Crystallinity of Galois representations associated to regular algebraic cuspidal automorphic representations of GL_n

Ila Varma

Abstract

I will discuss local-global compatibility at p for the p-adic Galois representations constructed by Harris-Lan-Taylor-Thorne and Scholze. More precisely, let $r_p(\pi)$ denote an n-dimensional p-adic representation of the absolute Galois group of a CM field F attached to a regular algebraic cuspidal automorphic representation π of $\operatorname{GL}_n(\mathbb{A}_F)$. For any prime $v \mid p$ of F such that π_v is unramified, we show that $r_p(\pi)|_{\operatorname{Gal}(\overline{F}_v/F_v)}$ is crystalline.

To prove the above, we use the fact that the representations $r_p(\pi)$ can be constructed as a subrepresentation of a *p*-adic Galois representation associated to an overconvergent GU(n, n)-automorphic representation II. We can then construct a certain one-parameter family containing II and a Zariskidense set of points whose associated Galois representations are already known to be crystalline. Using a result of R. Liu, we can show that each specialization within this family has *n* crystalline periods, and conclude the result by proving that the *n* crystalline periods are all distinct periods of $r_p(\pi)$. If time permits, I will also discuss how such an argument can be used to prove that the Galois representations $r_p(\pi)$ are de Rham at *v* when there is no unramifiedness assumption on π_v .