Currents on Lubin-Tate space

Andreas Mihatsch (Bonn/MIT)

Columbia University - Automorphic Forms and Arithmetic Seminar

April 10, 2020

- Motivating intersection problem
- $oldsymbol{0}$ δ -forms on \mathbb{R}^n
- $oldsymbol{3}$ δ -forms on non-archimedean spaces
- $oldsymbol{4}$ δ -forms and formal intersection theory
- 5 Computation on ∞-level LT-space

- Motivating intersection problem
- \bigcirc δ -forms on \mathbb{R}^n
- \odot δ -forms on non-archimedean spaces
- $oldsymbol{4}$ δ -forms and formal intersection theory
- 5 Computation on ∞-level LT-space

Lubin-Tate space

- ullet Fix $h\geq 1$, set $\mathbb{F}:=ar{\mathbb{F}}_{m{
 ho}}$ and $reve{\mathbb{Z}}_{m{
 ho}}:=W(\mathbb{F})$
- ullet \mathbb{X}/\mathbb{F} a formal group of height h and dimension 1
- Lubin-Tate space is its formal deformation space

$$\mathcal{M}(\operatorname{Spec} R) = \left\{ (X, \rho) \left| \begin{matrix} X/R \text{ of dimension 1 and height } h \\ \rho : X \otimes_R R/p \dashrightarrow \mathbb{X} \otimes_{\mathbb{F}} R/p \text{ of height 0} \end{matrix} \right. \right\}$$

- $\mathcal{M} \cong \operatorname{\mathsf{Spf}} reve{\mathbb{Z}}_p[[t_1,\ldots,t_{h-1}]]$
- ullet End $(\mathbb{X})\cong\mathcal{O}_D$, where D/\mathbb{Q}_p is the CDA of invariant 1/h
- ullet So $\mathcal{O}_D^{ imes}$ acts as

$$\gamma(X,\rho)=(X,\gamma\circ\rho)$$

Quadratic CM-cycles

Arise from analogous definition for quadratic E/\mathbb{Q}_p

• h even and E/\mathbb{Q}_p unramified quadratic, fix

$$\iota: \mathcal{O}_{\mathsf{E}} \longrightarrow \mathsf{End}(\mathbb{X})$$

• Lubin-Tate space for E and h/2

$$\mathcal{N}(\operatorname{Spec} R) = \left\{ (X, \iota, \rho) \left| \begin{array}{l} (X, \rho) \text{ as above, } \iota : \mathcal{O}_E \to \operatorname{End}(X) \\ \text{s.th. } \rho \text{ is } \mathcal{O}_E\text{-linear} \end{array} \right. \right\}$$

• Forgetful map is a closed immersion

$$\mathcal{N}\hookrightarrow\mathcal{M}$$

and
$$\mathcal{N} \cong \operatorname{\mathsf{Spf}} \breve{\mathbb{Z}}_p[[s_1,\ldots,s_{h/2-1}]].$$

Intersection number

Let $C := Cent_D(E)$. For $\gamma \in \mathcal{O}_C^{\times} \backslash \mathcal{O}_D^{\times} / \mathcal{O}_C^{\times}$ regular semi-simple, set

$$\operatorname{Int}(\gamma) := \operatorname{len}_{\mathbb{Z}_n} \mathcal{O}_{\mathcal{N} \cap \gamma \mathcal{N}}.$$

Analytic expression for $Int(\gamma)$

Theorem (Q. Li '18, M. '20)

There is a constant c such that for all γ ,

$$\operatorname{Int}(\gamma) = c \cdot \int_{GL_h(\mathbb{Z}_p)} |\operatorname{Res}(\gamma, g)|^{-1} dg.$$

 $\operatorname{\mathsf{Res}}(\gamma,g)$ is the resultant of the invariant polynomials of γ and g.

Idea (Q. Li): Consider analogous intersection problems for higher level

• \mathcal{M}_n moduli of (X, ρ, α) , where α Drinfeld level- p^n -structure

$$\alpha: (\mathbb{Z}_p/p^n)^{\oplus h} \longrightarrow X[p^n]$$

ullet Analogously define $\mathcal{N}_n.$ Choice of $\mathcal{O}_E^{h/2}\cong \mathbb{Z}_p^h$ yields

$$\mathcal{N}_n \hookrightarrow \mathcal{M}_n$$
.

Analytic expression for $Int(\gamma)$

- ullet $GL_h(\mathbb{Z}_p)$ acts on \mathcal{M}_n
- For $(\gamma, g) \in \mathcal{O}_D^{\times} \times GL_h(\mathbb{Z}_p)$, consider $\operatorname{len}_{\mathbb{Z}_p} \mathcal{O}_{\mathcal{N}_n \cap (\gamma, g) \mathcal{N}_n}$
- Projection formula implies

$$\langle \mathcal{N}, \gamma \mathcal{N} \rangle = c \cdot \int_{GL_h(\mathbb{Z}_p)} \langle \mathcal{N}_n, (\gamma, g) \mathcal{N}_n \rangle dg.$$

• Key: $\langle \mathcal{N}_n, (\gamma, g) \mathcal{N}_n \rangle$ stabilizes for $n \to \infty$, limit equals $|\operatorname{Res}(\gamma, g)|^{-1}$

Today: Compute the limit in the generic fibers of \mathcal{M}_n and \mathcal{N}_n

 Motivation/Hope is that methods from generic fiber can be applied to similar intersection problems of moduli spaces of p-divisible groups.
 There are usually no good formal models of these spaces with arbitrary level structure; LT-space is very special in this regard.

- Motivating intersection problem
- $oldsymbol{0}$ δ -forms on \mathbb{R}^n
- \odot δ -forms on non-archimedean spaces
- $oldsymbol{4}$ δ -forms and formal intersection theory
- ⑤ Computation on ∞-level LT-space

Smooth (p,q)-forms on \mathbb{R}^n

Definition (Lagerberg, Chambert-Loir - Ducros '12)

The sheaf of smooth (p,q)-forms $\mathcal{A}^{p,q}$ on \mathbb{R}^n is

$$\mathcal{C}^{\infty} \otimes_{\mathbb{R}} \wedge^p (\mathbb{R}^n)^* \otimes_{\mathbb{R}} \wedge^q (\mathbb{R}^n)^* \ \ (\cong \mathcal{A}^p \otimes_{\mathcal{C}^{\infty}} \mathcal{A}^q) \, .$$

ullet There are operators $\partial, ar{\partial}$ and $\wedge,$ relations as in complex analysis

$$\omega \wedge \omega' = (-1)^{(p+q)(p'+q')} \omega' \wedge \omega$$
$$\partial(\omega \wedge \omega') = \partial\omega \wedge \omega' + (-1)^{p+q} \omega \wedge \partial\omega'$$
$$\partial\bar{\partial} = -\bar{\partial}\partial.$$

• There is an integral operator $\int: \mathcal{A}^{n,n}_c(\mathbb{R}^n) \to \mathbb{R}$,

$$\int f \partial x_1 \wedge \bar{\partial} x_1 \wedge \ldots \wedge \partial x_n \wedge \bar{\partial} x_n := \int_{\mathbb{R}^n} f dx_1 \wedge \ldots \wedge dx_n.$$

• If $F: \mathbb{R}^n \to \mathbb{R}^n$ is affine linear, then

$$\int F^*\omega = |\det F| \int \omega.$$

Tropical cycles on \mathbb{R}^n

Definition (Fulton-Sturmfels '97)

A tropical cycle of codimension c on \mathbb{R}^n is a pure c-codimensional, weighted rational polyhedral complex $(C, \{m_\sigma\}_{\sigma \in C^c})$ that is balanced.

- ullet C is a finite set of rational simplices, stable under \cap and taking faces
- ullet C generated by its c-codimensional simplices
- $m_{\sigma} \in \mathbb{R}$ weights, σ maximal
- Let $\mathbb{L}_{\sigma} \subseteq \mathbb{Z}^n$ defined by affine linear space spanned by σ . Balanced means that for all $\tau \in \mathcal{C}^{c+1}$

$$\sum_{\tau \subset \sigma} m_{\sigma} n_{\sigma,\tau} = 0 \text{ in } \mathbb{Z}^n/\mathbb{L}_{\tau}.$$

Here, $n_{\sigma,\tau} \in \mathbb{L}_{\sigma}/\mathbb{L}_{\tau}$ is a generator pointing from τ into σ .

Hypersurfaces

Any $\phi:\mathbb{R}^n \to \mathbb{R}$ that is continuous and p.w. linear with finite rational polyhedral complex of definition \mathcal{D} defines a tropical hypersurface $\partial \bar{\partial} \phi := (\mathcal{D}^1, m_\tau)$ as follows:

$$\mathbf{m}_{\tau} = \langle \nabla \phi_{\sigma}, \tilde{\mathbf{n}}_{\sigma, \tau} \rangle - \langle \nabla \phi_{\sigma'}, \tilde{\mathbf{n}}_{\sigma, \tau} \rangle$$

Here, $\tau = \sigma \cap \sigma'$ and $\tilde{n}_{\sigma,\tau}$ lifts $n_{\sigma,\tau}$.

Tropical Intersection Product

Let $TZ^c(\mathbb{R}^n)$ be the group of tropical cycles of codimension c, up to refinement.

Theorem (Fulton-Sturmfels '97)

There is an intersection product

$$TZ^{c}(\mathbb{R}^{n}) \times TZ^{c'}(\mathbb{R}^{n}) \longrightarrow TZ^{c+c'}(\mathbb{R}^{n})$$

given by the fan displacement rule. It makes TZ^{\cdot} into a commutative ring.

- Given $\mathcal C$ and $\mathcal C'$, refine them s.th. $\mathcal C\cup\mathcal C'$ is a polyhedral complex, choose v small generic
- Set $\mathcal{C}\cdot\mathcal{C}'$ as $(\mathcal{C}\cup\mathcal{C}')^{\geq c+c'}$ with multiplicities

$$m_{\tau} = \sum_{(\sigma,\sigma') \in \mathcal{C}^{c} \times \mathcal{C}'^{c'}, \ \sigma \cap \sigma' = \tau, \ \sigma \cap (\sigma' + \nu) \neq \emptyset} m_{\sigma} m_{\sigma'} [\mathbb{Z}^{n} : \mathbb{L}_{\sigma} + \mathbb{L}_{\sigma'}].$$

• E.g. $(\partial \bar{\partial} \max\{x_1,\ldots,x_n\})^{n-1}=\{x_1=\cdots=x_n\}$ with multiplicity 1

δ -forms on \mathbb{R}^n

- ullet Sheaf of currents $\mathcal{D}^{\cdot,\cdot}(U):=\mathsf{Hom}_{cont}(\mathcal{A}^{n-\cdot,n-\cdot}_c(U),\mathbb{R})$
- Contains both $\mathcal{A}^{\cdot,\cdot}$ and TZ^{\cdot} via

$$\omega \longmapsto [\omega] = \left[\eta \mapsto \int \omega \wedge \eta \right]$$
$$(\mathcal{C}, \{m_{\sigma}\}) \longmapsto \delta_{\mathcal{C}} = \left[\eta \mapsto \sum_{\sigma \in \mathcal{C}^{c}} \int_{\sigma} \eta |_{\sigma} \right]$$

• For $\omega \in \mathcal{A}^{\cdot,\cdot}$ and $\mathcal{C} \in TZ^{\cdot}$, may combine to $\omega \wedge \delta_{\mathcal{C}}$

Definition (Gubler-Künnemann '16)

The sheaf of δ -forms $\mathcal{B}^{\cdot,\cdot}$ is the subsheaf of $\mathcal{D}^{\cdot,\cdot}$ generated by all $\omega \wedge \delta_{\mathcal{C}}$. It is stable under $\partial, \bar{\partial}$ and there is a \wedge -product, extending \wedge on $\mathcal{A}^{\cdot,\cdot}$ and the tropical intersection product on TZ^{\cdot} .

Extension given by $(\omega \wedge \delta_{\mathcal{C}}) \wedge (\omega' \wedge \delta_{\mathcal{C}'}) := (\omega \wedge \omega') \wedge \delta_{\mathcal{C} \cdot \mathcal{C}'}$.

- Motivating intersection problem
- \bigcirc δ -forms on \mathbb{R}^n
- $oldsymbol{3}$ δ -forms on non-archimedean spaces
- $oldsymbol{4}$ δ -forms and formal intersection theory
- 5 Computation on ∞-level LT-space

Tropicalization of varieties

- ullet K non-archimedean field, $|\cdot|:K o\mathbb{R}_{\geq 0}$ non-trivial, $u:=-\log|\cdot|$
- Continuous surjective map $v: \mathbb{G}_{m,K}^{an,n} \longrightarrow \mathbb{R}^n$

Theorem (Bieri-Groves '84, ...)

Let $X \hookrightarrow \mathbb{G}^n_{m,K}$ be a closed subvariety, pure of dimension d. Then $\nu(X^{an}) \subset \mathbb{R}^n$ is naturally a d-dimensional tropical cycle.

- ullet For X as above, let ${\mathcal C}$ be complex of definition
- For $\sigma \in \mathcal{C}_d$, choose affine linear $q: \mathbb{G}_m^n \longrightarrow \mathbb{G}_m^d$ such that $q|_{\sigma}$ is injective. Set $X^{an}(\sigma) := X^{an} \cap (v \circ q)^{-1}(\sigma)$ and

$$m_{\sigma} := [\mathbb{Z}^d : q(\mathbb{L}_{\sigma})]^{-1} \cdot \deg(X^{an}(\sigma) \to \mathbb{G}_m^{an,d}(\sigma)).$$

δ -forms on varieties

X/K a variety

- Tropical Chart is a tuple (U, f, V), where $U \subset X$ is open, $f: U \to \mathbb{G}_m^n$ a map and $V \subseteq X^{an}$ of the form $(v \circ f^{an})^{-1}(\Omega)$ for some open $\Omega \subset \mathbb{R}^n$
- Morally, for $\omega, \omega' \in \mathcal{B}^{\cdot,\cdot}(\Omega)$, the pull backs to U^{an} agree if

$$\omega|_{(v \circ f^{an})(V)} = \omega'|_{(v \circ f^{an})(V)}$$

Definition (Gubler-Künnemann '16)

- 1) A presented δ -form on $W \subset X^{an}$ is given by tropical charts $\{(U_i, f_i, V_i)\}$ such that $W = \bigcup V_i$ together with δ -forms ω_i on \mathbb{R}^{n_i} that agree on overlaps.
- 2) A δ -form is a presented δ -form up to local agreement.
 - ullet δ -forms form a sheaf $\mathcal{B}^{\cdot,\cdot}$ on X^{an}
 - Operators $\wedge, \partial, \bar{\partial}, \int$ are computed in charts

Tropicalization of Lubin-Tate space

- ullet Over \mathcal{M} , fix coordinate on universal formal group, $\mathcal{X}\cong\operatorname{\mathsf{Spf}}\mathcal{O}_{\mathcal{M}}[[x]]$
- Level structure $\alpha:\mathcal{M}_n\longrightarrow\mathcal{X}^h$ then induces a map

$$M_n := \mathcal{M}_n^{an} \longrightarrow \mathbb{G}_{m,K}^{an,h}$$

- Then $(v \circ (\alpha_1, \dots, \alpha_h))(M_n) \subset (0, \infty)^n$ is naturally a tropical cycle
- Support determined by possible Newton polygons for [p]
- May choose $\mathcal{M} \cong \operatorname{\mathsf{Spf}} \breve{\mathbb{Z}}_p[[t_1,\ldots,t_{h-1}]]$ such that

Example h = 2

Integral of a specific form

Proposition

Set $\phi:=\min\{v(\alpha_1),\ldots,v(\alpha_h)\}$, which is a p.w. linear function on M_n . Then $\partial\bar\partial\phi$ is a (1,1)- δ -form and $\omega:=\phi(\partial\bar\partial\phi)^{h-1}$ has compact support with

$$\int_{M_n}\omega=1.$$

- Motivating intersection problem
- \bigcirc δ -forms on \mathbb{R}^n
- $oxed{3}$ δ -forms on non-archimedean spaces
- Φ-forms and formal intersection theory
- ⑤ Computation on ∞-level LT-space

Analytic intersection numbers

X separated analytic space over K of dimension d

 \bullet Sheaf of currents on X is

$$\mathcal{D}^{\cdot,\cdot}(W) := \mathsf{Hom}_{cont}(\mathcal{B}^{d-\cdot,d-\cdot}_c(W),\mathbb{R})$$

ullet $Z\subset X$ Zariski closed, of codimension c defines a (c,c)-current

$$\delta_Z:\eta\longmapsto\int_Z\eta|_Z$$

Definition

A Green current for Z is an element $h \in \mathcal{D}^{c-1,c-1}(X)$ such that

$$\omega(Z, h) := \partial \bar{\partial} h + \delta_Z \in \mathcal{B}^{c,c}(X).$$

• For (Z_1,h_1) and (Z_2,h_2) such that $c_1+c_2=d+1$ and $Z_1\cap Z_2=\emptyset$, we define

$$\langle (Z_1,h_1),(Z_2,h_2) \rangle := \int_{Z_2} h_1|_{Z_2} + \int_X \omega(Z_1,h_1) \wedge h_2.$$

Formal schemes define Currents

- Assume \mathcal{O}_K noetherian, $\pi \in \mathcal{O}_K$ uniformizer, $v(\pi) = 1$
- ullet $\mathfrak{X}/\operatorname{\mathsf{Spf}}\mathcal{O}_{\mathcal{K}}$ of dimension (d+1), formally of finite type, flat, separated

Definition

For $\mathcal{Z}\subset\mathfrak{X}$ closed formal subscheme, $\mathcal{Z}=V(\mathcal{I})$, set

$$\psi_{\mathcal{Z}}: |\mathfrak{X}^{an}| \longrightarrow \mathbb{R} \cup \{\infty\}, \ x \longmapsto \min\{v(f(x)) \mid f \in \mathcal{I}_{\bar{x}}\}.$$

Theorem (M.)

Assume $\mathcal Z$ is of codimension c and a complete intersection or a local complete intersection and $\mathfrak X^{an}$ projective. Then $h_{\mathcal Z}:=\psi_{\mathcal Z}\cdot(\partial\bar\partial\psi_{\mathcal Z})^{c-1}$ is a Green current for $\mathcal Z^{an}$.

Intersection numbers

Proposition (M.)

 $\mathfrak{X}/\operatorname{Spf}\mathcal{O}_K$ as above, $\mathcal{Z}_1,\mathcal{Z}_2\subset\mathfrak{X}$ local complete intersections of pure codimensions $c_1+c_2=d+1$. Assume \mathcal{Z}_1 flat over \mathcal{O}_K and $\mathcal{Z}_1\cap\mathcal{Z}_2$ artinian. Then

$$\mathrm{len}_{\mathcal{O}_K}\mathcal{O}_{\mathcal{Z}_1\cap\mathcal{Z}_2} = \int_{\mathcal{Z}_1^{an}} h_{\mathcal{Z}_2}|_{\mathcal{Z}_1^{an}}.$$

Lubin-Tate situation is a complete intersection:

- ullet $h_n \in \mathcal{D}^{h/2-1,h/2-1}(M_n)$ Green current defined by $\mathcal{N}_n \subset \mathcal{M}_n$
- Then

$$\langle \mathcal{N}_n, (\gamma, g) \mathcal{N}_n \rangle = \int_{N_n} (\gamma, g)^* h_n |_{N_n}.$$

- Motivating intersection problem
- \bigcirc δ -forms on \mathbb{R}^n
- $oxed{3}$ δ -forms on non-archimedean spaces
- $oldsymbol{4}$ δ -forms and formal intersection theory
- 5 Computation on ∞-level LT-space

Green current at ∞ level

ullet $M_{\infty}:= \lim M_n$ as adic space. Then

$$\mathcal{B}_c(M_\infty) = \lim_{\stackrel{ o}{
ightarrow}} \mathcal{B}_c(M_n)$$
 and $\mathcal{D}(M_\infty) = \lim_{\stackrel{ o}{
ightarrow}} \mathcal{D}(M_n).$

- Integral not intrinsic, set $\int_{M_\infty}:=\left([M_n:M]^{-1}\int_{M_n}
 ight)\in\mathcal{D}^{0,0}(M_\infty).$
- ullet Similarly $\int_{\mathcal{N}_{\infty}}$, defining $\delta_{\mathcal{N}_{\infty}}\in\mathcal{D}^{h/2,h/2}(\mathcal{M}_{\infty})$

$$\delta_{N_{\infty}}(\eta) \stackrel{n \gg 0}{=} [N_n : N]^{-1} \int_{N_n} \eta = -[N_n : N]^{-1} \int_{M_n} h_n \wedge \partial \bar{\partial} \eta$$
$$= -[M_n : M] \cdot [N_n : N]^{-1} \int_{M_{\infty}} h_n \wedge \partial \bar{\partial} \eta$$

Proposition

The limit $h_{\infty}:=\lim_{n\to\infty}[M_n:M]\cdot[N_n:N]^{-1}h_n$ exists as a δ -form on $M_{\infty}\setminus N_{\infty}$ and defines Green current for N_{∞} .

Our aim is to compute $\int_{N_{\infty}} (\gamma, g)^* h_{\infty}$.

Scholze-Weinstein description

• $\tilde{\mathbb{X}} := \varinjlim_{\leftarrow} \mathbb{X}$ universal cover, lifts over $\mathsf{Spf}\, \breve{\mathbb{Z}}_p$:

$$\tilde{\mathbb{X}}(R) := \lim_{\leftarrow} X(R) \stackrel{\cong}{\longrightarrow} \tilde{\mathbb{X}}(R/p).$$

 $\bullet \ \mathbb{V}:=\tilde{\mathbb{X}}_{\eta}^{\mathit{ad}} \ \text{its generic fiber, isomorphic to} \ \{|t|<1\}\subseteq \mathsf{Spa}\, \breve{\mathbb{Q}}_{p}\langle t^{1/p^{\infty}}\rangle.$

Theorem (Scholze-Weinstein '13)

There is a closed immersion $M_\infty\hookrightarrow \mathbb{V}^h$ given by

$$(X, \rho, (\alpha_n)_{n\geq 1}) \longmapsto (\rho(\alpha_n \bmod p^{\epsilon}))_n \in \tilde{\mathbb{X}}(\mathcal{O}_C/p^{\epsilon})^h.$$

• $\mathcal{O}_E \otimes_{\mathbb{Z}_p} \mathcal{O}_E$ acts on \mathbb{V}^h , decomposing it $\mathbb{V} \cong \mathbb{V}^+ \times \mathbb{V}^-$

Main Result

Theorem (M.)

For $(\gamma, g) \in \mathcal{O}_D^{\times} \times GL_h(\mathbb{Z}_p)$, γ regular semi-simple,

$$\int_{\mathcal{N}_{\infty}} (\gamma, g)^* h_{\infty}^-|_{\mathcal{N}_{\infty}} = \frac{[\mathcal{M}_1 : \mathcal{M}]}{[\mathcal{N}_1 : \mathcal{N}]^2} |\operatorname{Res}(\gamma, g)|^{-1}.$$

- First verify $h_{\infty} = [M_1:M]\cdot [N_1:N]^{-1}\omega_{\infty}^-$
- $\bullet \ \, \mathsf{Key:} \ \, (\gamma,g)^*\phi_\infty^- = \min\left\{ v\big((g^+\gamma^- + g^-\gamma^+)\cdot(t_1^+,\dots,t_{h/2}^+)\big)\right\} \ \, \mathsf{implies}$

$$\int_{N_{\infty}}\omega_{\infty}^{-}=|\det(g^{+}\gamma^{-}+g^{-}\gamma^{+})|^{-1}\int_{N_{\infty}}\omega_{\infty}^{+}.$$

This uses tropical methods.

• Determinant is $|Res(\gamma, g)|^{-1}$, Integral is $[N_1 : N]^{-1}$ by our previous computation