Twisted Automorphic Descent and Gan-Gross-Prasad Conjecture

Lei Zhang
National University of Singapore joint with Dihua Jiang

Automorphic Forms and Arithmetic Seminar, 2021/03/26

Notation

- F is a number field and \mathbb{A} is the ring of its adeles.
- G is a classical group defined over F :

$$
G \in\left\{\mathrm{SO}\left(V_{\mathfrak{n}}\right), \mathrm{U}\left(V_{\mathfrak{n}}\right), \mathrm{Sp}_{2 n}, \widetilde{\mathrm{Sp}_{2 n}}\right\}
$$

- $\mathfrak{g}:=\operatorname{Lie}(G)$ is the Lie algebra of G.
- $\mathcal{N}(\mathfrak{g})$ is the nilpotent cone of $\mathfrak{g}(F)$ consisting of all nilpotent elements in \mathfrak{g}.
The stable adjoint orbits in $\mathcal{N}(\mathfrak{g})$ are parameterized by the certain partitions of \mathfrak{n} (or $2 n$).

Unipotent subgroup and its character

Example
If $G=\mathrm{SO}(3,3)$, then the stable nilpotent orbits in $\mathcal{N}(\mathfrak{g})$ are parameterized by

$$
\left\{[5,1],[3,3],[3,1,1,1],[2,2,1,1],\left[1^{6}\right]\right\}
$$

For each F-rational nilpotent orbit $\mathcal{O} \subset \mathcal{N}(\mathfrak{g})$, one can associate
a unipotent subgroup $N_{\mathcal{O}}$ and a non-degenerate character $\psi_{\mathcal{O}}$ of

$$
N_{\mathcal{O}}(F) \backslash N_{\mathcal{O}}(\mathbb{A})
$$

(Fix a non-trivial additive character $\psi: F \backslash \mathbb{A} \rightarrow \mathbb{C}^{\times}$.)

Fourier coefficients of automorphic forms

For an automorphic form φ of $G(\mathbb{A})$, the Fourier coefficient of φ associated to \mathcal{O} is defined by

$$
\mathcal{F}_{\mathcal{O}}(\varphi)(h):=\int_{N_{\mathcal{O}}(F) \backslash N_{\mathcal{O}}(\mathbb{A})} \varphi(n h) \psi_{\mathcal{O}}^{-1}(n) \mathrm{d} n .
$$

Example

1. If \mathcal{O} is a regular nilpotent orbit (for the quasi-split groups), then $\mathcal{F}_{\mathcal{O}}(\varphi)$ is the Whittaker coefficient of φ.
2. Bessel-Fourier (Gelfand-Grev) coefficients for $\mathrm{SO}_{\mathfrak{n}}$ and $\mathrm{U}_{\mathfrak{n}}$: $\left[2 \ell+1,1^{\mathfrak{n}-2 \ell-1}\right]$
3. Fourier-Jacobi coefficients for $\mathrm{Sp}_{2 n}, \widetilde{\mathrm{Sp}}_{2 n}$ and $\mathrm{U}_{\mathfrak{n}}$: $\left[2 \ell, 1^{\mathfrak{n}-2 \ell}\right]$.

Example: Ginzburg-Rallis model

Let $G=\mathrm{GL}_{6}$ and consider the unipotent subgroup associated to [3, 3]:

$$
\left[3^{2}\right] \rightarrow\left(\begin{array}{ccc}
0 & I_{2} & 0 \\
0 & 0 & I_{2} \\
0 & 0 & 0
\end{array}\right), \quad N_{\mathcal{O}}=\left\{n=\left(\begin{array}{ccc}
I_{2} & A & B \\
0 & I_{2} & C \\
0 & 0 & I_{2}
\end{array}\right): A, B, C \in M_{2 \times 2}\right\}
$$

and the non-degenerated character $\psi_{\mathcal{O}}(n)=\psi(\operatorname{tr}(A+C))$.
The corresponding Levi subgroup M of $N_{\mathcal{O}}$ is $\left\{\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right): a_{i} \in \mathrm{GL}_{2}\right\}$.
The stabilizer $M_{\mathcal{O}}$ of M acting on $\psi_{\mathcal{O}}$ is $\{\operatorname{diag}(a, a, a)\} \cong \mathrm{GL}_{2}$.

- Ginzburg-Rallis model: $\left(\mathrm{GL}_{6}, \mathrm{GL}_{2}^{\triangle} \ltimes N_{\left[3^{2}\right]}, \psi_{\mathcal{O}}\right)$.
- The associated period integral of automorphic forms is related to $L\left(\frac{1}{2}, \pi, \wedge^{3}\right)$.

Partition $\left[2 \ell+1,1^{\mathfrak{n}-2 \ell-1}\right]$ of $\mathrm{SO}_{\mathfrak{n}}$

- $V_{\mathfrak{n}}$ is a quadratic space of dimension \mathfrak{n}, defined by

$$
J_{\mathfrak{n}}=\left(\begin{array}{llll}
& & & . \\
& & D^{1} & . \\
& . &
\end{array}\right) \text { and } D=\left(\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{\mathfrak{v}}
\end{array}\right)
$$

- $G=\mathrm{SO}\left(V_{\mathfrak{n}}\right)$ is a special orthogonal group.
- Take a partition of \mathfrak{n} :

$$
p_{\underline{\ell}}=\left[2 \ell+1,1^{\mathfrak{n}-2 \ell-1}\right] \rightsquigarrow \mathcal{O}_{p_{\underline{\ell}}} \text { (a stable nilpotent orbit). }
$$

- The associated nilpotent subgroup:

$$
N_{\underline{p}_{\ell}}=\left\{\left(\begin{array}{ccc}
z & y & x \\
0 & I_{\mathfrak{n}-2 \ell} & y^{\prime} \\
0 & 0 & z^{*}
\end{array}\right) \in \operatorname{SO}\left(V_{\mathfrak{n}}\right): z \in Z_{\ell}\right\}
$$

where Z_{ℓ} is the standard maximal (upper-triangular) unipotent subgroup of GL_{ℓ}.

Rational orbits and Characters

The Levi subgroup normalizing $N_{\underline{p}_{\ell}}$ is

$$
\underbrace{\mathrm{GL}_{1} \times \cdots \times \mathrm{GL}_{1}}_{\ell} \times \mathrm{SO}(W),
$$

where $W \subset V$ and $\operatorname{dim}(W)=\mathfrak{n}-2 \ell$.
Take an anisotropic vector $w_{0} \in W$ and construct an F-rational nilpotent orbit $\mathcal{O}_{\ell, w_{0}}$ in $\mathcal{O}_{p_{\underline{\ell}}}$.
Definition $\left(N_{\underline{p}_{e}}, \psi_{\mathcal{O}_{\ell, w_{0}}}\right)$
Define the character of $N_{\underline{p}_{\ell}}$ associated to $\mathcal{O}_{\ell, w_{0}}$

$$
\psi_{\ell, w_{0}}\left(\begin{array}{ccc}
z & y & x \\
& I_{n}-2 \ell & y^{\prime} \\
& & z^{*}
\end{array}\right)=\psi(\underbrace{z_{1,2}+\cdots+z_{\ell-1, \ell}}_{\text {sub-diagonal of } z}+\underbrace{\left(w_{0}, y_{\ell}\right)}_{\text {in } W}),
$$

where y_{ℓ} is the bottom row of y and identified as a vector in W.

The stabilizer

This Levi subgroup M acts on $\psi_{\ell, w_{0}}$ via conjugation, where

$$
M=\underbrace{\mathrm{GL}_{1} \times \cdots \times \mathrm{GL}_{1}}_{\ell} \times \mathrm{SO}(W) .
$$

Denote by

$$
G\left(\mathcal{O}_{\ell, w_{0}}\right):=\mathrm{SO}\left(W \cap w_{0}^{\perp}\right) \cong \mathrm{SO}_{\mathfrak{n}-2 \ell-1}
$$

the connected component of the stabilizer in $\mathrm{GL}_{1}^{\times \ell} \times \mathrm{SO}(W)$.

Automorphic Descent

For an automorphic form φ in π, the Bessel-Fourier coefficients (Gelfand-Graev) of φ are the Fourier coefficients associated to $\left(N_{\underline{p}_{\ell}}, \psi_{\ell, w_{0}}\right)$, i.e.,

$$
\mathcal{F}^{\psi_{\ell, w_{0}}}(\varphi)(h):=\int_{N_{\underline{p}_{\ell}}(F) \backslash N_{\underline{p}_{\ell}}(\mathbb{A})} \varphi(n h) \psi_{\ell, w_{0}}^{-1}(n) \mathrm{d} n .
$$

Then $\mathcal{F}^{\psi_{\ell, w_{0}}}(\varphi)(h)$ is $G\left(\mathcal{O}_{\ell, w_{0}}\right)(F)$-invariant.
Definition
Define the ℓ-th automorphic descent $\mathcal{F}^{\psi_{\ell, w_{0}}}(\pi)$ of π to be the space generated by all $\mathcal{F}^{\psi_{\ell, w_{0}}}(\varphi)$ by varying φ in an automorphic representation π of $G(\mathbb{A})$, which is a $G\left(\mathcal{O}_{\ell, w_{0}}\right)(\mathbb{A})$-module.

Branching Problem

Remark

The nonvanishing of $\mathcal{F}^{\psi_{\ell, w_{0}}}(\varphi)$ depends on the $G(F)$-adjoint orbit $\mathcal{O}_{\ell, w_{0}}$.

Branching Problem: Study the automorphic descents in terms of Arthur's endoscopic classification of automorphic representations in the discrete spectrum?

$$
\underbrace{H=G\left(\mathcal{O}_{\ell, w_{0}}\right) \subset G}_{\text {Branching }}
$$

Tower property (Ginzburg-Rallis-Soudry)

ℓ_{0} is called the first occurrence index.

Bessel Period

Let π and σ be irreducible automorphic representations of $G(\mathbb{A})$ and $G\left(\mathcal{O}_{\ell, w_{0}}\right)(\mathbb{A})$, respectively, and one of them be cuspidal.

Definition (Bessel Period)

For $\varphi_{\pi} \in \pi$ and $\varphi_{\sigma} \in \sigma$, define the Bessel period to be

$$
\mathcal{B}^{\mathcal{O}_{\ell, w_{0}}}\left(\varphi_{\pi}, \varphi_{\sigma}\right):=\int_{G\left(\mathcal{O}_{\ell, w_{0}}\right)(F) \backslash G\left(\mathcal{O}_{\ell, w_{0}}\right)(\mathbb{A})} \mathcal{F}^{\psi_{\ell, w_{0}}}\left(\varphi_{\pi}\right)(h) \varphi_{\sigma}(h) \mathrm{d} h .
$$

Remark

In general, the Bessel periods can be regularized following by Jacquet-Lapid-Rogawski, Ichino-Yamana, Zydor, etc.

The spectrum of $\mathcal{F}^{\psi_{\ell_{0}, w_{0}}}(\pi)$

At the first occurrence index ℓ_{0}, one has

$$
\mathcal{F}^{\psi_{\ell_{0}, w_{0}}}(\pi)=\sigma_{1} \oplus \sigma_{2} \oplus \cdots \oplus \sigma_{r} \oplus \cdots
$$

which is a multiplicity free decomposition.
Conjecture (Generic Summand Conjecture (Jiang-Zhang))
Assume that $\pi \in \mathcal{A}_{\text {cusp }}(G)$ is of a generic Arthur parameter. If $\mathcal{F}^{\mathcal{O}_{\ell}, w_{0}}(\pi)$ is nonzero for some w_{0} at the first occurrence index ℓ_{0}, then there exists σ in $\mathcal{A}_{\text {cusp }}\left(G\left(\mathcal{O}_{\ell_{0}, w_{0}}\right)\right)$ such that σ is of a generic Arthur parameter and $\mathcal{B}^{\mathcal{O}_{0}, w_{0}}\left(\varphi_{\pi}, \varphi_{\sigma}\right)$ is nonzero.

Nonvanishing Bessel-Fourier coefficients

Application: Non-vanishing twist of central value of L-function.
Theorem (Jiang-Zhang)
For a generic $\pi \in \mathcal{A}_{\text {cusp }}\left(\mathrm{U}_{2,2}\right)$, there exists a Hecke character χ of U_{1} such that

$$
L\left(\frac{1}{2}, \pi \times \chi\right) \neq 0
$$

Idea:

1. Ginzburg-Rallis-Soudry's Exchange Root Lemma: $\mathcal{F}^{\psi_{3, w_{0}}}(\pi) \neq 0$ for some w_{0};
2. $\mathcal{B}^{\mathcal{O}_{3, w_{0}}}\left(\varphi_{\pi}, \chi\right) \neq 0$ for some χ;
3. $L\left(\frac{1}{2}, \pi \times \chi\right) \neq 0$ by one direction of global Gan-Gross-Prasad Conjecture.

Construction of automorphic representations

Goal: Given an Arthur parameter ϕ of $G(\mathbb{A})$, construct the spaces of automorphic representations in the Vogan packet $\Pi_{\phi}[G]$.
Construct a concrete module of $\pi \in \mathcal{A}_{\text {cusp }}(G)$:

We need to choose σ_{0} such that $\mathcal{B}^{\mathcal{O}_{\ell, w_{0}}}\left(\varphi_{\pi}, \varphi_{\sigma_{0}}\right) \neq 0$.

Remark

1. Ginzburg-Rallis-Soudry: Automorphic Descent, where σ_{0} is on the trivial group.
2. Cai-Friedberg-Ginzburg-Kaplan: Doubling Construction.
3. Ginzburg-Soudry: Double Descent.

Group H

- V^{\prime} : a quadratic space of dimension $2 a+m$ such that

1. m and \mathfrak{n} have the different parity;
2. the $\operatorname{Witt} \operatorname{index} \operatorname{Witt}\left(V^{\prime}\right) \geq a$.

- $H_{2 a+m}=\mathrm{SO}\left(V^{\prime}\right)$.
- P_{a} : the parabolic subgroup $H_{2 a+m}$ of Levi subgroup $\mathrm{GL}_{a} \times H_{m}$;
- $\tau \in \mathcal{A}\left(\mathrm{GL}_{a}(\mathbb{A})\right)$ and $\tau=\tau_{1} \boxplus \tau_{2} \boxplus \cdots \boxplus \tau_{r}$, where $\tau_{i} \in \mathcal{A}_{\text {cusp }}\left(\mathrm{GL}_{\mathrm{a}_{i}}\right), \sum_{i=1}^{r} a_{i}=a$, and $\tau_{i} \neq \tau_{j}$ if $i \neq j$.
- σ : a cuspidal automorphic representation of $H_{m}(\mathbb{A})$.

Eisenstein series

Let $\phi_{\tau \otimes \sigma}$ be a section in $\operatorname{Ind}_{P_{a}(\mathbb{A})}^{H_{2 a+m}(\mathbb{A})} \tau|\operatorname{det}|^{s} \otimes \sigma$ and form an Eisenstein series

$$
E\left(\phi_{\tau \otimes \sigma}, s\right)(h)=\sum_{\gamma \in P_{a}(F) \backslash H_{2 a+m}(F)} \phi_{\tau \otimes \sigma}(\gamma h) .
$$

Lemma

Let τ be as above and σ be of generic Arthur parameter.
Then $E\left(\phi_{\tau \otimes \sigma}, s\right)$

1. has a pole of order r at $s=\frac{1}{2}$ if and only if $L\left(s, \tau_{i}, \rho\right)$ has a pole at $s=1$ for all i and $L\left(\frac{1}{2}, \tau \times \sigma\right) \neq 0$;
2. has a pole at $s=1$ if and only if $L(s, \tau \otimes \sigma)$ has a pole at $s=1$.

- $\rho=\wedge^{2}$ if $H_{2 a+m}$ is an even orthogonal group;
- $\rho=\operatorname{sym}^{2}$ if $H_{2 a+m}$ is an odd orthogonal group.

Global zeta integral

We consider two cases:

1. $G=H_{2 a+m}\left(\mathcal{O}_{\ell, w_{0}}\right) \subset H_{2 a+m}$ where $\ell=a+\frac{m-\mathfrak{n}-1}{2}$;
2. $H_{2 a+m}=G\left(\mathcal{O}_{\ell, w_{0}}\right) \subset G$ where $\ell=\frac{\mathfrak{n}-m-1}{2}-a$.

Assumption: π is cuspidal.
Definition
Define the global zeta integral
$\mathcal{Z}\left(s, \phi_{\tau \otimes \sigma}, \varphi_{\pi}, \psi_{\ell, w_{0}}\right)= \begin{cases}\mathcal{B}^{\mathcal{O}_{\ell, w_{0}}}\left(E\left(\phi_{\tau \otimes \sigma}, s\right), \varphi_{\pi}\right), & \text { if } G \subset H_{2 a+m} \\ \mathcal{B}^{\mathcal{O}_{\ell, w_{0}}}\left(\varphi_{\pi}, E\left(\phi_{\tau \otimes \sigma}, s\right)\right), & \text { if } H_{2 a+m} \subset G .\end{cases}$

Key properties:

1. $\mathcal{Z}\left(s, \phi_{\tau \otimes \sigma}, \varphi_{\pi}, \psi_{\ell, w_{0}}\right)$ is eulerian;
2. If $\mathcal{B}^{\mathcal{O}_{\ell, w_{0}}}\left(\varphi_{\pi}, \varphi_{\sigma}\right)=0\left(\mathcal{B}^{\mathcal{O}_{\ell, w_{0}}}\left(\varphi_{\sigma}, \varphi_{\pi}\right)=0\right)$, then $\mathcal{Z}\left(s, \phi_{\tau \otimes \sigma}, \varphi_{\pi}, \psi_{\ell, w_{0}}\right)=0$.

Unramified calculation

Lemma (Jiang-Soudry-Zhang)
With the notation given as above, one has

$$
\mathcal{Z}\left(s, \phi_{\tau \otimes \sigma}, \varphi_{\pi}, \psi_{\mathcal{O}_{\ell, w_{0}}}\right)=\prod_{\nu \in S} \mathcal{Z}_{\nu}(s, \cdot) \frac{L^{S}\left(s+\frac{1}{2}, \tau \times \pi\right)}{L^{S}(s+1, \tau \times \sigma) L^{S}(2 s+1, \tau, \rho)} .
$$

Theorem (One direction of GGP Conjecture for tempered Arthur Parameters)
Let π and σ be cuspidal automorphic representations of $G(\mathbb{A})$ and $G\left(\mathcal{O}_{\ell, w_{0}}, \mathbb{A}\right)$, respectively. Assume that π and σ are of generic Arthur parameters.
If $\mathcal{B}^{\mathcal{O}_{\ell, w_{0}}}\left(\varphi_{\pi}, \varphi_{\sigma}\right) \neq 0$, then $L\left(\frac{1}{2}, \pi \times \sigma\right) \neq 0$.

Some known cases of Gan-Gross-Prasad conjecture

Global Gan-Gross-Prasad conjecture:
Waldspurge, Ginzburg-Rallis-Soudry, Ginzburg-Rallis-Jiang, Wei Zhang, Ichino-Yamana, Gan-Ichino, Furusawa-Morimoto, Morimoto, Beuzart-Plessis-Chaudouard-Zydor, Beuzart-Plessis-Liu-W. Zhang-Zhu, etc.

Local Gan-Gross-Prasad conjecture:
Waldspurge, Moeglin-Waldspurge, Beuzart-Plessis, Gan-Ichino, Atobe-Gan, H. He, Kobayashi-Speh, Max Gurevich, Kei Yuen
Chan, Hang Xue, Zhilun Luo, etc.

Twist Automorphic Descent

Theorem (Jiang-Zhang (even case))
Let τ and σ be as above. Assume that m is even.

- If $\ell>\frac{m}{2}-1$ (then $G=\mathrm{SO}_{\mathfrak{n}}$ with $\mathfrak{n}<2 a+1$), then $\mathcal{F}^{\psi_{\ell, w_{0}}}\left(\mathcal{E}_{\tau \otimes \sigma}\right)=0$.
- If $\ell=\frac{m}{2}-1$, then $\mathcal{F}^{\psi_{\ell, w_{0}}}\left(\mathcal{E}_{\tau \otimes \sigma}\right)=\pi_{1} \oplus \pi_{2} \oplus \cdots \oplus \pi_{r} \oplus \cdots$, where π_{i} is of the Arthur parameter ψ_{τ}.
- If $\mathcal{F}^{\psi_{\ell, w_{0}}}\left(\mathcal{E}_{\tau \otimes \sigma}\right) \neq 0$ at $\ell=\frac{m}{2}-1$, then $\mathcal{F}^{\psi_{\ell, w_{0}}}\left(\mathcal{E}_{\tau \otimes \sigma}\right)=\pi$ for the unique member π in the Vogan packet $\Pi_{\psi_{\tau}}\left[\mathrm{SO}_{2 a+1}\right]$.

Remarks

In the above theorem,

- σ is of a generic Arthur parameter.
- ψ_{τ} is the Arthur parameter associated to τ.
- $\mathcal{E}_{\tau \otimes \sigma_{0}}$ is the residue of the Eisenstein series $E\left(\phi_{\tau \otimes \sigma}, s\right)$ at $s=\frac{1}{2}$.

Remark

- Under the assumption of Generic Summand conjecture, any π of a generic Arthur parameter can be constructed via this way by choosing a suitable σ.
- If $G=\mathrm{SO}_{2 a}$, the descent $\mathcal{F}^{\psi_{\ell, w_{0}}}\left(\mathcal{E}_{\tau \otimes \sigma_{0}}\right)$ might not be irreducible.
- Jiang, Baiying Liu, Zhang: the Fourier-Jacobi cases.

Non-tempered Gan-Gross-Prasad Conjecture

Assumption: $\pi \in \mathcal{A}_{\text {cusp }}(G)$ is of generic Arthur parameter of form

$$
\psi_{\pi}^{A}=\left(\eta_{1}, 1\right) \boxplus \cdots \boxplus\left(\eta_{s}, 1\right) .
$$

Write the global Arthur parameter of $\sigma \in \mathcal{A}_{\text {cusp }}\left(G\left(\mathcal{O}_{\ell, w_{0}}\right)\right)$ by
$\psi_{\sigma}^{A}=\left(\zeta_{1}, 2 b_{1}+1\right) \boxplus \cdots \boxplus\left(\zeta_{I}, 2 b_{l}+1\right) \boxplus\left(\xi_{1}, 2 a_{1}\right) \boxplus \cdots \boxplus\left(\xi_{k}, 2 a_{k}\right)$.

Proposition (Structure of ψ_{σ}^{A} (Jiang-Zhang 2019))
If the Bessel period $\mathcal{B}^{\mathcal{O}_{\ell, w_{0}}}\left(\varphi_{\pi}, \varphi_{\sigma}\right)$ is non-zero, then the Arthur-parameter ψ_{σ}^{A} of σ must be of the form:

$$
\psi_{\sigma}^{A}=\left(\zeta_{1}, 1\right) \boxplus \cdots \boxplus\left(\zeta_{l}, 1\right) \boxplus\left(\xi_{1}, 2\right) \boxplus \cdots \boxplus\left(\xi_{k}, 2\right),
$$

and $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right\}$ is a subset of $\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{s}\right\}$.

A-parameter structure

Assumption: $\pi \in \mathcal{A}_{\text {cusp }}\left(G=H\left(\mathcal{O}_{\ell, w_{0}}\right)\right)$ is of generic Arthur parameter of form

$$
\psi_{\pi}^{A}=\left(\zeta_{1}, 1\right) \boxplus \cdots \boxplus\left(\zeta_{s}, 1\right)
$$

Write the global Arthur parameter of $\sigma \in \mathcal{A}_{\text {cusp }}(H)$ by
$\psi_{\sigma}^{A}=\left(\eta_{1}, 2 a_{1}+1\right) \boxplus \cdots \boxplus\left(\eta_{k}, 2 a_{k}+1\right) \boxplus\left(\delta_{1}, 2 b_{1}\right) \boxplus \cdots \boxplus\left(\delta_{l}, 2 b_{l}\right)$.
Proposition (Structure of ψ_{σ}^{A} (Jiang-Zhang 2019)) If the Bessel period $\mathcal{B}^{\mathcal{O}_{\ell, w_{0}}}\left(\varphi_{\sigma}, \varphi_{\pi}\right)$ is non-zero, then the global Arthur parameter ψ_{σ}^{A} of σ must be of the form:

$$
\psi_{\sigma}^{A}=\left(\eta_{1}, 1\right) \boxplus \cdots \boxplus\left(\eta_{k}, 1\right) \boxplus\left(\delta_{1}, 2\right) \boxplus \cdots \boxplus\left(\delta_{l}, 2\right)
$$

and $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{l}\right\}$ is a subset of $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{s}\right\}$.

One direction of non-tempered Gan-Gross-Prasad conjecture

Assumption: π or σ is of generic Arthur-parameter.
Theorem (Non-tempered GGP (Jiang-Zhang 2020))
Assume that $\prod_{1 \leq i \leq \ell, 1 \leq j \leq k} L\left(\frac{1}{2}, \zeta_{i} \times \xi_{j}\right) \neq 0$.
If the Bessel period $\mathcal{B}^{\mathcal{O}_{\ell, w_{0}}}\left(\varphi_{\pi}, \varphi_{\sigma}\right)$ is non-zero, then

1. $\left(\psi_{\pi}^{A}, \psi_{\sigma}^{A}\right)$ is relevant;
2. the local multiplicities over all places are nonzero;
3.

$$
L\left(s, \psi_{\pi}^{L}, \psi_{\sigma}^{L}\right)=\frac{L\left(s+\frac{1}{2},\left(\psi_{\pi}^{L}\right)^{\vee} \times \psi_{\sigma}^{L}\right) L\left(s+\frac{1}{2}, \psi_{\pi}^{L} \times\left(\psi_{\sigma}^{L}\right)^{\vee}\right)}{L\left(s+1, \psi_{\pi}^{L} \times\left(\psi_{\pi}^{L}\right)^{\vee}\right) L\left(s+1, \psi_{\sigma}^{L} \times\left(\psi_{\sigma}^{L}\right)^{\vee}\right)}
$$

is nonzero at $s=0$.

Spherical Varieties $\left(G, M_{\mathcal{O}} \rtimes N_{\mathcal{O}}, \psi_{\mathcal{O}}\right)$

What about the other models arisen from Fourier coefficients $\left(N_{\mathcal{O}}, \psi_{\mathcal{O}}\right)$?

	G	$M_{\mathcal{O}} \rtimes N_{\mathcal{O}}$	ρ_{X}
1	$\mathrm{GL}_{4} \times \mathrm{GL}_{2}$	$\mathrm{GL}_{2} \times \mathrm{GL}_{2}$	$\left(\wedge^{2} \otimes s t d_{2}\right) \oplus s t d_{4} \oplus s t d_{4}^{\vee}$
2	$\mathrm{GU}_{4} \times \mathrm{GU}_{2}$	$\left(\mathrm{GU}_{2} \times \mathrm{GU}_{2}\right)^{\circ}$	$\left(\wedge^{2} \otimes s t d_{2}\right) \oplus s t d_{4} \oplus s t d_{4}^{\vee}$
3	$\mathrm{GSp}_{6} \times \mathrm{GSp}_{4}$	$\left(\mathrm{GSp}_{4} \times \mathrm{GSp}_{2}\right)^{0}$	$\mathrm{Spin}_{7} \otimes \mathrm{Spin}_{5}$
4	GL_{6}	$\mathrm{GL}_{2} \ltimes U_{\left[3^{2}\right]}$	\wedge^{3}
5	GU_{6}	$\mathrm{GU}_{2} \ltimes U_{\left[3^{2}\right]}$	\wedge^{3}
6	GSp_{10}	$\mathrm{GL}_{2} \ltimes U_{\left[5^{2}\right]}$	Spin_{11}
7	$\mathrm{GSp}_{6} \times \mathrm{GL}_{2}$	$\mathrm{GL}_{2} \ltimes U_{\left[3^{2}\right]}$	$\operatorname{Spin}_{7} \otimes s t d_{2}$
8	$\mathrm{GSO}_{8} \times \mathrm{GL}_{2}$	$\mathrm{GL}_{2} \ltimes U_{\left[4^{2}\right]}$	$\mathrm{HSpin}_{8} \otimes s t d_{2}$
9	GSO_{12}	$\mathrm{GL}_{2} \ltimes U_{\left[6^{2}\right]}$	HSpin_{12}
10	E_{7}	$\mathrm{PGL}_{2} \ltimes U$	ω_{7}

Relations among 10 models

Remark

The θ-correspondences for degenerate Whittaker models are given by Gomez and Zhu.

E_{7} Nilpotent orbit

Ichino-Ikeda type formula

Conjecture (Wan-Zhang)

Let G and H be in the above table, π be an irreducible cuspidal automorphic representation of generic A-parameter. Then

$$
\begin{aligned}
& \left|\int_{Z(\mathbb{A}) H(F) \backslash H(\mathbb{A})} \phi(h) \mathrm{d} h\right|^{2} \\
= & \frac{1}{\left|S_{\phi}\right|} \cdot \frac{C_{H / Z_{G, H}}}{\Delta_{H / Z_{G, H}}(1)} \cdot \lim _{s \rightarrow 1} \frac{\Delta_{G}(s)}{L(1, \pi, A d)} \cdot L\left(\frac{1}{2}, \pi, \rho_{X}\right) \cdot \Pi_{v \in S} l_{H_{v}}^{\sharp}\left(\phi_{v}\right) .
\end{aligned}
$$

Remark.

1. Sakellaridis-Venkatesh Conjecture
2. Refined Gan-Gross-Prasad Conjecture: Ichino-Ikeda, N. Harris, Y. Liu, H. Xue, ect.

Thank You！

