(f ) through
comparing with Arthur’s local trace formula.



Spectral expansion

Theorem (L.)

For f ∈ Cscusp(G (F )), set

Jspec(f ) =

∫
X (G(F ))

D(π)θf (π)m(π)dπ.

Then Jspec(f ) is absolutely convergent, and

J(f ) = Jspec(f ).

I X (G (F )) := {(M, σ)| σ ∈ Tell(M(F ))}/conj., where
Tell(M(F )) = elliptic representations introduced by Arthur.

I For π attached to (M, σ), θf (π) = (−1)aG−aMJGM(σ, f ), where
JGM(σ, f ) is the weighted character defined by Arthur.
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Spectral expansion

I Introduce Lπ : End(π)∞ → C with

Lπ 6= 0⇔ m(π) 6= 0, π ∈ Temp(G (F )).

I For π ∈ Temp(G (F )), set

Lπ(T ) =

∫ ∗
H(F )

Tr(π(h−1)T )ξF (h)dh, T ∈ End(π)∞.

In general, the integral is not absolutely convergent, need
regularization. (Waldspurger, Lapid-Mao,
Sakellaridis-Venkatesh, Beuzart-Plessis).
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Spectral expansion

I Insert Lπ into the Plancherel formula on G (F ). More
precisely,

K (f , x) =

∫
H(F )

f (x−1hx)dh

=

∫
Xtemp(G(F ))

Lπ(π(x)π(f )π(x−1))dπ.

I By continuity, assume f ∈ Cscusp(G (F )) has compactly
supported Plancherel transform.

I By compactness, choose f ′ ∈ C(G (F )) such that

Lπ(π(f ′)) = m(π)

for any π ∈ Xtemp(G (F )) with π(f ) 6= 0.
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I Compare the resulting formula with the spectral side of
Arthur’s local trace formula.
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Spectral expansion: comparasion with Arthur’s trace
formula

I After introducing truncation, showing the integral order can
be switched, and changing variables
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G(F )

f (g ′−1hgg ′)f ′(g)dg .

I The inner integral
∫
G(F )

∫
G(F ) is exactly Arthur’s local trace

formula. Express in turns of spectral expansion of JA(f , f ′).

I J(f ) is equal to

J(f ) =

∫
X (G(F ))

D(π)θf (π)Lπ(π(f ′))dπ

=

∫
X (G(F ))

D(π)θf (π)m(π)dπ,
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Geometric multiplicity formula

Theorem (L.)

For π ∈ Temp(G (F )),

m(π) = mgeom(π) =

∫
Γ(G ,H)

cπ(x)DG (x)1/2∆(x)−1/2dx .

I When F is p-adic it was proved by Waldspurger.



Geometric multiplicity formula: Γ(G ,H)

I

Γ(G ,H) :=
⋃
T∈T

Treg(F ).

T is a set of subtori of SO(W ).

I

T ∈ T iff. T max. ell. in SO(W ′′)

where W ′′ ⊂W non-degenerate and dim(W /W ′′) even.



Geometric multiplicity formula: Γ(G ,H)

I

Γ(G ,H) :=
⋃
T∈T

Treg(F ).

T is a set of subtori of SO(W ).

I

T ∈ T iff. T max. ell. in SO(W ′′)

where W ′′ ⊂W non-degenerate and dim(W /W ′′) even.



Geometric multiplicity formula: definition of cπ

Theorem (Harish-Chandra for p-adic, Barbasch-Vogan for
Archimedean)

For x ∈ Gss and X ∈ ω ⊂ gx a small neighborhood of 0, there
exists constants cπ,O(x) ∈ C such that

lim
X→0

DG (xeX )1/2Θπ(xeX ) = DG (x)1/2
∑

O∈Nilreg(gx )

cπ,O(x)ĵ(O,X ).

Here ĵ(O,X ) = F(JO(·)).

I The definition of cπ, first appeared in the work of
Waldspurger, is the main technical ingredient.

I cπ is nonzero only when Gx is quasi-split. When it is the case,
cπ = cπ,O for a particular O ∈ Nilreg(gx).
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Here ĵ(O,X ) = F(JO(·)).

I The definition of cπ, first appeared in the work of
Waldspurger, is the main technical ingredient.

I cπ is nonzero only when Gx is quasi-split. When it is the case,
cπ = cπ,O for a particular O ∈ Nilreg(gx).



Geometric multiplicity formula: definition of cπ

I For unitary groups, Nilreg(gx) can be permuted by scaling.
The geometric multiplicity is independent of the orbit chosen.
Therefore set

cπ(x) :=

∑
O∈Nilreg(gx ) cπ,O

|Nilreg(gx)|
.

I Benefit:

DG (x)1/2cπ(x) = lim
x ′∈Tqd,x (F )→x

DG (x ′)Θπ(x ′)

|W (Gx ,Tqd,x)|

where Tqd,x ⊂ Bx ⊂ Gx .

I It is NOT the case for special orthogonal groups, really need
to pick up a particular regular nilpotent orbit.
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Geometric multiplicity formula: definition of cπ

I Nilreg(so(V )) 6= ∅ iff. (V , q) is quasi-split.
For dimV is odd or ≤ 2, |Nilreg(so(V ))| = 1.

I For dimV = 2m is even and ≥ 4, set

NV =

{
F×/F×2, split

Im(qan)/F×2, non-split.

Then NV ↔ Nilreg(so(V )).

I Therefore

Nilreg(g)↔
{
NV , dimV is even ≥ 4,
NW , dimW is even ≥ 4.
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Geometric multiplicity formula: definition of cπ

I Recall V = W ⊕ 〈v0〉 ⊕ Z .

I Set ν0 = q(v0). When dimV is even ≥ 4, ν0 ∈ NV ; When
dimW is even ≥ 4, −ν0 ∈ NW .

I For x ∈ Treg ∈ T , set V ′x (resp. W ′
x) = ker(1− x) in V (resp.

W ).

I Then
Gx = G ′x × G ′′x

with G ′x = SO(V ′x)× SO(W ′
x), G ′′x = T × T .

I When G ′x is quasi-split, set

cπ(x) =

{ cπ,Oν0
, dimV ′x ≥ 4 even

cπ,O−ν0
, dimW ′

x ≥ 4 even

cπ,Oreg , otherwise.
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The proof

The following properties are needed for ϕ a tempered L-parameter.

STAB For any α ∈ H1(F ,H),

Θα,ϕ =
∑

π∈ΠGα (ϕ)

Θπ.

is stable.

TRANS For α ∈ H1(F ,H), Θα,ϕ is the transfer of e(Gα)Θϕ, where
e(Gα) ∈ Br2(F ) is the Kottwitz sign. Br2(F ) = {±1} if
F 6= C.

WHITT For G quasi-split and every O ∈ Nilreg(g), there exists a
unique representation in ΠG (ϕ) admitting a Whittaker model
of type O.



The proof

I For F Archimedean, LLC is known by R. Langlands, [STAB]
and [TRANS] is known by D. Shelstad, and [WHITT] follows
from B. Kostant and D. Vogan.

I For F p-adic, LLC is known from Arthur for quasi-split special
orthogonal groups (need refinment for SO2n).

I For non quasi-split special orthogonal groups it is expected to
follow from the last chapter of Arthur’s book.
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The proof

Lemma (L.)

For any O ∈ Nilreg(gx), define

cϕ,O(x) :=
∑

π∈ΠG (ϕ)

cπ,O(x).

Then
cϕ,O(x) = cϕ,O′(x)

for any O,O′ ∈ Nilreg(gx).
In particular,

DG (x)1/2cϕ,O(x) =|W (Gx ,Tqd,x)|−1

lim
x ′∈Tqd,x (F )→x

DG (x ′)
∑

π∈ΠG (ϕ)

Θπ(x ′).



The proof

I ∑
α∈H1(F ,H)

∑
π∈ΠGα (ϕ)

m(π) =

∫
Γstab(G ,H)

cϕ(x)

{ ∑
α∈H1(F ,H)

∑
y∈Γ(Gα,Hα),y∼stabx

e(Gα)

}
dx .

I ∑
α∈H1(F ,H)

∑
y∈Γ(Gα,Hα),y∼stabx

e(Gα) = 0

unless x = 1.

I ∑
α∈H1(F ,H)

∑
π∈ΠGα (ϕ)

m(π) = cϕ(1) = 1.

where the last identity follows from F. Rodier when F is
p-adic, and H. Matumoto when F is Archimedean.
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Geometric expansion

Theorem (L.)

For f ∈ Cscusp(G (F )), set

Jgeom(f ) =

∫
Γ(G ,H)

cf (x)DG (x)1/2∆(x)−1/2dx .

Then Jgeom(f ) is absolutely convergent, and

J(f ) = Jgeom(f ).



Geometric expansion: definitions

I Set
θf (x) = (−1)aG−aM(x)DG (x)−1/2JGM(x)(x , f ).

Then θf (x) is conjugation invariant.

I It is a quasi-character, i.e.

lim
X→0

DG (xeX )1/2θf (xeX ) = DG (x)1/2
∑

O∈Nilreg(gx )

cθf ,O(x)ĵ(O,X ).

I Define

cf (x) =

{ cθf ,Oν0
, dimV ′x ≥ 4 even

cθf ,O−ν0
, dimW ′

x ≥ 4 even

cθf ,Oreg , otherwise.
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I Define

cf (x) =

{ cθf ,Oν0
, dimV ′x ≥ 4 even

cθf ,O−ν0
, dimW ′

x ≥ 4 even

cθf ,Oreg , otherwise.



Geometric expansion: localization

I By partition of unity,

supp θf ⊂
{

neighborhood of x 6= 1
neighborhood of x = 1

I For x ∈ SO(W )ss, when x 6= 1,

(Gx ,Hx , ξx) = (G ′x ,H
′
x , ξ
′
x)× (G ′′x ,H

′′
x , 1).

(G ′x ,H
′
x , ξ
′
x) is a GGP triple of smaller dimension, and

(G ′′x ,H
′′
x , 1) is ∆ : H ′′x ↪→ H ′′x × H ′′x = G ′′x .

I Induction on dimG and Arthur’s local trace formula.
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Geometric expansion: Lie algebra variant

I For supp θf ⊂ neighborhood of x = 1, via exponential,
descent to Lie algebra variants JLiegeom(f ) and JLie(f ).

I Jgeom(f ) contains asymptotic of weighted orbital integrals
near singular locus, but Arthur’s local trace formula only has
regular semi-simple locus. Cannot compare directly.
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Geometric expansion: Lie algebra variant

I Perform a Fourier transform on h = LieH to resolve the
possible singularities,

KLie(f , x) =

∫
h
f (gXg−1)ξF (X )dX =

∫
Ξ+h⊥

f̂ (g−1Xg)dX .

I

JLie(f ) =

∫
H(F )\G(F )

dg

∫
Ξ+h⊥

f̂ (g−1Xg)dX .
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Geometric expansion: Lie algebra variant

I After truncation and changing integration order, compare with
Arthur’s weighted orbital integrals.

I For f ∈ Sscusp(g(F )),

JLie(f ) =

∫
Γ(Ξ+h⊥)

DG (X )1/2θ
f̂
(X )dX .

I Γ(Ξ + h⊥) = G (F )-conjugacy classes of regular semi-simple
elements in Ξ + h⊥.
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Geometric expansion: Lie algebra variant

I Take Fourier inversion back for JLie(f ).

I By Fourier transform for quasi-characters (Beuzart-Plessis),

θf =

∫
Γ(g)

DG (X )1/2θ
f̂
(X )ĵ(X , ·)dX .

I ĵ(X , ·) = F(J(X , ·)) and

lim
t∈F×2,t→0

DG (X , tY )ĵ(X ,Y ) = DG (Y )1/2
∑

O∈Nilreg(g)

ΓO(X )ĵ(O,Y ).

(Shalika when F is p-adic, Beuzart-Plessis when F
Archimedean)
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I ĵ(X , ·) = F(J(X , ·)) and

lim
t∈F×2,t→0
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Regular germ formula

Theorem (L.)

For G a quasi-split reductive algebraic group, X ∈ grss(F ) and
O ∈ Nilreg(g), set TG = GX . Then

ΓO(X ) =

{
1, inv(X )inv(TG ) = invTG

(O),
0, otherwise.

When F is p-adic the result was already proved by D. Shelstad.



Regular germ formula

I Fix an F -splitting for G .

I The invariants inv(TG ), inv(X ) and invTG
(O) all lie in

H1(F ,TG ).

I invTG
(O) measures the difference between O and the regular

nilpotent determined by the fixed F -splitting.

I inv(TG ) is connected with the Langlands-Shelstad transfer
factor ∆I.

I inv(X ) is connected with the Langlands-Shelstad transfer
factor ∆II.
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Relation with the Kostant’s sections

Based on a result of Kottwitz, we also prove the following theorem.

Theorem (L.)

ΓO(X ) = 1 if and only if the G (F )-orbit of X and O lie in the
G (F )-orbit of a common Kostant’s section.

I Kostant constructed a section for g→ g // G ' t/W , whose
image in g contains only regular elements, and meets every
regular stable Ad(G )-orbit exactly once.

I greg := {X ∈ g| dimCentg(X ) = dim t}. Regular elements
are not necessarily semi-simple, e.g. regular nilpotent
elements.

I The restriction of g→ t/W to an Ad(G )-orbit of a Kostant’s
section is a smooth submersion. The measures on the fibers
are given by the relevant orbital integrals.
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Geometric expansion: Lie algebra variant

I {θf | f ∈ Sscusp(g(F ))} is dense in the space of
quasi-characters on g(F ) when F = R or p-adic. Moreover,
θ̂f = θ

f̂
(Beuzart-Plessis).

I So reduce to show for any quasi-character θ,

JLie(θ) = JLiegeom(θ)

with

JLie(θ) =

∫
Γ(Ξ+h⊥)

DG (X )1/2θ̂(X )dX ,

JLiegeom(θ) =

∫
ΓLie(G ,H)

cθ(X )DG (X )1/2∆(X )−1/2dX .
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Geometric expansion: Lie algebra variant

I By homogeneity of JLie(θ) and JLiegeom(θ), i.e.

JLiegeom(θλ) = |λ|δ(G)/2JLiegeom(θ)

where θλ(X ) = θ(λ−1X ),
we can show:

JLie(θ)− JLiegeom(θ) =
∑

O∈Nilreg(g)

cOcθ,O(0)

for some constant cO ∈ C.

I

cθ,O(0) =

∫
Γ(g)

DG (X )1/2θ̂(X )ΓO(X )dX .
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Geometric expansion: Lie algebra variant

I To prove that cO = 0, for X ∈ grss(F ) with

tGX ∩ Γ(G ,H) = {0},

attach it with quasi-character θX = ĵ(X , ·) supported on tGX ,

I In particular, cθX ,O(0) = ΓO(X ), and

JLiegeom(θX ) =

{ ΓO(X ), |Nilreg(g)| = 1,
ΓOν0

(X ), dimV even ≥ 4,

ΓO−ν0
(X ), dimW even ≥ 4.

I Similarly,

JLie(θX ) =

{
cθX ,O(0) = ΓO(X ), X ∈ Ξ + h⊥, ΓO(X ) = 1,

0, Otherwise,
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Geometric expansion: Lie algebra variant

I When |Nilreg(g)| = 1, for X ∈ trssqd , ΓO(X ) = 1 identically, and

X ∈ Ξ + h⊥, therefore

JLiegeom(θX ) = JLie(θX ) = 1.

Hence cO = 0.

I In general, when dimV (resp. dimW ) even ≥ 4, Oν0 (resp.
O−ν0) is the unique regular nilpotent orbit O in Nilreg(g),
such that if ΓO(X ) = 1, then X ∈ Ξ + h⊥.

I Therefore cO = 0 for any O ∈ Nilreg(g).
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Geometric expansion: Lie algebra variant

I To prove the above claim, we need explicit formula for ΓO(X ),
and find relation between the formula and X ∈ Ξ + h⊥.

I We compute the invariants inv(TG )inv(X )
invTG (O) explicitly for any

X ∈ grss without eigenvalue 0, following the work of
Waldspurger.
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Thank you!


