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Objectives

» Analyze L-functions on GL,y1 X GL, and related groups.

» Determine asymptotics of “special functions” attached to
representations of such groups.

» n = 1: Bernstein—Reznikov, Michel-Venkatesh, (...): analysis
via explicit formulas, complicated in higher rank.

» Develop the orbit method in the spirit of microlocal analysis,
giving a soft approach that applies in higher rank.

» Standard problems (moments, subconvexity).
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Special values of L-functions as branching coefficients



Setting
» Let (G, H) be one of
(GLn+1(R), GLA(R)),

(U(p+1,9),U(p,q)), (SO(p+1,q),50(p,q)).
(G, H) is a strong Gelfand pair: irreducible representations of
G have multiplicity-free restriction to H.
» let < G and 'y =T N H < H be arithmetic lattices.
Example: (I',TH) = (GLy+1(Z), GLA(Z)).
» Define
[G] :=T\G, [H]:=Tx\H.
We assume these quotients are compact.

» We consider irreducible subrepresentations

m C LX([G]), o C L*([H)).



Global restriction

Let v € m C L?([G]) be a smooth vector.
Restrict to [H], spectrally decompose:

vim = Y. Z(/ vii)u.

oCL2([H]) ueB(o) ’1H

=: global projection of v to o



Local restriction

Example
(G, H) =(50(3),50(2)), m: irrep of highest weight T € Z>o.
Weight space decomposition:

WlHZ@gT:,TUe, V:ZVE, ||VH2:Z||V£||2-

General picture
As abstract unitary representations of H,

Ty = / mz(c)o do, do = Plancherel.
o€lrr(H) S~~~
€{0,1}

This means: there are “local” projection maps m — o such that

v]]® = / my(c) |[local projection of v to ol do.
ag



Branching coefficients

The strong Gelfand property implies
global projection = scalar multiple of local projection.

We may thus define a branching coefficient L(m, o) € R>q by
asking that for all v € 7,

||global projection of v to o||? =

L(r, o) |/local projection of v to o°.

It quantifies how automorphic forms in 7 correlate with those in o.



Branching coefficients and L-values

Refined Gan—Gross—Prasad conjecture, known in many cases:!

L(m, o) = special value of an L-function.

Example
In the GL,(Z) case,?

Hecke, Waldspurger, Ichino—lkeda, N. Harris, Jacquet—Rallis, W. Zhang,
Beuzart-Plessis, Beuzart-Plessis—Liu—Zhang—Zhu,
Beuzart-Plessis—Chaudouard—Zydor

2 Jacquet—Piatetski-Shapiro—Shalika



Motivation for studying L-values

Problem: estimate special values of L-functions,
» individually (“subconvexity problem”) or
» on average over a family (“moment problem”).

Considered fundamental nowadays.
Motivated by questions/applications discovered in the 1980's and
1990's:

» random matrix heuristics for moments of families

> existence and distribution of integral solutions of Q(v) = n for
a ternary quadratic form @

> arithmetic quantum unique ergodicity: |¢;|? du ~ (?)



Problems

To study L(m, o) using the defining property
||global projection of v to o||? =
L(7,0) ||local projection of v to o

we must understand the local and global projections.

Sample local problem
Let F C Irr(H) be a nice family.
Can we construct a nice vector v € 7 so that the map

Irr(H) > & — ||local projection of v to ||

approximates the characteristic function of F7
Can we then estimate the matrix coefficients (gv, v)?



The orbit method



G: Lie group, g = Lie(G), g" = Hom(g, iR)

Definition
A coadjoint orbit is O C g is a G-orbit for the coadjoint action.

Example
G =S0(3), g,9" = R3, {coadjoint orbits} = {spheres}.

eye

Theorem (Kirillov)

Lie algebra structure on g defines a symplectic structure on O,
hence a symplectic volume form w.



Orbit method: heuristic based on an (approximate) bijection
Irr(G) ~ {coadjoint orbits}

7T +— Oy

compatible with natural operations.



O, should describe the character y,: for small x € g,
Xalep(x)) =5 H2) [ e du(e)
£€0

where j = Jac(exp : g — G), j(0) = 1.
Such an identity is called the Kirillov formula for 7.
Valid for

» G nilpotent (Kirillov)
» G compact (Weyl, Kirillov)

» G reductive, 7 tempered (Rossmann)



Example
G = SO(3). Classify by highest weight:

Kirillov formula for m = w1 holds with
O = sphere of radius T + 1,

vol(Or, dw) = 2T + 1 = dim(7).



Example
G = PGLy(R) = SO(1, 2)

g" i x ytz
y—z —Xx

» one-sheeted hyperboloid
Or(r)={x>+y?>-22=r%}

» two-sheeted hyperboloid
O~ (k) ={x>+y? -2 = —k?}

Tempered irreducible representations:
» principal series 7(r,¢)
> discrete series (k) for k € Z>1

Ow(r,e) = O+(r), Oﬂ'(k) e O_(k — 1/2)



Microlocal analysis



Microlocalization

Heuristic. For each partition of O, = UP; with vol(P;) = 1, there
corresponds an orthonormal basis (v;); of m such that for x € g,

m(x)vj = (x, Pj)vj
provided that (x,P;) is approximately well-defined.
Example

G = SO(3), 7 of highest weight T. The decomposition
7r|so(2) = @eTszUK into one-dimensional weight spaces
corresponds to the partition of O into horizontal strips

Pe = {§ € Oy : (z-coordinate of &) € [¢ — %76 + %]}




For our purposes, better to take each P concentrated near some
specific 7 € Oy, say P = P,. We call the corresponding vector v,
microlocalized at 7 and P its microlocal support.

Example
G =S0O(3), m = 7wt as above,

Pr &~ Or N (T4 0(TH?))

for a well-spaced subset {7} C O, of cardinality dim(7) = 2T + 1.

Figure: Microlocalized partitions O, = UP, for T =~ 40,160



A key feature of microlocalized vectors v, is that their matrix
coefficients concentrate near the centralizer G;:

(gvr,vr) = 0 unless g7 ~ 7.

Informal reason:
» gv; is microlocalized at g7
P vectors with disjoint microlocal supports are orthogonal

gPr = Pgr



Microlocal calculus

> We work with microlocalized vectors implicitly via operators
w(N= [ fe)m(e)de
geiG

attached to f € C2°(G) supported near the identity.

» We describe f by pulling it back to the Lie algebra and taking
the Fourier transform. We call the result a € S(g"), and write

7(f) =: Op(a).

> Kirillov formula (ignoring j~1/2):

trace(Op(a))%/ adw.

Ox



Take a microlocalized basis
m=®Cv, <+— Op=UP;,.
The orbit method suggests
Op(a)vr = a(Pr)vr = a(r)v;

if a(P;) is approximately well-defined, i.e., a is essentially constant
on P,.

Example
Take G = SO(3), 7 = 71 and, as above,

P, ~ O N (14 O(TY?)).

9%a(€) <o T2l
then a varies by < T~° on each P;.



Theorem (NV 2018, N 2020)

Let m = w1 be a unitary representation of a Lie group G. The
assignment a — Op(a), restricted to functions a = a7 satisfying
estimates as above, enjoys a reasonable microlocal calculus, e.g.:

1. If a is supported on elements of size < T and satisfies
8042(5) <q -,-(71/275)|04|7

then Op(a) has operator norm O(1).
2. If G is reductive and 7 is irreducible, then Op(a) has trace
norm O(TY), where 2d = dim(O;) = dim(G) — rank(G).
3. Op(a) Op(b) = Op(ax b), where ax b ~ ab.

4. Similar results for polynomials, functions with less regularity
transverse to the coadjoint orbits, etc.



Constructing microlocalized vectors using the calculus

Say
m— L?([G]), [G]=T\G.

For a = at as in the microlocal calculus, consider

S Op(a)v(x) V().

veB(r)

Example
If a|p, ~ characteristic function of P;, then we get

~ v (x)vr(y).



Local applications



Relative characters
For tempered (7, 0), we consider the hermitian form

He 71— C

H,(v @ v) = ||local projection of v to o||?.

For a nice function a on g, we define the relative character

Mro(a):= > Hs(Op(a)v @ v).
veB(r)

Example

If a|lo, ~ characteristic function of P;, then
H, - (a) ~ ||local projection of v, to o2
Question

For a = at as in the microlocal calculus, what is the asymptotic
behavior of H, ,(a)? Here (7,0) = (771,07).



If a~ f € C(G) with Op(a) = 7(f), then one can verify that

Ho o (3) = /heH trace(r(h)r(F))  xo(R) dh.

xr(hg)f(g) dg
geiG

Heuristic
Pretend exp were an isomorphism, apply Kirillov formula:

Heald) = [ [ (e )3 (vl ey
x€g Jy€eh

/ a?
OxNpreimage(Os)



Stability
We say that (m, 0) is stable if

Or o = Ox N preimage(O,)
is an H-torsor (closed orbit, trivial stabilizer).

Fact
This is a generic condition, depending only upon the infinitesimal
characters (Ar, A\s), equivalent to

{eigenvalues of A} N {eigenvalues of \,} = 0.

Some Or's for (SO(3),S0(2)) and (PGL2(R), GL1(R)):




Relative character asymptotics in the stable case

Theorem (NV 2018)

Let (m,0) = (71,07) be tempered and “uniformly stable”:
T~ 1(Ar, o) lies in a fixed compact collection of stable pairs.
Then for a = a7 as in the microlocal calculus,

Ho o (3) ~ / N
O7r,a'

where we integrate by transporting Haar on H to its torsor Oy .

Ox



Sketch of proof

Recall that

Hoo(3) = /h _ trace(n(h) Op(a))xo () dh

» Choose a microlocalized partition O, = UP:..
Key case: a concentrated near some P, with 7 € O ;.
» trace(w(h) Op(a)) = (hv;, v;) = negligible unless hr ~ 7.
Happens only if h is small, since stability = H, = {1}.

» For small h, the heuristic argument can be pushed through.



Global applications



Overview

1. (N-Venkatesh 2018) asymptotic formulas for first moments

Z L(m, o), F: “long" family
ocF
with 7 fixed. Proof uses Ratner theory.

2. (N 2020) subconvex bounds £(7,0) < C(m,o)Y/*% via
asymptotic formulas for (amplified) first moments

Z L(m,0), F: “short” family.
meF

Proof uses (amplified) relative trace formula, linear algebra.

“long” ~[T,2T], "short” ~ [T, T +1].
F must be uniformly stable; equivalently, C(m, o) < T2M(n+1),



Role of relative character asymptotics
Both proofs use
» construction of microlocalized vectors via operator calculus,
P relative character asymptotics, and
» the following consequence of the definition of L(m,o):

- v-ul| =L(r,0)Hro(a).
> Z)(M )(/[H] ) (. 7Yoo (3)

veB(n) ueB
We construct a = a7 so that

Hoo(3) ~ / 2

approximates the characteristic function of the family F. Then

Zﬁ(w,o’)% Z Op(a)v - v

oEF veB(r) [H]

D g TN D ay) ey

TeF veB(o) X yer
if Op(a) = 7(f).



Estimating averages over o

S L(m,0) ~ /[a] = 3 Op(a)v

ocEF veB(n)

Decompose into localized vectors:
(4] ~ / a(7) s 2 deo(7).
7€0x

For fixed m, since supp(a) — oo, we can replace O by the nilcone:

Any weak limit of the |v,|? then attains unipotent invariance,
hence (by Ratner) equidistributes. In particular, [a] equidistributes.



Estimating averages over 7

S cmo)~ Y / g TN A ) ey

TeF ueB(o) ~ver

> er, ~ main term < T7(1)/2. 3pply amplification method.
Remains to show that [ — 'y gives a smaller contribution.
We may take a supported near some 7 € Oy , with |7| < T:

g//
Or

fl
Key case: u microlocalized at 1y := (restriction of 7) € b*,
otherwise f[H] Op(a)v - o = negligible.



» Microlocalization of u implies approximate equivariance under
the centralizer H;,, of 7. Key problem: estimate

max/ / |f(x " Yyyz)| dz dx
YeH JxeH JzeH,,

» f concentrates on G,, so f(xlyyz) detects when x7 ~ yyzT.
> Key case: y =1 and ~y centralizes 7.

P> Key problem: exhibit some transversality between the
subvarieties HT and yH,, 7 of O.

Figure: The “toy case” (G, H) = (U(2),U(1)), in which H., = H.



» Numerology:
dim(H,,7) = n, dim(H7) =n? dim(O;) = n*+n.

Maybe vH,, 7 and HT literally transverse for generic v € '?
Need just a bit of transversality, but for every v ¢ I'y.

> Key idea: suffices to establish transversality, but with H,,7
(n-dimensional) replaced by Zy7 (1-dimensional).

P Passing to the Lie algebra, reduce to a linear algebra problem:

Theorem (N 2020)
If T € g" is H-stable, v € g, — 3 and z € 335 — {0}, then

[v.[z,7]] ¢ [0, 7].



Theorem (N 2020)

Let M, denote the space of n X n complex matrices. Embed

Mn — Mn+]_ via
at— a 0
0 0/°

Set z := diag(1,...,1,0) € M,.

Let 7 € Myy1. Write
(™ b
=7 4)

with Ty € M,,. Let v € M,y1. Assume that
» no eigenvalue of T is also an eigenvalue of Ty,
» [v,7] =0, and
» [v,[z,7]] = [y, 7] for some y € M,.

Then ~ is a scalar matrix.



Summary

» We develop the orbit method in analytic form as a microlocal
calculus for Lie group representations, sharp up to €'s.

> We apply that calculus to determine relative character
asymptotics in the stable regime.

» We deduce moment estimates and subconvex bounds in
higher rank via some additional (local and global) arguments.



Theorem (NV 2018)
Assume [G], [H]: compact.
Fix m: tempered, generic.
Let T — oco. Set

Fri= {0 c 2(H)|[

my(c) =1
Ae €T -A
with A: nice fixed compact collection of infinitesimal characters

with all eigenvalues nonzero.
Then

|Fr
Z L(m,0)
o=t vol(r\G)

Remark
Translates to (average L-value) ~ 2[] (--), as predicted via
random matrix heuristics.



Theorem (N 2020)
Let (G, H) = (Upt1,Up). Assume [H]: compact.
Let T — oo. Let (m,0) = (77,07) be Hecke-irreducible and

tempered, with T=1(\;, \,) in a fixed compact stable collection.
Then
L(m,0) < Tn(nt1)/2-6

for some fixed § = §, > 0.
Context
» Stability condition equivalent to “no conductor dropping’:

C(m,0) = T2n(r+D),

> Translates to a subconvex bound for the corresponding
L-function:
L(m,0) < C(m,0)4°.

In the everywhere-tempered case, § = 1/(16n° + O(n%)).



Example
Take (G, H) = (GL3(R), GL2(R)), coadjoint orbits = nilcones:

O.=NcCg", O,=NyCh"
Then
Or.o = N N preimage(Ny)
= {g = <A Z) € sl3(R) : & A are nilpotent} .

C

Very far from stable: #{H-orbits on O, ,} = cc! Representatives

0 1
00
0 ¢

o oo

with bc the only invariant. Behavior of H, ,(a) remains unclear.
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