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Spherical harmonics

SO2(R) < SO3(R) compact.

m(n) = dim Homgo,®)(7,C), 7 € Irr(SO3(R)).

» By Frobenius reciprocity,

m(r) = dim Homgo, k) (, Indgo () (C)).

Indgo? () (C) ~ L2(52).

[%(5%) ~ SO3(R) spectral decomposition.
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Spherical harmonics

» By the theory of spherical harmonics,
20c2y o (TN
L7(57) ~ @/:OH”

H; =spherical harmonics of deg. /, dim =2/+1,
Hj is an irr. rep. of SO3(R).

dim Homgo, ) (7, [2(S?)) =1, for any m € Irr(SO3(R)).

 Jsone) Ox()dh
M) = oSO (R). dh)’

by Schur’s orthogonality.



Set up

» F local field of char. zero.



Set up

» F local field of char. zero.

» W — V quadratic spaces /F.



Set up

» F local field of char. zero.
» W — V quadratic spaces /F.
> W = (v) @ Z split of odd dim.



Set up

» F local field of char. zero.
» W — V quadratic spaces /F.
> Wt = (vo) @ Z split of odd dim.

» N = unipotent radical of the parabolic subgroup of SO(V)
stabilizing the full isotropic flag determined by W=



Set up

F local field of char. zero.
W < V quadratic spaces /F.
wt = (vo) @ Z split of odd dim.

N = unipotent radical of the parabolic subgroup of SO(V)
stabilizing the full isotropic flag determined by W=

> G =SO(W) x SO(V).

vvyyy



Set up

F local field of char. zero.
W < V quadratic spaces /F.
wt = (vo) @ Z split of odd dim.

N = unipotent radical of the parabolic subgroup of SO(V)
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N = unipotent radical of the parabolic subgroup of SO(V)
stabilizing the full isotropic flag determined by W=

G = SO(W) x SO(V).
H=SO(W) x N — G, with A : SO(W) — G.
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Set up

» F local field of char. zero.

» W — V quadratic spaces /F.

> WL = (w) @ Z split of odd dim.

» N = unipotent radical of the parabolic subgroup of SO(V)
stabilizing the full isotropic flag determined by W=

> G =SO(W) x SO(V).

» H=SO(W)x N < G, with A: SO(W) — G.

» ¢ = a generic character of N extending to H.

» (G,H,&) is called a Gan-Gross-Prasad triple.
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Multiplicity one

> Set
m(m) = dim Homygy(m, &), 7 € Iir(G(F))

Theorem.
m(m) < 1.

» For F p-adic, proved by A. Aizenbud-D. Gourevitch-S.
Rallis-G. Schiffmann for r = 0, and W. Gan-B.Gross-D.Prasad
reducing the general case to r = 0.

» For F Archimedean, proved by B. Sun-C. Zhu for r =0, and
D. Jiang-Sun-Zhu reducing the general case to r = 0.
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Local Gan-Gross-Prasad conjecture

» The local Gan-Gross-Prasad conjecture suggests that m()
has more stable behavior by considering the local Vogan
packet attached to (G, H,¢).

» To introduce local Vogan packets, consider pure inner forms
of SO(W), parametrized by H(F,SO(W)) ~ H(F, H)
» For a € HY(F, H), there exists

(W, Vo = W, & W)

dim W, = dim W, discW,, = discW,
with a GGP triple
(Ga, Has €a)-

Moreover
L L
G, ~"G.



Local Gan-Gross-Prasad conjecture

Conjecture.(Gan-Gross-Prasad)
For any generic L-parameter ¢ : Wg — LG with L-packet ¢ (),

oY m(r)=1

a€HY(F,H) meN%a ()

Moreover, the non-vanishing of m(7) is detected by
representations of the component group A, attached to ¢, which
is related to the sign of the relevant local symplectic root numbers.

>

. generic, L(s,p, Ad) is holomorphic at s =1
v tempered, Im(y) is bounded
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» J.-L. Waldspurger (tempered) and C. Moeglin-Waldspurger
(generic) proved the conjecture completely when F is p-adic
(Assuming LLC for non quasi-split SO and quasi-split SO2,).

» The local GGP conjecture speculates parallel behaviors for
unitary groups. R. Beuzart-Plessis (tempered) and Gan-A.
Ichino (generic) proved the conjecture when F is p-adic.

» There are parallel conjectures for skew-hermitian unitary
groups and symplectic-metaplectic groups.
Gan-Ichino proved the conjecture for skew-hermitian unitary
groups, and H. Atobe for symplectic-metaplectic groups, via
theta correspondence when F is p-adic.
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Local Gan-Gross-Prasad conjecture: Archimedean

» For unitary groups, when F = R,
Beuzart-Plessis proved the multiplicity part of the conjecture
for o tempered.
H. He proved the conjecture for discrete series representations.
H. Xue proved the conjecture for ¢ tempered.

» For special orthogonal groups, when F = C,
J. Mdllers proved the conjecture for SO(n) x SO(n + 1).



The theorem

In the special orthogonal groups setting, we prove the following
theorem.

Theorem (L.)
For any tempered L-parameter o : Wg — LG,

oY m(r) =1

a€HI(F,H) 7eN%a(yp)

» We follow the approach of Waldspurger and Beuzart-Plessis.
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» Following Arthur,
L2(H(F)\G(F),€&) ~ C=(G(F)) via convolution.
» For f € C°(G(F)), x € G(F), ¢ € L2(H(F)\G(F),&F),
(RO = [ Fle)ele)dg = Ke(x,y)(y)dy
G(F) H(F)\G(F)
where

Ke(x,y) = /H(F) f(x"thy)ée(h)dh, x,y € G(F).

» R(f) has an integral kernel K¢(x, y).
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Local trace formula

| 4

v

Formally,

Tr(R(f)) ~ / K(x, x)dx.
H(F)\G(F)

In general, RHS is not absolutely convergent.
Work with strongly cuspidal functions.
f € C2(G(F)) is called strongly cuspidal if

/ f(mu)du=0, me M(F)
U(F)

for any proper parabolic subgroup P = MU of G.

Similarly, define strongly cuspidal functions in the
Harish-Chandra Schwartz space C(G(F)) of G(F), denoted as

Cscusp(G(F))-



Local trace formula

Theorem (L.)
For f € Cscusp(G(F)),

J(F) = / Ke (x, x)dx
HF)\G(F)

is absolutely convergent.

» Establish spectral and geometric expansions for J(f) through
comparing with Arthur’s local trace formula.



Spectral expansion

Theorem (L.)
For f € Cscusp(G(F)), set

Jspec(f) - / D(ﬂ')ef(ﬂ')m(ﬂ')dﬂ'.
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Ten(M(F)) = elliptic representations introduced by Arthur.



Spectral expansion

Theorem (L.)
For f € Cscusp(G(F)), set

Jspec(f) = /X(G(F)) D(m)0¢(m)m(m)dn.

Then Jspec(f) is absolutely convergent, and

J(f) = Jspec(f).

» X(G(F)):={(M,0)| o€ Ten(M(F))}/conj., where
Ten(M(F)) = elliptic representations introduced by Arthur.

> For 7 attached to (M, o), 0¢(m) = (—1)26 =M JS (o, f), where
JG (0, f) is the weighted character defined by Arthur.
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Spectral expansion

» Introduce L : End(7)> — C with
Lr#0< m(r)#0, 7€ Temp(G(F)).

» For m € Temp(G(F)), set

L(T) = /  Te(r(hY)T)er(h)dh, T € End(r)*.
H(F)

In general, the integral is not absolutely convergent, need
regularization. (Waldspurger, Lapid-Mao,
Sakellaridis-Venkatesh, Beuzart-Plessis).
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Spectral expansion

» Insert L, into the Plancherel formula on G(F). More
precisely,

= xLhx
K(F, %) _/H(F) F(x~hx)dh
- / Lo (r(x)m(F)n(x~ 1)) d.
Xiemo (G(F)

» By continuity, assume f € Cscusp(G(F)) has compactly
supported Plancherel transform.

» By compactness, choose f' € C(G(F)) such that
Le(n(F7)) = m(m)

for any m € Xiemp(G(F)) with 7(f) # 0.
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Spectral expansion

» Compare the resulting formula with the spectral side of
Arthur’s local trace formula.

» Therefore

J(f) = d h)dh
" /H(F)\G(F) X/f4(F)€( )

/ E(H)dH / f(x Lhgh'x)f'(g)dg
H(F) G(F)



Spectral expansion: comparasion with Arthur's trace
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» After introducing truncation, showing the integral order can
be switched, and changing variables
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Spectral expansion: comparasion with Arthur's trace
formula

» After introducing truncation, showing the integral order can
be switched, and changing variables

J(F) = h)dh dg’ flg' Thgg)F'(g)dg.
() /H(F)g() /G(F)g/G(F) (&' heg')F'()de

» The inner integral fG(,_-) fG(F) is exactly Arthur's local trace
formula. Express in turns of spectral expansion of JA(f, ).
» J(f) is equal to



Geometric multiplicity formula

Theorem (L.)
For m € Temp(G(F)),

m(7) = Mgeom () = / cr(x)DC(x) Y2 A(x) "1 2dx.
r(G,H)

» When F is p-adic it was proved by Waldspurger.
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Geometric multiplicity formula: T(G, H)

>
[(G,H) = | Tueg(F).
TeT
T is a set of subtori of SO(W).
>

TeT iff. T max. ell in SO(W")
where W" C W non-degenerate and dim(W /W") even.



Geometric multiplicity formula: definition of ¢,

Theorem (Harish-Chandra for p-adic, Barbasch-Vogan for
Archimedean)

For x € Ggs and X € w C gx a small neighborhood of 0, there
exists constants c; o(x) € C such that

lim DC(xe*)20,(xeX) = D(x)"/2 Y cro(x)i(0, X).
X—0
O€Nilreg(gx)
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Here j(O, X) = F(Jo(+)).

» The definition of c;, first appeared in the work of
Waldspurger, is the main technical ingredient.



Geometric multiplicity formula: definition of ¢,

Theorem (Harish-Chandra for p-adic, Barbasch-Vogan for
Archimedean)

For x € Ggs and X € w C gx a small neighborhood of 0, there
exists constants ¢, o(x) € C such that

lim DC(xe*)20,(xeX) = D(x)"/2 Y cro(x)i(0, X).
X—0
O€Nilreg(gx)

Here j(O, X) = F(Jo(-)).
» The definition of c;, first appeared in the work of
Waldspurger, is the main technical ingredient.

» ¢ is nonzero only when Gy is quasi-split. When it is the case,
¢r = Cr,0 for a particular O € Nileg(gyx).



Geometric multiplicity formula: definition of ¢,

» For unitary groups, Nﬂreg(gx) can be permuted by scaling.
The geometric multiplicity is independent of the orbit chosen.
Therefore set

C. (X) — EOGNilreg(gx) Cr,0
" . Nilreg(gx)|
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Geometric multiplicity formula: definition of ¢,

» For unitary groups, Nﬂreg(gx) can be permuted by scaling.
The geometric multiplicity is independent of the orbit chosen.
Therefore set

cr(x) = 2 0eNilieg(ax) 0
" . ‘Nﬂreg (9x)|

» Benefit:
D (x")0x(x)

DC (x)1/2 : = li
(x)"“en(x) x’equl,rxn(F)%X’W(GX’ quvX)‘

where Tyq x C Bx C Gy.

» It is NOT the case for special orthogonal groups, really need
to pick up a particular regular nilpotent orbit.
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Geometric multiplicity formula: definition of ¢,

> Nileg(s0(V)) # 0 iff. (V,q) is quasi-split.
For dim V' is odd or < 2, |Nilyeg(s0(V))| = 1.
» For dimV =2mis even and > 4, set
NV — F*/F*2 split
Im(gan)/F*?, non-split.
Then NV < Nilyeg(s0(V)).
» Therefore

Niliex (g) < NV, dimV is even > 4,
Hreg8 N dim W is even > 4.
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» Recall V=W (v) & Z.
> Set 19 = g(vp). When dim V is even > 4, vy € N'V; When
dim W is even > 4, —1yp e NW.
» For x € Treg € T, set V, (resp. W) = ker(1 —x) in V (resp.
wW).
» Then
G = G x G"

with G/ = SO(V/) x SO(W.), G’ = T x T.



Geometric multiplicity formula: definition of ¢,

» Recall V=W (v) & Z.
> Set 19 = g(vp). When dim V is even > 4, vy € N'V; When
dim W is even > 4, —1yp e NW.
» For x € Treg € T, set V, (resp. W) = ker(1 —x) in V (resp.
wW).
» Then
Gy =G, x G/
with G, = SO(V/) x SO(W!), G = T x T.
» When G, is quasi-split, set
Cr,0,,, dim Vg >4 even
cr(x) = {cmouo, dim W, > 4 even
Cr,Oreg ) otherwise.



The proof

The following properties are needed for ¢ a tempered L-parameter.

STAB For any a € HY(F, H),

Oup= >  On

meN%a ()

is stable.

TRANS For o € HY(F, H), ©,,, is the transfer of (G, )0, where
e(Gy) € Bro(F) is the Kottwitz sign. Bro(F) = {£1} if
F #C.

WHITT For G quasi-split and every O € Nil;g(g), there exists a
unique representation in M¢(y) admitting a Whittaker model
of type O.



The proof

» For F Archimedean, LLC is known by R. Langlands, [STAB]
and [TRANS] is known by D. Shelstad, and [WHITT] follows
from B. Kostant and D. Vogan.
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The proof

» For F Archimedean, LLC is known by R. Langlands, [STAB]
and [TRANS] is known by D. Shelstad, and [WHITT] follows
from B. Kostant and D. Vogan.

» For F p-adic, LLC is known from Arthur for quasi-split special
orthogonal groups (need refinment for SO3,).

» For non quasi-split special orthogonal groups it is expected to
follow from the last chapter of Arthur's book.



The proof

Lemma (L.)
For any O € Nil,e(gx), define

Cp0(x) = Z cr,0(x).

meNC(p)
Then
Cp,0(x) = cp0r(x)
for any O, 0" € Nilyeg(gx)-
In particular,
D (x) ¢, 0(x) =IW(Gy, Taax)| ™
l D¢ (x' 0.(x).
im <) > (x')

x'eT, F
ad x(F) ren6 ()



The proof
>

Z m(7) =

aEHl(F,H) TE€MGa ()

/rstab(G,H) C“"(X){ > > e(Ga)}dx.

OéeHl(F,H) yer(Ga’HOé)zyNstabX



The proof

| 2
Z m(m) =
a€H(F,H) meNCa(yp)
/ ch){ > > e(GoJ}dX-
rstab(GvH) aeHl(F,H)yer(Ga,Ha):yNstabX
| 2

Z Z e(Gy) =0

aGHl(F,H) yer(Ga,Ha)yy"‘stabX

unless x = 1.



The proof

| 2
Z m(m) =
acH(F,H) meN%a (o)
/ c@(x){ 3 3 e(Ga)}dx.
rStab(G’H) OzEHl(F,H) yer(Ga,Hoz):yNstabX
| 2
Z Z e(G,) =0
O(GHl(F,H) yer(GouHoz)nystabX
unless x = 1.
| 2

Z Z m(m) = c,(1) = 1.

a€HI(F,H) meNSa (p)

where the last identity follows from F. Rodier when F is
p-adic, and H. Matumoto when F is Archimedean.



Geometric expansion

Theorem (L.)
For f € Cscusp(G(F)), set

Jgeom () = / cr(x)DC(x)Y2A(x) "2 dx.
r(G,H)

Then Jgeom(f) is absolutely convergent, and

J(f) = Jgeom(f).
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Geometric expansion: definitions

> Set
Br(x) = (=1)%~ M D€ (x) "2 (x, F).
Then 6¢(x) is conjugation invariant.

> |t is a quasi-character, i.e.

lim D€ (xeX)'/20;(xeX) = D% (x)'/? Z cefvo(x)f(O,X).
X—0
OeNilreg(gx)
» Define
Cor,0,0  diM V] > 4 even
cr(x) = {c@f’oyo, dim W, > 4 even
COr,Oreg> otherwise.
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Geometric expansion: localization

» By partition of unity,

neighborhood of x = 1
neighborhood of x =1

supp 6¢ C {
» For x € SO(W)ss, when x # 1,
(GXa HX?§X) = (G>/<7 H>/<7§>/<) X (G>,</> H>/<,a 1)'

(G, H., &) is a GGP triple of smaller dimension, and
(GI,HI, 1) is A: HY < HI x H! = Gl

» Induction on dim G and Arthur’s local trace formula.
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descent to Lie algebra variants J4¢ (£) and JYe¢(f).
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Geometric expansion: Lie algebra variant

» For supp ¢ C neighborhood of x = 1, via exponential,
descent to Lie algebra variants J4¢ (£) and JYe¢(f).

geom
» Jseom(f) contains asymptotic of weighted orbital integrals
near singular locus, but Arthur’s local trace formula only has
regular semi-simple locus. Cannot compare directly.
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possible singularities,
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Geometric expansion: Lie algebra variant

» Perform a Fourier transform on h = LieH to resolve the
possible singularities,

Kme(f,x):/h FlgXg 1 )er (X)dX /:W Flg~'Xg)dX.

JHe(f) = / dg /_ Flg ' Xg)dX.
H(F)\G(F) =+ht
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Geometric expansion: Lie algebra variant

» After truncation and changing integration order, compare with
Arthur's weighted orbital integrals.

» For f € Sscusp(9(F)),
JHe(f) = / D (X)M20(X)dX.
F(=Z+bt)

» (= +bht) = G(F)-conjugacy classes of regular semi-simple
elements in = + ht.
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Geometric expansion: Lie algebra variant

» Take Fourier inversion back for J“€(f).

» By Fourier transform for quasi-characters (Beuzart-Plessis),
b = /r o DO XX Yax.
9

> j(X,-) = F(J(X,-)) and

lim  DO(X,tY)j(X,Y)=DC(V)"2 Y To(X)0,).
teF*x2 t—0 -
O€Nilreg(g)

(Shalika when F is p-adic, Beuzart-Plessis when F
Archimedean)



Geometric expansion: Lie algebra variant

» Taking the regular germ, for any O € Nil,¢4(g),

&,0(0) = /r o DO X To(X)ax.



Geometric expansion: Lie algebra variant

» Taking the regular germ, for any O € Nil,¢4(g),
cr0(0) = | DO 0 To(X)ax
g

» Need explicit formula for I'o(X).



Regular germ formula

Theorem (L.)

For G a quasi-split reductive algebraic group, X € g"°(F) and
O € Nilyeg(g), set T = Gx. Then

1, inv(X)inv(Tg) = invr, (O),
Fo(X) = {0, otherwise.

When F is p-adic the result was already proved by D. Shelstad.



Regular germ formula

» Fix an F-splitting for G.
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factor Ag.



Regular germ formula

» Fix an F-splitting for G.

» The invariants inv(T¢),inv(X) and inv7,(O) all lie in
HY(F, T¢).

» invy,(O) measures the difference between O and the regular
nilpotent determined by the fixed F-splitting.

» inv(T¢) is connected with the Langlands-Shelstad transfer
factor Ag.

» inv(X) is connected with the Langlands-Shelstad transfer
factor Ayj.



Relation with the Kostant's sections

Based on a result of Kottwitz, we also prove the following theorem.
Theorem (L.)

Fo(X) =1 if and only if the G(F)-orbit of X and O lie in the
G(F)-orbit of a common Kostant's section.

» Kostant constructed a section for g — g / G ~ t/W, whose
image in g contains only regular elements, and meets every
regular stable Ad(G)-orbit exactly once.
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are not necessarily semi-simple, e.g. regular nilpotent
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Relation with the Kostant's sections

Based on a result of Kottwitz, we also prove the following theorem.

Theorem (L.)

Fo(X) =1 if and only if the G(F)-orbit of X and O lie in the
G(F)-orbit of a common Kostant's section.

» Kostant constructed a section for g — g / G ~ t/W, whose
image in g contains only regular elements, and meets every
regular stable Ad(G)-orbit exactly once.

> gt :={X € g| dimCenty(X)=dimt}. Regular elements
are not necessarily semi-simple, e.g. regular nilpotent
elements.

» The restriction of g — t/W to an Ad(G)-orbit of a Kostant's

section is a smooth submersion. The measures on the fibers
are given by the relevant orbital integrals.
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» {0f] f € Sscusp(g(F))} is dense in the space of
quasi-characters on g(F) when F =R or p-adic. Moreover,
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Geometric expansion: Lie algebra variant

» {0f] f € Sscusp(g(F))} is dense in the space of
quasi-characters on g(F) when F =R or p-adic. Moreover,
0 = 07 (Beuzart-Plessis).

» So reduce to show for any quasi-character 6,

JLie (0) JLle (9)

geom
with
JLle / 1/29( )d
r( +hl)
Jsu(0) = | X)DS(X)V2 (X)X,
Lle(G H)



Geometric expansion: Lie algebra variant

> By homogeneity of J%¢(0) and JLi¢ (), i.e.

geom

Jie (0x) = [AP(©)2 ke ()

geom

where 0, (X) = 0(A\71X),
we can show:

JH0) — JEsL(0) = Y coco(0)
O€Nilreg(g)

for some constant cp € C.



Geometric expansion: Lie algebra variant

> By homogeneity of J%¢(0) and JLi¢ (), i.e.

geom

Jie (0x) = [AP(©)2 ke ()

geom

where 0, (X) = 0(A\71X),
we can show:

JH0) — JEsL(0) = Y coco(0)
O€Nilreg(g)

for some constant cp € C.
>

o) = [ PP OO (X)ax.
g



Geometric expansion: Lie algebra variant

» To prove that cp =0, for X € g™5(F) with

t$ NI(G, H) = {0},

~

attach it with quasi-character 0x = j(X,-) supported on t)G<,



Geometric expansion: Lie algebra variant

» To prove that cp =0, for X € g™5(F) with
kNG, H) = {0},

attach it with quasi-character fx :f(X, -) supported on t)cé,
» In particular, ¢, 0(0) = To(X), and

Lie
Jgeom
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Geometric expansion: Lie algebra variant

» To prove that cp =0, for X € g™5(F) with
kNG, H) = {0},

attach it with quasi-character fx :f(X, -) supported on t)cé,
» In particular, ¢, 0(0) = To(X), and

. Fo(X),  |Nileg(g)| =1,
JHe (0x) = { Fon, (X),  dim V even > 4.
Fo_,,(X), dimW even > 4.
» Similarly,

JLie(e ) — CGX,O(O) = rO(X)) X S = + hl7 rO(X) = 1)
X 0, Otherwise,



Geometric expansion: Lie algebra variant

> When [Nileg(g)| = 1, for X € t3f, To(X) = 1 identically, and
X € =+ b, therefore

Jpaen(0x) = JMe(0x) = 1.

Hence cp = 0.
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O_,,) is the unique regular nilpotent orbit O in Nil;eg(g),
such that if Fo(X) = 1, then X € = + b+,



Geometric expansion: Lie algebra variant

> When [Nileg(g)| = 1, for X € t3f, To(X) = 1 identically, and
X € =+ b, therefore

Jpaen(0x) = JMe(0x) = 1.

Hence cp = 0.

» In general, when dim V (resp. dim W) even > 4, O,, (resp.
O_,,) is the unique regular nilpotent orbit O in Nil;eg(g),
such that if Fo(X) = 1, then X € = + b+,

» Therefore cp = 0 for any O € Nil,¢q(g).



Geometric expansion: Lie algebra variant

» To prove the above claim, we need explicit formula for o (X),
and find relation between the formula and X € = + .



Geometric expansion: Lie algebra variant

» To prove the above claim, we need explicit formula for o (X),
and find relation between the formula and X € = + .

» We compute the invariants % explicitly for any

X € g™ without eigenvalue 0, following the work of
Waldspurger.



Thank you!



