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Objectives

I Analyze L-functions on GLn+1×GLn and related groups.

I Determine asymptotics of “special functions” attached to
representations of such groups.

I n = 1: Bernstein–Reznikov, Michel–Venkatesh, (. . . ): analysis
via explicit formulas, complicated in higher rank.

I Develop the orbit method in the spirit of microlocal analysis,
giving a soft approach that applies in higher rank.

I Standard problems (moments, subconvexity).
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Setting

I Let (G ,H) be one of

(GLn+1(R),GLn(R)),

(U(p + 1, q),U(p, q)), (SO(p + 1, q),SO(p, q)).

(G ,H) is a strong Gelfand pair: irreducible representations of
G have multiplicity-free restriction to H.

I Let Γ ≤ G and ΓH = Γ ∩ H ≤ H be arithmetic lattices.
Example: (Γ, ΓH) = (GLn+1(Z),GLn(Z)).

I Define
[G ] := Γ\G , [H] := ΓH\H.

We assume these quotients are compact.

I We consider irreducible subrepresentations

π ⊆ L2([G ]), σ ⊆ L2([H]).



Global restriction

Let v ∈ π ⊆ L2([G ]) be a smooth vector.
Restrict to [H], spectrally decompose:

v |[H] =
∑

σ⊆L2([H])

∑
u∈B(σ)

(

∫
[H]

v ū)u.

︸ ︷︷ ︸
=: global projection of v to σ



Local restriction

Example

(G ,H) = (SO(3), SO(2)), π: irrep of highest weight T ∈ Z≥0.
Weight space decomposition:

π|H = ⊕T
`=−Tσ`, v =

∑
v`, ‖v‖2 =

∑
‖v`‖2.

General picture

As abstract unitary representations of H,

π|H =

∫
σ∈Irr(H)

mπ(σ)︸ ︷︷ ︸
∈{0,1}

σ dσ, dσ = Plancherel.

This means: there are “local” projection maps π → σ such that

‖v‖2 =

∫
σ
mπ(σ) ‖local projection of v to σ‖2 dσ.



Branching coefficients

The strong Gelfand property implies

global projection = scalar multiple of local projection.

We may thus define a branching coefficient L(π, σ) ∈ R≥0 by
asking that for all v ∈ π,

‖global projection of v to σ‖2 =

L(π, σ) ‖local projection of v to σ‖2.

It quantifies how automorphic forms in π correlate with those in σ.



Branching coefficients and L-values

Refined Gan–Gross–Prasad conjecture, known in many cases:1

L(π, σ) = special value of an L-function.

Example

In the GLn(Z) case,2

L(π, σ) ≈ 1

4

∣∣∣∣L(π × σ̄, 1/2)

L(Ad, · · · , 1)

∣∣∣∣2 .

1Hecke, Waldspurger, Ichino–Ikeda, N. Harris, Jacquet–Rallis, W. Zhang,
Beuzart-Plessis, Beuzart-Plessis–Liu–Zhang–Zhu,
Beuzart-Plessis–Chaudouard–Zydor

2Jacquet–Piatetski-Shapiro–Shalika



Motivation for studying L-values

Problem: estimate special values of L-functions,

I individually (“subconvexity problem”) or

I on average over a family (“moment problem”).

Considered fundamental nowadays.
Motivated by questions/applications discovered in the 1980’s and
1990’s:

I random matrix heuristics for moments of families

I existence and distribution of integral solutions of Q(v) = n for
a ternary quadratic form Q

I arithmetic quantum unique ergodicity: |ϕj |2 dµ ∼ (?)



Problems

To study L(π, σ) using the defining property

‖global projection of v to σ‖2 =

L(π, σ) ‖local projection of v to σ‖2

we must understand the local and global projections.

Sample local problem

Let F ⊆ Irr(H) be a nice family.
Can we construct a nice vector v ∈ π so that the map

Irr(H) 3 σ 7→ ‖local projection of v to σ‖2

approximates the characteristic function of F?
Can we then estimate the matrix coefficients 〈gv , v〉?
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G : Lie group, g = Lie(G ), g∧ = Hom(g, iR)

Definition
A coadjoint orbit is O ⊆ g∧ is a G -orbit for the coadjoint action.

Example

G = SO(3), g, g∧ ∼= R3, {coadjoint orbits} = {spheres}.

Theorem (Kirillov)

Lie algebra structure on g defines a symplectic structure on O,
hence a symplectic volume form ω.



Orbit method: heuristic based on an (approximate) bijection

Irr(G ) ≈ {coadjoint orbits}

π ←→ Oπ
compatible with natural operations.



Oπ should describe the character χπ: for small x ∈ g,

χπ(exp(x)) = j−1/2(x)

∫
ξ∈Oπ

e〈x ,ξ〉 dω(ξ),

where j = Jac(exp : g→ G ), j(0) = 1.
Such an identity is called the Kirillov formula for π.
Valid for

I G nilpotent (Kirillov)

I G compact (Weyl, Kirillov)

I G reductive, π tempered (Rossmann)



Example

G = SO(3). Classify by highest weight:

Irr(G ) = {πT : T ∈ Z≥0}

Kirillov formula for π = πT holds with

Oπ = sphere of radius T + 1
2 ,

vol(Oπ, dω) = 2T + 1 = dim(π).



Example

G = PGL2(R) ∼= SO(1, 2)

g∧ 3 i

(
x y + z

y − z −x

)

I one-sheeted hyperboloid
O+(r) = {x2 + y2 − z2 = r2}

I two-sheeted hyperboloid
O−(k) = {x2 + y2 − z2 = −k2}

Tempered irreducible representations:

I principal series π(r , ε)

I discrete series π(k) for k ∈ Z≥1

Oπ(r ,ε) = O+(r), Oπ(k) = O−(k − 1/2)
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Microlocalization
Heuristic. For each partition of Oπ = tPj with vol(Pj) = 1, there
corresponds an orthonormal basis (vj)j of π such that for x ∈ g,

π(x)vj ≈ 〈x ,Pj〉vj
provided that 〈x ,Pj〉 is approximately well-defined.

Example

G = SO(3), π of highest weight T . The decomposition
π|SO(2) = ⊕T

`=−Tσ` into one-dimensional weight spaces
corresponds to the partition of Oπ into horizontal strips

P` =
{
ξ ∈ Oπ : (z-coordinate of ξ) ∈ [`− 1

2 , `+ 1
2 ]
}



For our purposes, better to take each P concentrated near some
specific τ ∈ Oπ, say P = Pτ . We call the corresponding vector vτ
microlocalized at τ and Pτ its microlocal support.

Example

G = SO(3), π = πT as above,

Pτ ≈ Oπ ∩ (τ + O(T 1/2))

for a well-spaced subset {τ} ⊆ Oπ of cardinality dim(π) = 2T + 1.

Figure: Microlocalized partitions Oπ = tPτ for T ≈ 40, 160



A key feature of microlocalized vectors vτ is that their matrix
coefficients concentrate near the centralizer Gτ :

〈gvτ , vτ 〉 ≈ 0 unless gτ ≈ τ.

Informal reason:
I gvτ is microlocalized at gτ
I vectors with disjoint microlocal supports are orthogonal

Pτ gPτ ≈ Pgτ



Microlocal calculus

I We work with microlocalized vectors implicitly via operators

π(f ) =

∫
g∈G

f (g)π(g) dg

attached to f ∈ C∞c (G ) supported near the identity.

I We describe f by pulling it back to the Lie algebra and taking
the Fourier transform. We call the result a ∈ S(g∧), and write

π(f ) =: Op(a).

I Kirillov formula (ignoring j−1/2):

trace(Op(a)) ≈
∫
Oπ

a dω.



Take a microlocalized basis

π = ⊕Cvτ ←→ Oπ = tPτ .

The orbit method suggests

Op(a)vτ ≈ a(Pτ )vτ ≈ a(τ)vτ

if a(Pτ ) is approximately well-defined, i.e., a is essentially constant
on Pτ .

Example

Take G = SO(3), π = πT and, as above,

Pτ ≈ Oπ ∩ (τ + O(T 1/2)).

If
∂αa(ξ)�α T (−1/2−ε)|α|.

then a varies by � T−ε on each Pτ .



Theorem (NV 2018, N 2020)

Let π = πT be a unitary representation of a Lie group G . The
assignment a 7→ Op(a), restricted to functions a = aT satisfying
estimates as above, enjoys a reasonable microlocal calculus, e.g.:

1. If a is supported on elements of size � T and satisfies

∂αa(ξ)�α T (−1/2−ε)|α|,

then Op(a) has operator norm O(1).

2. If G is reductive and π is irreducible, then Op(a) has trace
norm O(T d), where 2d = dim(Oπ) = dim(G )− rank(G ).

3. Op(a) Op(b) = Op(a ? b), where a ? b ∼ ab.

4. Similar results for polynomials, functions with less regularity
transverse to the coadjoint orbits, etc.



Constructing microlocalized vectors using the calculus

Say
π ↪→ L2([G ]), [G ] = Γ\G .

For a = aT as in the microlocal calculus, consider∑
v∈B(π)

Op(a)v(x) · v(y).

Example

If a|Oπ ≈ characteristic function of Pτ , then we get

≈ vτ (x)vτ (y).
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Relative characters
For tempered (π, σ), we consider the hermitian form

Hσ : π ⊗ π̄ → C

Hσ(v ⊗ v) = ‖local projection of v to σ‖2.

For a nice function a on g∧, we define the relative character

Hπ,σ(a) :=
∑

v∈B(π)

Hσ(Op(a)v ⊗ v).

Example

If a|Oπ ≈ characteristic function of Pτ , then

Hπ,σ(a) ≈ ‖local projection of vτ to σ‖2.

Question
For a = aT as in the microlocal calculus, what is the asymptotic
behavior of Hπ,σ(a)? Here (π, σ) = (πT , σT ).



If a f ∈ C∞c (G ) with Op(a) = π(f ), then one can verify that

Hπ,σ(a) =

∫
h∈H

trace(π(h)π(f ))︸ ︷︷ ︸∫
g∈G

χπ(hg)f (g) dg

χσ(h) dh.

Heuristic
Pretend exp were an isomorphism, apply Kirillov formula:

Hπ,σ(a) ≈
∫
x∈g

∫
y∈h

χπ(ey+x)a∨(x)χσ(ey ) dx dy

=

∫
Oπ∩preimage(Oσ)

a?



Stability
We say that (π, σ) is stable if

Oπ,σ := Oπ ∩ preimage(Oσ)

is an H-torsor (closed orbit, trivial stabilizer).

Fact
This is a generic condition, depending only upon the infinitesimal
characters (λπ, λσ), equivalent to

{eigenvalues of λπ} ∩ {eigenvalues of λσ} = ∅.

Some Oπ,σ’s for (SO(3), SO(2)) and (PGL2(R),GL1(R)):



Relative character asymptotics in the stable case

Theorem (NV 2018)

Let (π, σ) = (πT , σT ) be tempered and “uniformly stable”:
T−1(λπ, λσ) lies in a fixed compact collection of stable pairs.
Then for a = aT as in the microlocal calculus,

Hπ,σ(a) ∼
∫
Oπ,σ

a,

where we integrate by transporting Haar on H to its torsor Oπ,σ.

Oπ,σ

Oπ



Sketch of proof

Recall that

Hπ,σ(a) =

∫
h∈H

trace(π(h) Op(a))χσ(h) dh.

I Choose a microlocalized partition Oπ = tPτ .
Key case: a concentrated near some Pτ with τ ∈ Oπ,σ.

I trace(π(h) Op(a)) ≈ 〈hvτ , vτ 〉 = negligible unless hτ ≈ τ .
Happens only if h is small, since stability =⇒ Hτ = {1}.

I For small h, the heuristic argument can be pushed through.
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Overview

1. (N–Venkatesh 2018) asymptotic formulas for first moments∑
σ∈F
L(π, σ), F : “long” family

with π fixed. Proof uses Ratner theory.

2. (N 2020) subconvex bounds L(π, σ)� C (π, σ)1/4−δn via
asymptotic formulas for (amplified) first moments∑

π∈F
L(π, σ), F : “short” family.

Proof uses (amplified) relative trace formula, linear algebra.

“long” ∼ [T , 2T ], “short” ∼ [T ,T + 1].
F must be uniformly stable; equivalently, C (π, σ) � T 2n(n+1).



Role of relative character asymptotics
Both proofs use
I construction of microlocalized vectors via operator calculus,
I relative character asymptotics, and
I the following consequence of the definition of L(π, σ):∑
v∈B(π)

∑
u∈B(σ)

(∫
[H]

Op(a)v · ū

)(∫
[H]

v̄ · u

)
= L(π, σ)Hπ,σ(a).

We construct a = aT so that

Hπ,σ(a) ∼
∫
Oπ,σ

a

approximates the characteristic function of the family F . Then∑
σ∈F
L(π, σ) ≈

∑
v∈B(π)

∫
[H]

Op(a)v · v̄ ,

∑
π∈F
L(π, σ) ≈

∑
u∈B(σ)

∫
x ,y∈[H]

u(x)u(y)
∑
γ∈Γ

f (x−1γy) dx dy

if Op(a) = π(f ).



Estimating averages over σ

∑
σ∈F
L(π, σ) ≈

∫
[H]

[a], [a] :=
∑

v∈B(π)

Op(a)v · v̄

Decompose into localized vectors:

[a] ≈
∫
τ∈Oπ

a(τ)|vτ |2 dω(τ).

For fixed π, since supp(a)→∞, we can replace Oπ by the nilcone:

Any weak limit of the |vτ |2 then attains unipotent invariance,
hence (by Ratner) equidistributes. In particular, [a] equidistributes.



Estimating averages over π

∑
π∈F
L(π, σ) ≈

∑
u∈B(σ)

∫
x ,y∈[H]

u(x)u(y)
∑
γ∈Γ

f (x−1γy) dx dy

∑
γ∈ΓH

 main term � T n(n+1)/2; apply amplification method.
Remains to show that Γ− ΓH gives a smaller contribution.
We may take a supported near some τ ∈ Oπ,σ with |τ | � T :

-

6 Oπ
ξ′′

ξ′

τ
s T ε

T 1/2+ε

Key case: u microlocalized at τH := (restriction of τ) ∈ h∧,
otherwise

∫
[H] Op(a)v · ū = negligible.



I Microlocalization of u implies approximate equivariance under
the centralizer HτH of τH . Key problem: estimate

max
y∈H

∫
x∈H

∫
z∈HτH

|f (x−1γyz)| dz dx

I f concentrates on Gτ , so f (x−1γyz) detects when xτ ≈ γyzτ .

I Key case: y = 1 and γ centralizes τ .

I Key problem: exhibit some transversality between the
subvarieties Hτ and γHτH τ of Oπ.

τ
Hτ

γHτH τ
Oπ

Figure: The “toy case” (G ,H) = (U(2),U(1)), in which HτH = H.



I Numerology:

dim(HτH τ) = n, dim(Hτ) = n2, dim(Oπ) = n2 + n.

Maybe γHτH τ and Hτ literally transverse for generic γ ∈ Γ?
Need just a bit of transversality, but for every γ /∈ ΓH .

I Key idea: suffices to establish transversality, but with HτH τ
(n-dimensional) replaced by ZHτ (1-dimensional).

I Passing to the Lie algebra, reduce to a linear algebra problem:

Theorem (N 2020)

If τ ∈ g∧ is H-stable, γ ∈ gτ − z and z ∈ zH − {0}, then

[γ, [z , τ ]] /∈ [h, τ ].



Theorem (N 2020)

Let Mn denote the space of n × n complex matrices. Embed
Mn ↪→ Mn+1 via

a 7→
(
a 0
0 0

)
.

Set z := diag(1, . . . , 1, 0) ∈ Mn.
Let τ ∈ Mn+1. Write

τ =

(
τH b
c d

)
.

with τH ∈ Mn. Let γ ∈ Mn+1. Assume that

I no eigenvalue of τ is also an eigenvalue of τH ,

I [γ, τ ] = 0, and

I [γ, [z , τ ]] = [y , τ ] for some y ∈ Mn.

Then γ is a scalar matrix.



Summary

I We develop the orbit method in analytic form as a microlocal
calculus for Lie group representations, sharp up to ε’s.

I We apply that calculus to determine relative character
asymptotics in the stable regime.

I We deduce moment estimates and subconvex bounds in
higher rank via some additional (local and global) arguments.



Theorem (NV 2018)

Assume [G ], [H]: compact.
Fix π: tempered, generic.
Let T →∞. Set

FT :=

{
σ ⊆ L2([H])

∣∣∣∣∣mπ(σ) = 1

λσ ∈ T · Λ

}
,

with Λ: nice fixed compact collection of infinitesimal characters
with all eigenvalues nonzero.
Then ∑

σ∈FT

L(π, σ) ∼ |FT |
vol(Γ\G )

.

Remark
Translates to (average L-value) ∼ 2

∏
p(· · · ), as predicted via

random matrix heuristics.



Theorem (N 2020)

Let (G ,H) = (Un+1,Un). Assume [H]: compact.
Let T →∞. Let (π, σ) = (πT , σT ) be Hecke-irreducible and
tempered, with T−1(λπ, λσ) in a fixed compact stable collection.
Then

L(π, σ)� T n(n+1)/2−δ

for some fixed δ = δn > 0.

Context

I Stability condition equivalent to “no conductor dropping”:

C (π, σ) � T 2n(n+1).

I Translates to a subconvex bound for the corresponding
L-function:

L(π, σ)� C (π, σ)1/4−δ.

In the everywhere-tempered case, δ = 1/(16n5 + O(n4)).



Example

Take (G ,H) = (GL3(R),GL2(R)), coadjoint orbits = nilcones:

Oπ = N ⊂ g∧, Oσ = NH ⊆ h∧.

Then

Oπ,σ = N ∩ preimage(NH)

=

{
ξ =

(
A b
c d

)
∈ sl3(R) : ξ,A are nilpotent

}
.

Very far from stable: #{H-orbits on Oπ,σ} =∞! Representatives0 1 b
0 0 0
0 c 0


with bc the only invariant. Behavior of Hπ,σ(a) remains unclear.
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