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Introduction

In this talk, we will

@ recall the definition of the stacks of shtukas and their cohomology
sheaves

o talk about the finiteness and smoothness properties of the
cohomology sheaves

Let X be a smooth projective geometrically connected curve over Iy,
charlF, = p. Let F be its function field.
Let G be a connected reductive group over F.

In the talk : to simplify, we only consider the case without level structure
(i.e. everywhere unramified) and we suppose that G is split.

Let G be the Langlands dual group of G over g, where £ # p.
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Let A be the ring of adeles of F and O be the ring of integral adeles. Let
Z; be the center of G. We fix a discrete subgroup = in Zg(A) such that
Z6(F)\Zs(A)/Zs(0)= is finite. When G is semisimple, we can take

We have the space of automorphic forms for the function field F :
C(G(F)\G(A)/G(0)=,Q¢) = Cc(Bung(Fq)/=,Qy)

where Bung is the classifying stack of G-bundles over X.

Example : G = GLj, the space of automorphic forms (here = ~ 7Z)
Cc(Picx(Fq)/=, Q¢) has finite dimension.

Example : G = SLp, X = P!, the space of automorphic forms
Cc(Bung,(Fq), Q) has infinite dimension (because there are infinitely
many rank 2 vector bundles of trivial determinant on X, such as

O(n) & O(—n)).
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Stacks of shtukas : example for G = GL;

I = {1,2, R ,k}, W = (W,'),'G[ with w; € Z.
The stack of shtukas associated to / and W is the fiber product (non
empty iff 3¢, w; = 0) :

Chtgr, j,w —— Picx L

Pi Lang's isogeny l'

Abel- i o
X/ bel-Jacobi PICX

(x)ier = Oxxs(D_ wixi)

For any S affine scheme over ¥y, Picx(S) = {£ line bundle on X xp, S},
TLo= (ldx < Frobs)" L, where Frobs is the absolute Frobenius over IFq

Chtery w(S) = {(xi)ier € X'( TL(Y ] wixi)}
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A shtuka is a S-point of the stack of shtukas. The points x; are called the
paws of the shtuka. The morphism p is called the morphism of paws.

Example : 1 ={1,2}, vy =1, wp = —1.

ChtGLh/’W(S) = {X1,X2 c X(S),[J 5 TL(Xl — X2)}
= {Xl,X2 S X(S),L — L(Xl) <~ 7—L(Xl — X2)}
= {Xl,Xz S X(S),L — L(—Xg) — 7—L(Xl — Xg)}

When [ is the empty set, X' = SpecFg, we have Chtg, g = Picx(Fq).
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Example of Drinfeld’s stacks of shtukas
G = GL,, I ={1,2}, W = StKISt" with St the standard representation of
G = GL, and St* its dual. In the following we note "G := (ldx x Frobg)" 9.

Cht(GlL’f){1 2},StIZSt*(S) = {x1,x2 € X(S), 90,91 : rk n vector bundles on

on X xg., S, Go ‘—>¢1 G1 &2 "Gy s.t. ¢1 isom outside xj, ¢ isom outside xo,
q
91/90 is an invertible sheaf on the graph of X1,

G1/7 9o is an invertible sheaf on the graph of x»}.

Cht&V 1 o) semser (S) = {x1. %2 € X(S), G5, Gh : rk n vector bundles

/

@
on X xp, S, Gp < 91 3 7Gp s.t. ¢} isom outside xo, ¢, isom outside x,
90/91 is an invertible sheaf on the graph of x»,

7Gp/ G} is an invertible sheaf on the graph of x; }.
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Chtgp, 1,2),stmse*(S) == {x1,x2 € X(S), Go : rk n vector bundle on

é . .
on X xp, S, G0 --» "0 s.t. ¢ isom outside x; and xo,
there exists a diagram Go --» G1 --» "Gp as above }
We have the forgeting morphism
(1,2) ™ 2
Chte/ 1oy semse — Chter, 12y stmses = X

((x1,%2),90 = G1 <= "S0) — ((x1,x2), G0 --* "Go) — (x1, x2)

Outside the diagonal of X2, 7 is an isomorphism. Fact : the morphism 7 is
small.

- 2,1
Similarly for Cht& ) 51 qumse — Chter, (1.2} stmse
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Stacks of shtukas : in general

Let /1 ={1,2,--- ,Ak} be a finite set. Let W be a finite dim Qg-linear
representation of g’. Suppose W = K, W;, with W; irreducible
representation of G of highest weight A;.

The stack of shtukas (defined by Drinfeld and Varshavsky) associated to /,
W and order (1,2,--- , k) is the following fiber product

1727"'7k
Cht(G,LW ) Bung

{ \L(Id,Frob)

Hecke(G’, w ) Bung x Bung

D Je -
(():90 -2 G-+ = G129 G) = (S0, 9k)

where Hecke(Gl’f]}"/"k) is the Hecke stack associated to / and W : ¢; is an

isomorphism outside x;j, the relative position of §;_; and G; at the formal
neighborhood of x; is bounded by J;.
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Chte iy M(S) = {(x)ier € X'(S), G091, , k-1 : G-bundles

on X xg, S, o —dil+ G —¢—2+ e -3 Gp g —¢1k+ "G s.t. ¢; as above.}

We have the forgeting morphism which is a small morphism
Chtg’ﬁW’m I ChtGJ,W
((xi), G0 ==+ G1 ==+ - -+ == Gk—1 -—* "So) — ((xi), G0 -—* "So)

In the following, to simplify, we will omit the upper index because the
results are true for any upper index.

Chtg jw is a Deligne-Mumford algebraic stack locally of finite type.

We define
ChtG7/7W@W/ = ChtG’/’W U ChtG’/,W/

We can define Chtg ; which is an inductive limit of algebraic stacks.
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Satake perverse sheaf over stack of shtukas
We have the morphism of paws

p: ChtG,I,W — XI

In general, the stack of shtukas Chtg v is not smooth. We have a
canonical perverse sheaf Satg ; w over Chtg jy, which comes from the
geometric Satake equivalence (Mirkovic-Vilonen).

When W is irreducible, Satg j w is isomorphic to the intersection complex
(with coefficient in Q, and the perverse normalization relative to X').
Example : when Chtg ;v is smooth and W irreducible,

Satg ;w = |C-sheaf = Qy[d], where d = dim Chtg ; y —dim X'.

Satc,;,wew = Satc,;,w €P Sate,,wr
Remark : we can directly define Satg j \w over Chtg ;. The stack Chtg ;w

is the support of Satg ;w.
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Harder-Narasimhan stratification

To simply the notation, suppose that G is semisimple. The stack of
shtukas Chtg ; w is locally of finite type but not necessarily of finite type.
Example : recall that Bung;,(Fg) is infinite.

One way to define the Harder-Narasimhan stratification : for any p
dominant coweight of G, we have an open substack in Bung :

Bun—” = {G-bundle Go, "the Harder-Narasimhan filtration" of Go < u}
We define the truncated stack of shtukas as the fiber product :

open

Chtg)j > Chtew (%), S0 -=> G1-+- -=> "S0)
o oo I
Bun (—>BunG 90

The open substack Chtg’ﬁ w is of finite type. And we have

Chtgw = UChtG,W
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Cohomology sheaves of the stack of shtukas

Recall that we have the morphism of paws p : Chtg ; ww — X!, We define
the degree j € Z truncated cohomology sheaf

" S . i
:HJG,I,‘\‘/V = RJp!(SatG’/,W |Cht§’l‘w)

It is a constructible Qg-sheaf over X!. Cohomology sheaves are
concentrated in degree j € [~d, d] where d = dim Chtg jy —dim X/

For u1 < po, we have an open immension

<p1 <2
ChtG,I,W — ChtG,I,W

It induces a morphism of sheaves

j, SH1 )
caw = HeTw-

We define the degree j cohomology sheaf as the inductive limit

-'HG,/,W = I'_rn>J-CG,I,W'
o
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Let 7, be the generic point of X!. Let 7 be a geometric point over n;. We
define the truncated cohomology group HG W J—CJC;-— and the

J gl
cohomology group H¢ = ‘{J{GJ,W‘W'

When | = () (empty set), W =1 (trivial representation), we have
Chtg g1 = Bung(F,) and Hg,@,l = C.(Bung(Fq), Qy).

In general, H{;,/,W is a Qg-vector space of possibly infinite dimension,
equiped with
@ an action of the Hecke algebra ¢ := C (G((O))\G(A)/G( ), Q¢) by
the Hecke correspondences, which doesn't preserve HG#W

@ an action of 71 (n,7;) (evident), which preserves HG 7";\/,

@ an action of the partial Frobenius morphisms (one of the key
properties of stack of shtukas), which doesn't preserve HJG%}V
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Partial Frobenius morphisms : an example

Consider Drinfeld’s stacks of shtukas. Let G = GL,,, | = {1,2},
W = 5t X St*. Let Frob : X — X be the absolute Frobenius.

(So Hg & S0) — (91 &g, i "91) — ("o & TGy & "50)

(12)  Frobuy (21)  Frobyy (1,2)
Chtc,/,w Chtc,/,w Chtc,/,w
» I »
X2 Frob{l} X2 Frob{Q} X2

(x1,x2) — (Frob(x1),x2) — (Frob(x1), Frob(x2))

Froby o Froby;y = total Frobenius on Cht(Glﬂ/V
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Partial Frobenius morphisms : in general
In general, let | = {1,2,--- , k} and W an irreducible representation of G

D1 @2 @3 Dk

D T e) K >
(S0 =5 G1 -5 - G125 7Gg) 1 (G1 ~=> Gp ~25 -+ X5 TG 55 TGy)

(1,2, ,k) _ Froby (2, ,k,1)
Chtg iy ———— Cht )

i I

XI Froby1y XI

(x1,x2, -+ ,xk) — (Frob(xy), x2, -+ , xk)

The composition Frobgyy o--- o Frobyy, is the total Frobenius on

(172"" 7k)
Chtgiw

We have a canonical morphism :

Frob{l} Sat(Gl Wk ) Sat(Gly’,%W’k) (%)



Recall that the morphism Cht(Gl’,Z"}{/"k) 54 Chtg j w is small. Fact : the

cohomology sheaves of stacks of shtukas are independent of the upper
index (the fact comes from a similar argument of small morphisms of
Beilinson-Drinfeld affine grassmanians). Thus the cohomological
correspondence for (x) induces a partial Frobenius morphism :

_ % j, < jy Spt-
F{l} . Frob{l} g—ij,/,lll}V — g’ijJf‘l}VR
Similarly, we have Fipy, -+, Fyiy.

The composition Fyyy oo Fgy is the total Frobenius morphism
(composed with an augmentation of p). The Fy;, are called the partial
Frobenius morphisms.

Taking the inductive limit, we have isomorphisms
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Drinfeld’'s lemma and the work of V. Lafforgue

Recall that F is the function field of X. Let n = Spec F be the generic
point of X and 7 = Spec F be a geometric point over 7. Note that
71(n,m) = Gal(F/F). We have a commutative diagram

1— 78 (g, m1) — w1 (01, 71) — % 1

¥ ¥
1—n5°(n,m) —m(n,m) —2' -1
Drinfeld's lemma (Z-version) (proved in [Drinfeld 89] and recalled in [V.
Lafforgue]) : if a finite type Z;-module is equiped with an action of
71(ny,77) and an action of the partial Frobenius morphisms, then it is

equiped with an action of 71(n,7)’.

V. Lafforgue defined Hecke-finite cohomology H ,W C HG w (asub

Qg-vector space). By the Eichler-Shimura relations, H HfW is an inductive

limit of finite type Zy,-modules which are equiped W|th an action of the

partial Frobenius morphisms. By Drinfeld's lemma, H W is equipped

with an action of Gal(F/F)’.
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Let Cc*P C Cc(Bung(Fq), Q) be the space of cuspidal automorphic

cusp - - . .
forms. CS"*P is of finite dimension.

Excursion operator associated to /, W and (7:);e; € Gal(F/F)" :

cusp __ p4O,Hf creation 0,Hf (vi)ier 0,Hf  annihilation O,Hf __ ~cusp
CC - HG,(Z),I HG,/,W HG,I,W HG,(Z),I - CC
where "creation" and "annihilation" are constructed by using the
functoriality of HZ , ,,, on W and the fusion (factorization).

Theorem (V. Lafforgue)

We have a canonical decomposition as .7#5-modules :

cusp o o (D) . .

g T = EBU:GaI(F/F)_)G(QZ)ﬁg, o is G(Qy)-conjugacy class of continuous,
semisimple, everywhere unramified morphisms, the decomposition is
compatible with the Satake isomorphism, i.e. for every place v of X, every
irr rep V of G, the Hecke operator associated to v and V acts on ), by

multiplication by the scalar Try (o(Frob,)).
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More on Drinfeld's lemma

Drinfeld’'s lemma (Qg-version) (proved by Drinfeld, written in my paper
[Finiteness]) : if a finite dim Qy-vector space is equiped with an action of
Weil(n;,77) and an action of the partial Frobenius morphisms, then it is
equiped with an action of Weil(n,7)’.

An easy generalization is :

Drinfeld’s lemma (Hecke-version) : if a finite type module over a local
Hecke algebra (or over any finitely generated commutative Q-algebra) is
equiped with an action of Weil(7;,77) and an action of the partial
Frobenius morphisms, then it is equiped with an action of Weil(n,7)’.
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Finiteness
My previous works : using the constant term morphisms for the
cohomology groups of stacks of shtukas, we prove

Theorem 1

HJ.G . w is @ module of finite type over a local Hecke algebra.

Then by Drinfeld's lemma (Hecke-version), we have
Proposition 1

Hé;,/ v is equiped with an action of Weil(n,7)’.

Besides, using the constant term morphisms, we also prove

Theorem 2
(a) The Qp-v.s. H2' equals to H25"P and they have finite dim.
J, cusp

(b) HJGC,”;{} = ®,.c(F/F) ey Hew)s, o satisfying the conditions. .
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A new proof

In my recent work, which doesn’t use the constant term morphisms at all,
| give another proof of

Proposition 1

HJé’/,W is equiped with an action of Weil(,7)’.

and we prove
Proposition 2

The restriction J{Jé,,’w y is constant over (77)! := 7 Xgg o X T

@

Remark : if fJ-CjG,hW is of the form X;,;F;, then both propositions are
trivial.
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Idea of the proof of Proposition 1 : we have g—ij,l,W‘m = Ii_mw 9, with

M= Y (Qierey) - (T] Frobly 76:70)

(ni)ieieN! iel i

where v; are closed points of X (chosen such that xcv; is included in the
smooth locus of J—CG, W) and % . is the local Hecke algebra on v;.

By the Eichler-Shimura relations, the sum is in fact over a finite number of
(ni)ies- Thus each M, is a module of finite type over a Hecke algebra.

By Drinfeld's lemma (Hecke-version), we prove Proposition 1.
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Idea of the proof of Proposition 2, we need a lemma :
for any geometric point X of (77)! and any specialisation map 7; — X in
(77)!, the induced morphism

is an isomorphism, i.e. U{JG / W‘(f), is ind-smooth.
A /r)

The proof of this lemma is very similar to V. Lafforgue’s proof of the fact
that iHG, Wlag — fJ-CG / W‘ is an isomorphism (which uses the

Eichler-Shimura relations).

Then, Proposition 1 implies that THJG | W‘(f): is constant.
0y n
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Smoothness
Theorem 3

The Q-sheaf J—CJ.G /. w is ind-smooth over X!

Ind-smooth means an inductive limit of smooth (i.e. lisse) Qg-sheaves.
Equivalently, for any geometric points X, ¥ of X/ and any specialisation
map X — ¥, the induced morphism 3 W)i — g, W‘f is an

E y b X

isomorphism.

Remark : if Chtg w is proper (for example : [Eike Lau, On degenerations
of -shtukas]), then 35y, is a constructible Q-sheaf. We know that
U—CJ.GJ’W is a smooth Qy-sheaf over X'.

Corollary

The action of Weil(n,7)' on J—CJ.G . wl_ factors through Weil(X,7)’
T
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Proof of smoothness : example of / singleton

Let / = {1} be a singleton. Let W be a representation of G. We have a
cohomology sheaf iHJG’{l}’W over X.

For any geometric point v of X (over a closed point v) and any
specialization map sp : 7 — V, we have an induced morphism

sp* JG’{1}7W — H.

7{1}’W’ﬁ

12

We want to prove that sp* is an isomorphism. This is equivalent to say
that :HJG,{I},W is ind-smooth over X.

Idea : construct an inverse of sp* using some creation and annihilation
operators and Proposition 2.

S e T )



Construction of a morphism g_ch,{l},W’n — J'Cjc,{l},w o

Let a be the composition of the morphisms :

@g’{273} creation operator

j_fj
{1,2,3}, WKW*KW Tx AL23}(7)

5Pz2} canonical morphism

g_f.l
{1,2,3}, WKW*XW ALY (@) xv

e2{1,2} | annihilation operator
ev

Qel; ® F (33w

2
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Construction of the morphism sp7,,

If g{il,zs},W&W*&W =F1 K F> K Fz with F1, F» and F3 Qy-sheaves over
X, then 5p’{‘2} is just

Id ®sp*@Id
—E T

91|ﬁ®?2’7®5ta|7 91|ﬁ®3'~2|ﬁ®3r3|7

In general, similar to Proposition 2, using the Eichler-Shimura relations
and Drinfeld's lemma (Hecke-version) we show that the restriction of
U{J{1,2,3},W®W*®W to the schemes T X7 X7, TXT XV, 7XVXT7and
V X 7] X i are constant sheaves. Then using a technical lemma, we
construct the morphism 5p?2}.
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Reminder about the "Zorro" lemma

Note that the composition

W®Qg 1d®6 W®W*®Wev®ld QZ@W

is the identity.

By the functoriality, we have
"Zorro" lemma
The composition of morphisms of sheaves over X :

eh{2:3} . eb {1,2}

CHJ{l},W ®Q ——— }C{{1,2,3},W®W*|ZW Af123}(X) - Q® j’6{3} w

is the identity.
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Proof of a o sp* = Id
The following diagram is commutative

sp*

J -J
Wy wl, ® Qe Wy wl, @ Qly
¢ 123} ei 123}

. sp7 .
{1}
3¢ . ] gy .
{1,2,3}, WRW*RW Af123}(7) {1,2,3}, WRW*RW xA{2:3} (V)

sp
* {2}
m

b,{1,2} -j
Cel 1231, wawrw ‘A{I,Z}(ﬁ)xv
eb){172}
J Id -J
el ® gy |, = Qly ® 43w,

The composition of the right vertical morphisms is a. By "Zorro" lemma,
the composition of the left vertical morphisms is the identity.
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Proof of sp* o = Id
The following diagram is commutative

-J -
%{1},w’ﬁ® Qly = f“{1},W)ﬁ® Qly
#,{2,3 42,3
) et (23

Pz ‘
_—
TIXEA{ZS}(V) {1,2,3},WX|W*|XW A{l,Z,B}(ﬁ)

-J
j'c{l,z,e,},w&W*xW

sp7
{2} *
Pi3y
I ) ‘ {12}
{1,2,3},W|ZW Xw A{1’2}(ﬁ)><ﬂ7 ev
et
sp*

j Jj
Qly ® Iy wl, el ® Kz w,
The composition of the left vertical morphisms is «. By "Zorro" lemma,
the composition of the right vertical morphisms is the identity.
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Some general remarks

1. When there is a level structure N C X, the cohomology sheaf .’}CJGW’,’W
is ind-smooth over (X ~ N)'.

2. The same argument of smoothness works for any reductive group over
F. (The constant term morphisms are only for split groups for the
moment.)

3. The same argument works for cohomology with Z,-coefficients (in the
place of Qy-coefficients).

4. Remark of Gaitsgory and Varshavsky : using the smoothness of f}CJG W
and the constant term morphisms, we can prove that when p is big

i<u
enough, HZ=H, is smooth over X/.
g G, LW
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5. We have
Rep(G') — Ind-Const(X'), W — He w

By the smoothness property, we have Rep(G') — Ind-Lisse(X'). This is
used in the proof of

Tr(Frob.., Shvpip(Bung)) = Cc(Bung(Fq), Q)

and
Tr(Frob* o Hecke,}W, Sth,-/p(BunG)) :> HG,I,W

in [Arinkin-Gaitsgory-Kazhdan-Raskin-Rozenblyum-Varshavsky].

6. When there is a level structure N, we have (example with / singleton)
ChtN,{l},W — Cht{1}7W ‘X\N — Cht{1}7W -~ Cht{1}7W ’v
\ ip lp lp
X~ N X ve N

We hope to prove that for m Saty (11w, the nearby cycles commute with
p1 (in progress).

32/ 32



