The orbit method, microlocal analysis and applications to *L*-functions

Paul Nelson

ETH Zurich (partly joint work with Akshay Venkatesh)

Automorphic Forms and Arithmetic Seminar Columbia University

Objectives

- Analyze *L*-functions on $GL_{n+1} \times GL_n$ and related groups.
- Determine asymptotics of "special functions" attached to representations of such groups.
- n = 1: Bernstein-Reznikov, Michel-Venkatesh, (...): analysis via explicit formulas, complicated in higher rank.
- Develop the orbit method in the spirit of microlocal analysis, giving a soft approach that applies in higher rank.
- Standard problems (moments, subconvexity).

Contents

Special values of L-functions as branching coefficients

The orbit method

Microlocal analysis

Local applications

Global applications

Special values of *L*-functions as branching coefficients

The orbit method

Microlocal analysis

Local applications

Global applications

Setting

• Let (G, H) be one of

 $(\mathsf{GL}_{n+1}(\mathbb{R}), \mathsf{GL}_n(\mathbb{R})),$

 $(\mathsf{U}(p+1,q),\mathsf{U}(p,q)),\quad(\mathsf{SO}(p+1,q),\mathsf{SO}(p,q)).$

(G, H) is a strong Gelfand pair: irreducible representations of G have multiplicity-free restriction to H.

► Let $\Gamma \leq G$ and $\Gamma_H = \Gamma \cap H \leq H$ be arithmetic lattices. Example: $(\Gamma, \Gamma_H) = (\operatorname{GL}_{n+1}(\mathbb{Z}), \operatorname{GL}_n(\mathbb{Z})).$

Define

 $[G] := \Gamma \backslash G, \quad [H] := \Gamma_H \backslash H.$

We assume these quotients are compact.

We consider irreducible subrepresentations

$$\pi \subseteq L^2([G]), \quad \sigma \subseteq L^2([H]).$$

Let $v \in \pi \subseteq L^2([G])$ be a smooth vector. Restrict to [H], spectrally decompose:

$$v|_{[H]} = \sum_{\sigma \subseteq L^2([H])} \underbrace{\sum_{u \in \mathcal{B}(\sigma)} (\int_{[H]} v \bar{u}) u}_{=: \text{ global projection of } v \text{ to}}$$

 σ

Local restriction

Example

 $(G, H) = (SO(3), SO(2)), \pi$: irrep of highest weight $T \in \mathbb{Z}_{\geq 0}$. Weight space decomposition:

$$\pi|_{\mathcal{H}} = \oplus_{\ell=-\mathcal{T}}^{\mathcal{T}} \sigma_{\ell}, \quad \mathbf{v} = \sum \mathbf{v}_{\ell}, \quad \|\mathbf{v}\|^2 = \sum \|\mathbf{v}_{\ell}\|^2.$$

General picture

As abstract unitary representations of H,

$$\pi|_{H} = \int_{\sigma \in \operatorname{Irr}(H)} \underbrace{m_{\pi}(\sigma)}_{\in \{0,1\}} \sigma \, d\sigma, \quad d\sigma = \operatorname{Plancherel.}$$

This means: there are "local" projection maps $\pi \to \sigma$ such that

$$\|v\|^2 = \int_{\sigma} m_{\pi}(\sigma) \|$$
local projection of v to $\sigma \|^2 d\sigma$.

Branching coefficients

The strong Gelfand property implies

global projection = scalar multiple of local projection.

We may thus define a branching coefficient $\mathcal{L}(\pi, \sigma) \in \mathbb{R}_{\geq 0}$ by asking that for all $v \in \pi$,

 $\|$ global projection of v to $\sigma \|^2 =$

 $\mathcal{L}(\pi, \sigma)$ ||local projection of v to σ ||².

It quantifies how automorphic forms in π correlate with those in σ .

Branching coefficients and L-values

Refined Gan–Gross–Prasad conjecture, known in many cases:¹

 $\mathcal{L}(\pi, \sigma) =$ special value of an *L*-function.

Example

In the $GL_n(\mathbb{Z})$ case,²

$$\mathcal{L}(\pi,\sigma) pprox rac{1}{4} \left| rac{L(\pi imes ar{\sigma},1/2)}{L(\mathsf{Ad},\cdots,1)}
ight|^2$$

¹Hecke, Waldspurger, Ichino–Ikeda, N. Harris, Jacquet–Rallis, W. Zhang, Beuzart-Plessis, Beuzart-Plessis–Liu–Zhang–Zhu, Beuzart-Plessis–Chaudouard–Zydor ²Jacquet–Piatetski-Shapiro–Shalika

Motivation for studying L-values

Problem: estimate special values of L-functions,

- individually ("subconvexity problem") or
- on average over a family ("moment problem").

Considered fundamental nowadays.

Motivated by questions/applications discovered in the 1980's and 1990's:

- random matrix heuristics for moments of families
- existence and distribution of integral solutions of Q(v) = n for a ternary quadratic form Q
- arithmetic quantum unique ergodicity: $|\varphi_j|^2 d\mu \sim (?)$

Problems

To study $\mathcal{L}(\pi,\sigma)$ using the defining property

 $\|$ global projection of v to $\sigma \|^2 =$

```
\mathcal{L}(\pi,\sigma) ||local projection of v to \sigma||<sup>2</sup>
```

we must understand the local and global projections.

Sample local problem

Let $\mathcal{F} \subseteq Irr(H)$ be a nice family. Can we construct a nice vector $v \in \pi$ so that the map

$$Irr(H) \ni \sigma \mapsto \|$$
local projection of v to $\sigma \|^2$

approximates the characteristic function of \mathcal{F} ? Can we then estimate the matrix coefficients $\langle gv, v \rangle$?

Special values of L-functions as branching coefficients

The orbit method

Microlocal analysis

Local applications

Global applications

G: Lie group, $\mathfrak{g} = \text{Lie}(G)$, $\mathfrak{g}^{\wedge} = \text{Hom}(\mathfrak{g}, i\mathbb{R})$ Definition

A coadjoint orbit is $\mathcal{O} \subseteq \mathfrak{g}^{\wedge}$ is a *G*-orbit for the coadjoint action.

Example

G = SO(3), $\mathfrak{g}, \mathfrak{g}^{\wedge} \cong \mathbb{R}^3$, {coadjoint orbits} = {spheres}.

Theorem (Kirillov)

Lie algebra structure on \mathfrak{g} defines a symplectic structure on \mathcal{O} , hence a symplectic volume form ω .

Orbit method: heuristic based on an (approximate) bijection $Irr(G) \approx \{coadjoint orbits\}$

 $\pi \longleftrightarrow \mathcal{O}_{\pi}$

compatible with natural operations.

 \mathcal{O}_{π} should describe the character χ_{π} : for small $x \in \mathfrak{g}$,

$$\chi_{\pi}(\exp(x)) = j^{-1/2}(x) \int_{\xi \in \mathcal{O}_{\pi}} e^{\langle x, \xi \rangle} d\omega(\xi),$$

where $j = \text{Jac}(\exp : \mathfrak{g} \to G)$, j(0) = 1. Such an identity is called the Kirillov formula for π . Valid for

- ► *G* nilpotent (Kirillov)
- ► G compact (Weyl, Kirillov)
- G reductive, π tempered (Rossmann)

Example G = SO(3). Classify by highest weight:

$$\mathsf{Irr}(G) = \{\pi_T : T \in \mathbb{Z}_{\geq 0}\}$$

Kirillov formula for $\pi = \pi_T$ holds with

$$\mathcal{O}_{\pi} = \text{sphere of radius } T + \frac{1}{2},$$

 $\operatorname{vol}(\mathcal{O}_{\pi}, d\omega) = 2T + 1 = \operatorname{dim}(\pi).$

Example

$$G = \mathsf{PGL}_2(\mathbb{R}) \cong \mathsf{SO}(1,2)$$
$$\mathfrak{g}^{\wedge} \ni i \begin{pmatrix} x & y+z \\ y-z & -x \end{pmatrix}$$

• one-sheeted hyperboloid

$$\mathcal{O}^+(r) = \{x^2 + y^2 - z^2 = r^2\}$$

• two-sheeted hyperboloid

$$\mathcal{O}^{-}(k) = \{x^2 + y^2 - z^2 = -k^2\}$$

Tempered irreducible representations:

- principal series $\pi(r,\varepsilon)$
- discrete series $\pi(k)$ for $k \in \mathbb{Z}_{\geq 1}$

$$\mathcal{O}_{\pi(r,\varepsilon)} = \mathcal{O}^+(r), \quad \mathcal{O}_{\pi(k)} = \mathcal{O}^-(k-1/2)$$

Special values of L-functions as branching coefficients

The orbit method

Microlocal analysis

Local applications

Global applications

Microlocalization

Heuristic. For each partition of $\mathcal{O}_{\pi} = \sqcup \mathcal{P}_j$ with $vol(\mathcal{P}_j) = 1$, there corresponds an orthonormal basis $(v_j)_j$ of π such that for $x \in \mathfrak{g}$,

$$\pi(x)\mathbf{v}_j \approx \langle x, \mathcal{P}_j \rangle \mathbf{v}_j$$

provided that $\langle x, \mathcal{P}_j \rangle$ is approximately well-defined.

Example

G = SO(3), π of highest weight T. The decomposition $\pi|_{SO(2)} = \bigoplus_{\ell=-T}^{T} \sigma_{\ell}$ into one-dimensional weight spaces corresponds to the partition of \mathcal{O}_{π} into horizontal strips

$$\mathcal{P}_\ell = \left\{ \xi \in \mathcal{O}_\pi : (extsf{z} extsf{-coordinate} extsf{ of } \xi) \in [\ell - rac{1}{2}, \ell + rac{1}{2}]
ight\}$$

For our purposes, better to take each \mathcal{P} concentrated near some specific $\tau \in \mathcal{O}_{\pi}$, say $\mathcal{P} = \mathcal{P}_{\tau}$. We call the corresponding vector v_{τ} microlocalized at τ and \mathcal{P}_{τ} its microlocal support.

Example

G = SO(3), $\pi = \pi_T$ as above,

$$\mathcal{P}_{ au} pprox \mathcal{O}_{\pi} \cap (au + \mathsf{O}(T^{1/2}))$$

for a well-spaced subset $\{\tau\} \subseteq \mathcal{O}_{\pi}$ of cardinality dim $(\pi) = 2T + 1$.

Figure: Microlocalized partitions $\mathcal{O}_{\pi} = \sqcup \mathcal{P}_{\tau}$ for $T \approx 40, 160$

A key feature of microlocalized vectors v_{τ} is that their matrix coefficients concentrate near the centralizer G_{τ} :

$$\langle g v_{\tau}, v_{\tau} \rangle \approx 0$$
 unless $g \tau \approx \tau$.

Informal reason:

- gv_{τ} is microlocalized at $g\tau$
- vectors with disjoint microlocal supports are orthogonal

Microlocal calculus

We work with microlocalized vectors implicitly via operators

$$\pi(f) = \int_{g \in G} f(g) \pi(g) \, dg$$

attached to $f \in C^{\infty}_{c}(G)$ supported near the identity.

We describe f by pulling it back to the Lie algebra and taking the Fourier transform. We call the result a ∈ S(g[∧]), and write

$$\pi(f) =: \operatorname{Op}(a).$$

• Kirillov formula (ignoring $j^{-1/2}$):

$$\operatorname{trace}(\operatorname{Op}(a)) \approx \int_{\mathcal{O}_{\pi}} a \, d\omega.$$

Take a microlocalized basis

$$\pi = \oplus \mathbb{C} v_{\tau} \quad \longleftrightarrow \quad \mathcal{O}_{\pi} = \sqcup \mathcal{P}_{\tau}.$$

The orbit method suggests

$$\mathsf{Op}(a) v_ au pprox a(\mathcal{P}_ au) v_ au pprox a(au) v_ au$$

if $a(\mathcal{P}_{\tau})$ is approximately well-defined, i.e., *a* is essentially constant on \mathcal{P}_{τ} .

Example

Take $G = SO(3), \pi = \pi_T$ and, as above,

$$\mathcal{P}_{ au} pprox \mathcal{O}_{\pi} \cap (au + \mathsf{O}(T^{1/2})).$$

lf

$$\partial^{\alpha} a(\xi) \ll_{\alpha} T^{(-1/2-\varepsilon)|\alpha|}.$$

then a varies by $\ll T^{-\varepsilon}$ on each \mathcal{P}_{τ} .

Theorem (NV 2018, N 2020)

Let $\pi = \pi_T$ be a unitary representation of a Lie group *G*. The assignment $a \mapsto Op(a)$, restricted to functions $a = a_T$ satisfying estimates as above, enjoys a reasonable microlocal calculus, e.g.:

1. If a is supported on elements of size $\times T$ and satisfies

$$\partial^{\alpha} a(\xi) \ll_{\alpha} T^{(-1/2-\varepsilon)|\alpha|},$$

then Op(a) has operator norm O(1).

- If G is reductive and π is irreducible, then Op(a) has trace norm O(T^d), where 2d = dim(O_π) = dim(G) rank(G).
- 3. $Op(a) Op(b) = Op(a \star b)$, where $a \star b \sim ab$.
- 4. Similar results for polynomials, functions with less regularity transverse to the coadjoint orbits, etc.

Constructing microlocalized vectors using the calculus

$$\pi \hookrightarrow L^2([G]), \quad [G] = \Gamma \backslash G.$$

For $a = a_T$ as in the microlocal calculus, consider

$$\sum_{v\in\mathcal{B}(\pi)}\mathsf{Op}(a)v(x)\cdot\overline{v(y)}.$$

Example

If $a|_{\mathcal{O}_{\pi}} \approx$ characteristic function of \mathcal{P}_{τ} , then we get

 $\approx v_{\tau}(x)\overline{v_{\tau}(y)}.$

Special values of L-functions as branching coefficients

The orbit method

Microlocal analysis

Local applications

Global applications

Relative characters

For tempered (π, σ) , we consider the hermitian form

$$\mathcal{H}_{\sigma}:\pi\otimes\bar{\pi}\to\mathbb{C}$$

 $\mathcal{H}_{\sigma}(v \otimes v) = \|$ local projection of v to $\sigma\|^2$.

For a nice function a on \mathfrak{g}^{\wedge} , we define the relative character

$$\mathcal{H}_{\pi,\sigma}(\mathsf{a}) := \sum_{\mathsf{v}\in\mathcal{B}(\pi)} \mathcal{H}_{\sigma}(\mathsf{Op}(\mathsf{a})\mathsf{v}\otimes\mathsf{v}).$$

Example

If $a|_{\mathcal{O}_{\pi}} \approx$ characteristic function of \mathcal{P}_{τ} , then

$$\mathcal{H}_{\pi,\sigma}(a) \approx \|$$
local projection of v_{τ} to $\sigma \|^2$.

Question

For $a = a_T$ as in the microlocal calculus, what is the asymptotic behavior of $\mathcal{H}_{\pi,\sigma}(a)$? Here $(\pi, \sigma) = (\pi_T, \sigma_T)$.

If $a \rightsquigarrow f \in C^\infty_c(G)$ with $\operatorname{Op}(a) = \pi(f)$, then one can verify that

$$\mathcal{H}_{\pi,\sigma}(a) = \int_{h \in H} \underbrace{\operatorname{trace}(\pi(h)\pi(f))}_{\int_{g \in G} \chi_{\pi}(hg)f(g)} \overline{\chi_{\sigma}(h)} \, dh.$$

Heuristic

Pretend exp were an isomorphism, apply Kirillov formula:

$$\mathcal{H}_{\pi,\sigma}(a) pprox \int_{x\in\mathfrak{g}} \int_{y\in\mathfrak{h}} \chi_{\pi}(e^{y+x}) a^{\vee}(x) \overline{\chi_{\sigma}(e^{y})} \, dx \, dy$$

= $\int_{\mathcal{O}_{\pi}\cap \mathsf{preimage}(\mathcal{O}_{\sigma})} a$?

Stability

We say that (π, σ) is stable if

$$\mathcal{O}_{\pi,\sigma} := \mathcal{O}_{\pi} \cap \mathsf{preimage}(\mathcal{O}_{\sigma})$$

is an H-torsor (closed orbit, trivial stabilizer).

Fact

This is a generic condition, depending only upon the infinitesimal characters $(\lambda_{\pi}, \lambda_{\sigma})$, equivalent to

 $\{\text{eigenvalues of } \lambda_{\pi}\} \cap \{\text{eigenvalues of } \lambda_{\sigma}\} = \emptyset.$

Some $\mathcal{O}_{\pi,\sigma}$'s for (SO(3), SO(2)) and (PGL₂(\mathbb{R}), GL₁(\mathbb{R})):

Relative character asymptotics in the stable case

Theorem (NV 2018)

Let $(\pi, \sigma) = (\pi_T, \sigma_T)$ be tempered and "uniformly stable": $T^{-1}(\lambda_{\pi}, \lambda_{\sigma})$ lies in a fixed compact collection of stable pairs. Then for $a = a_T$ as in the microlocal calculus,

$$\mathcal{H}_{\pi,\sigma}(\mathsf{a})\sim\int_{\mathcal{O}_{\pi,\sigma}}\mathsf{a},$$

where we integrate by transporting Haar on H to its torsor $\mathcal{O}_{\pi,\sigma}$.

Sketch of proof

Recall that

$$\mathcal{H}_{\pi,\sigma}(a) = \int_{h\in H} \operatorname{trace}(\pi(h)\operatorname{Op}(a))\overline{\chi_{\sigma}(h)}\,dh.$$

- Choose a microlocalized partition O_π = ⊔P_τ. Key case: a concentrated near some P_τ with τ ∈ O_{π,σ}.
- ► trace($\pi(h)$ Op(a)) $\approx \langle hv_{\tau}, v_{\tau} \rangle$ = negligible unless $h\tau \approx \tau$. Happens only if h is small, since stability $\implies H_{\tau} = \{1\}$.
- For small h, the heuristic argument can be pushed through.

Special values of L-functions as branching coefficients

The orbit method

Microlocal analysis

Local applications

Global applications

Overview

1. (N-Venkatesh 2018) asymptotic formulas for first moments

$$\sum_{\sigma\in\mathcal{F}}\mathcal{L}(\pi,\sigma),\quad \mathcal{F}:$$
 "long" family

with π fixed. Proof uses Ratner theory.

2. (N 2020) subconvex bounds $\mathcal{L}(\pi, \sigma) \ll C(\pi, \sigma)^{1/4-\delta_n}$ via asymptotic formulas for (amplified) first moments

$$\sum_{\pi\in\mathcal{F}}\mathcal{L}(\pi,\sigma),\quad \mathcal{F}:$$
 "short" family.

Proof uses (amplified) relative trace formula, linear algebra. "long" ~ [T, 2T], "short" ~ [T, T+1]. \mathcal{F} must be uniformly stable; equivalently, $C(\pi, \sigma) \simeq T^{2n(n+1)}$.

Role of relative character asymptotics

Both proofs use

if

- construction of microlocalized vectors via operator calculus,
- relative character asymptotics, and
- the following consequence of the definition of $\mathcal{L}(\pi, \sigma)$:

$$\sum_{\mathbf{v}\in\mathcal{B}(\pi)}\sum_{u\in\mathcal{B}(\sigma)}\left(\int_{[H]}\mathsf{Op}(a)\mathbf{v}\cdot\bar{u}\right)\left(\int_{[H]}\bar{\mathbf{v}}\cdot u\right)=\mathcal{L}(\pi,\sigma)\mathcal{H}_{\pi,\sigma}(a).$$

We construct $a = a_T$ so that

$$\mathcal{H}_{\pi,\sigma}(\mathsf{a})\sim\int_{\mathcal{O}_{\pi,\sigma}}\mathsf{a}$$

approximates the characteristic function of the family $\mathcal{F}.$ Then

$$\sum_{\sigma \in \mathcal{F}} \mathcal{L}(\pi, \sigma) \approx \sum_{v \in \mathcal{B}(\pi)} \int_{[H]} \operatorname{Op}(a) v \cdot \overline{v},$$
$$\sum_{\pi \in \mathcal{F}} \mathcal{L}(\pi, \sigma) \approx \sum_{u \in \mathcal{B}(\sigma)} \int_{x, y \in [H]} \overline{u(x)} u(y) \sum_{\gamma \in \Gamma} f(x^{-1} \gamma y) \, dx \, dy$$
$$\operatorname{Op}(a) = \pi(f).$$

Estimating averages over σ

$$\sum_{\sigma \in \mathcal{F}} \mathcal{L}(\pi, \sigma) \approx \int_{[H]} [a], \quad [a] := \sum_{v \in \mathcal{B}(\pi)} \mathsf{Op}(a) v \cdot \bar{v}$$

Decompose into localized vectors:

$$[a] \approx \int_{\tau \in \mathcal{O}_{\pi}} a(\tau) |v_{\tau}|^2 d\omega(\tau).$$

For fixed π , since supp $(a) \to \infty$, we can replace \mathcal{O}_{π} by the nilcone:

Any weak limit of the $|v_{\tau}|^2$ then attains unipotent invariance, hence (by Ratner) equidistributes. In particular, [a] equidistributes.

Estimating averages over π

$$\sum_{\pi \in \mathcal{F}} \mathcal{L}(\pi, \sigma) \approx \sum_{u \in \mathcal{B}(\sigma)} \int_{x, y \in [H]} \overline{u(x)} u(y) \sum_{\gamma \in \Gamma} f(x^{-1} \gamma y) \, dx \, dy$$

 $\sum_{\gamma \in \Gamma_H} \rightsquigarrow$ main term $\asymp T^{n(n+1)/2}$; apply amplification method. Remains to show that $\Gamma - \Gamma_H$ gives a smaller contribution. We may take *a* supported near some $\tau \in \mathcal{O}_{\pi,\sigma}$ with $|\tau| \asymp T$:

• Microlocalization of u implies approximate equivariance under the centralizer H_{τ_H} of τ_H . Key problem: estimate

$$\max_{y \in H} \int_{x \in H} \int_{z \in H_{\tau_H}} |f(x^{-1}\gamma yz)| \, dz \, dx$$

- f concentrates on G_{τ} , so $f(x^{-1}\gamma yz)$ detects when $x\tau \approx \gamma yz\tau$.
- Key case: y = 1 and γ centralizes τ .
- Key problem: exhibit some transversality between the subvarieties Hτ and γH_{τH}τ of O_π.

Figure: The "toy case" (G, H) = (U(2), U(1)), in which $H_{\tau_H} = H$.

 $\dim(H_{\tau_H}\tau) = n, \quad \dim(H\tau) = n^2, \quad \dim(\mathcal{O}_{\pi}) = n^2 + n.$

Maybe $\gamma H_{\tau_H} \tau$ and $H \tau$ literally transverse for generic $\gamma \in \Gamma$? Need just a bit of transversality, but for every $\gamma \notin \Gamma_H$.

- ► Key idea: suffices to establish transversality, but with $H_{\tau_H}\tau$ (*n*-dimensional) replaced by $Z_H\tau$ (1-dimensional).
- Passing to the Lie algebra, reduce to a linear algebra problem:

Theorem (N 2020) If $\tau \in \mathfrak{g}^{\wedge}$ is H-stable, $\gamma \in \mathfrak{g}_{\tau} - \mathfrak{z}$ and $z \in \mathfrak{z}_{H} - \{0\}$, then $[\gamma, [z, \tau]] \notin [\mathfrak{h}, \tau].$

Theorem (N 2020)

Let M_n denote the space of $n \times n$ complex matrices. Embed $M_n \hookrightarrow M_{n+1}$ via

$$a\mapsto egin{pmatrix} a&0\0&0 \end{pmatrix}.$$

Set $z := \text{diag}(1, \dots, 1, 0) \in M_n$. Let $\tau \in M_{n+1}$. Write $\tau = \begin{pmatrix} \tau_H & b \\ c & d \end{pmatrix}$.

with $\tau_{H} \in M_{n}$. Let $\gamma \in M_{n+1}$. Assume that

no eigenvalue of τ is also an eigenvalue of τ_H,

 \blacktriangleright $[\gamma, \tau] = 0$, and

•
$$[\gamma, [z, \tau]] = [y, \tau]$$
 for some $y \in M_n$.

Then γ is a scalar matrix.

Summary

- We develop the orbit method in analytic form as a microlocal calculus for Lie group representations, sharp up to ε's.
- We apply that calculus to determine relative character asymptotics in the stable regime.
- We deduce moment estimates and subconvex bounds in higher rank via some additional (local and global) arguments.

Theorem (NV 2018)

Assume [G], [H]: compact. Fix π : tempered, generic. Let $T \to \infty$. Set

$${\mathcal F}_{\mathcal T} := \left\{ \sigma \subseteq L^2([{\mathcal H}]) igg|_{\lambda_\sigma \in \ {\mathcal T} \cdot {\mathsf A}}^{m_\pi(\sigma) \, = \, 1}
ight\},$$

with Λ : nice fixed compact collection of infinitesimal characters with all eigenvalues nonzero.

Then

$$\sum_{\sigma\in\mathcal{F}_{\mathcal{T}}}\mathcal{L}(\pi,\sigma)\sim\frac{|\mathcal{F}_{\mathcal{T}}|}{\mathsf{vol}(\Gamma\backslash G)}.$$

Remark

Translates to (average *L*-value) $\sim 2 \prod_{p} (\cdots)$, as predicted via random matrix heuristics.

Theorem (N 2020)

Let $(G, H) = (U_{n+1}, U_n)$. Assume [H]: compact. Let $T \to \infty$. Let $(\pi, \sigma) = (\pi_T, \sigma_T)$ be Hecke-irreducible and tempered, with $T^{-1}(\lambda_{\pi}, \lambda_{\sigma})$ in a fixed compact stable collection. Then

$$\mathcal{L}(\pi,\sigma) \ll T^{n(n+1)/2-\delta}$$

for some fixed $\delta = \delta_n > 0$.

Context

Stability condition equivalent to "no conductor dropping":

$$C(\pi,\sigma) \asymp T^{2n(n+1)}.$$

Translates to a subconvex bound for the corresponding *L*-function:

$$\mathcal{L}(\pi,\sigma) \ll C(\pi,\sigma)^{1/4-\delta}.$$

In the everywhere-tempered case, $\delta = 1/(16n^5 + O(n^4))$.

Example

Take $(G, H) = (GL_3(\mathbb{R}), GL_2(\mathbb{R}))$, coadjoint orbits = nilcones:

$$\mathcal{O}_{\pi} = \mathcal{N} \subset \mathfrak{g}^{\wedge}, \quad \mathcal{O}_{\sigma} = \mathcal{N}_{H} \subseteq \mathfrak{h}^{\wedge}.$$

Then

$$egin{split} \mathcal{O}_{\pi,\sigma} &= \mathcal{N} \cap \mathsf{preimage}(\mathcal{N}_{\mathcal{H}}) \ &= \left\{ \xi = egin{pmatrix} A & b \ c & d \end{pmatrix} \in \mathfrak{sl}_3(\mathbb{R}) : \xi, A ext{ are nilpotent}
ight\}. \end{split}$$

Very far from stable: #{*H*-orbits on $\mathcal{O}_{\pi,\sigma}$ } = ∞ ! Representatives

$$\begin{pmatrix} 0 & 1 & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{pmatrix}$$

with bc the only invariant. Behavior of $\mathcal{H}_{\pi,\sigma}(a)$ remains unclear.