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Abstract. We formulate an analogue of the archimedean motivic action conjecture of Prasanna–

Venkatesh for irregular cohomological automorphic forms on Shimura varieties, which appear on

multiple degrees of coherent cohomology of Shimura varieties. Such multiple appearances are

due to many in�nity types in a single L-packet with equal minimal K-types. Accordingly, we

formulate the conjecture comparing periods of forms of di�erent automorphic representations. We

provide evidences for the conjecture by showing its compatibility with existing conjectures on

periods of automorphic forms. The conjectures suggest the existence of certain operations which

move between di�erent in�nity types in an L-packet.
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1. Introduction

The motivic action conjecture of Venkatesh posits that, roughly speaking, for a Hecke eigen-

system h, there is a natural action of the motivic cohomology of the adjoint motive associated to

h on the h-isotypic part of the rational cohomology of locally symmetric spaces. This has many

incarnations which shed new light on various parts of the Langlands program. However, the

conjectures have been mostly restricted to the case of “δ 6= 0,” namely when the reductive group

in concern G has no compact Cartan subgroup. This in particular excludes the case when the

locally symmetric space is a Shimura variety. As a locally symmetric space that is not a Shimura

variety so far has not been related to algebraic geometry (although see [GT]), the motivic action

conjectures seemed to be extremely di�cult to approach.

On the other hand, there have been expectations that a similar conjecture would exist for au-

tomorphic forms over Shimura varieties with irregular weight. The easiest instance is the case

of weight one modular forms; they appear in both H0
and H1

of the modular curve of the same

line bundle. The main purpose of the paper is to give a formulation of such conjecture for gen-

eral Shimura varieties, and provide somewhat intricate evidences using well-known results and

conjectures regarding periods of automorphic forms. The following is a generalization of the

archimedean motivic action conjecture to general Shimura varieties.

Conjecture 1 (Archimedean motivic action conjecture for Shimura varieties). Let λ be a nonde-
generate singular analytically integral character, and let Π satisfy Assumption 2.5, with Π∞ ∈ Pλ.
LetM = H1

M((Ad Π)OE ,Q(1)) and Hi = H i(XG(Γ)Q, [V ])[Πf ], where both are regarded as Q-
vector spaces equipped with Hermitian bilinear forms, induced from a �xed admissible bilinear form
on gC (see §2.2). Then, there is an isometry between gradedQ-vector spaces equipped with Hermitian
metrics,

∧∗M∗ ⊗Himin ∼=
imax⊕
i=imin

Hi,

where V is the automorphic vector bundle coming from Levi (see Notation) such that Πf appears in
multiple degrees of its cohomology, imin = min{i | H i(XG(Γ), [V ])[Πf ] 6= 0}, and imax is de�ned
analogously.

This is the analogue of [PV, Conjecture 1.2.1], although new subtleties arise in the irregular

weight case as we will see. Under some standard conjectures on periods, we show that the con-

jecture indeed holds in a few low-dimensional cases.

Theorem 2. Under certain mild conditions and several standard conjectures on periods (see below),
for G = Sp4 and SU(2, 1), Conjecture 1 is true. In other words, the action of adjoint motivic coho-
mology group on the coherent cohomology groups of Shimura variety respects Q×-structure.
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The “mild conditions” are that, informally speaking, the �nite part is globally generic, and

that there are newforms; see Assumption 2.5. These conditions exist to have a clean statement

of the conjectures. More importantly, the “standard conjectures on periods” are summarized in

Assumption 2.22, which includes the Lapid–Mao conjecture and the Beilinson conjectures. The

proof of Theorem 2.18 uses the same idea of [PV], but requires more machinery, as the whole

setup is about comparing periods of di�erent automorphic representations.
The cases where Theorem 2 is proved are when the Hecke eigensystem appears in two consec-

utive degrees of cohomology. In this case, or more generally, when we restrict the statement of

Conjecture 1 into the relation between the top and bottom degrees, the conjecture can be made

into a statement that does not refer to motivic cohomology.

More precisely, let Π = Πf⊗Π∞ be a cuspidal automorphic representation satisfying Assump-

tion 2.5, and let λ be the in�nitesimal character of Π∞, which is singular and nondegenerate (see

Notation). Let V be the automorphic vector bundle coming from the Levi (see Notation), such that

H i(p, K;V ⊗Π∞) 6= 0 for some i, and Πmin,Πmax be the members of the archimedean L-packet

of Π∞ such that the degree that Πmin (Πmax, respectively) has nontrivial (p, K)-cohomology with

coe�cient in V is the minimum (maximum, respectively) in the L-packet. Let imin (imax, respec-

tively) be the degree, and let fmin ∈ Πnew
f ⊗ Πnew

min and fmax ∈ Πnew
f ⊗ Πnew

max (see De�nition 2.6)

such that [fmin], [fmax] ∈ H∗(XG(Γ), V ) (the harmonic Dolbeault forms corresponding to the au-

tomorphic forms; see De�nition 2.8 for a precise de�nition) are de�ned over Q. Then, under the

Beilinson conjectures, the information on the top and bottom degrees in Conjecture 1 is precisely

that

〈fmin, fmin〉
〈fmax, fmax〉

∼Q×∩R

∣∣∣∣πimin−imax
L∞(1,Π,Ad)

L∞(0,Π,Ad)
· L(1,Π,Ad)

volF 1HdR(Ad Π)

∣∣∣∣2 ,
where 〈·, ·〉 is the Petersson inner product, and the volume is computed with respect to the metric

induced by any weak polarization (see [PV, §2.2.3])
1

. In particular, this statement is equivalent to
Conjecture 1 if there are only two degrees that Πf appear in the cohomology, assuming Beilinson

conjectures.

At �rst sight, the information on top and bottom degrees might seem to less interesting, as one

might guess there is an extra duality that one can compare the top and bottom degrees. Indeed, in

[PV], the top and bottom degrees were complementary, so that they are related via duality. On the

other hand, in the irregular setting, there are numerous cases where the top and bottom degrees

are not complementary. Rather, they are determined by the position of the in�nitesimal character

inside the Weyl chambers. Indeed, we work with two examples, G = Sp4 and SU(2, 1), and both

cases we work with the choice of λ where the minimum and maximum degree of appearances

are H0
and H1

, respectively.

1.1. Archimedean L-packet and the matter of choosing automorphic realizations. We

now explain the new subtleties of the irregular weight case. In view of automorphic cohomology,

the phenomenon of a weight one modular form appearing in H0
and H1

actually involves two
di�erent representations. If we denote ω to be the weight one line bundle or the corresponding

representation of SO(2), then for a weight one modular newform f ,

H0(X,ω)[f ] = H0(p, SO(2);D+
0 ⊗ ω),

H1(X,ω)[f ] = H1(p, SO(2);D−0 ⊗ ω),

1
The volume is independent of the choice of weak polarization, see [PV, Lemma 2.2.2].
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where p = p− ⊕ so(2), p− is the anti-holomorphic tangent space and D+
0 and D−0 are the holo-

morphic and the antiholomorphic discrete series, respectively. Indeed, it is fdz that appears in

H1(X,ω) as a class in Dolbeult cohomology, and f is an antiholomorphic modular form of weight

−1.

In general, if the same Hecke eigensystem appears in multiple degrees of cohomology of the

same automorphic vector bundle of a Shimura variety, then each such instance is actually rep-

resented by the so-called (p, K)-cohomology of di�erent automorphic representations. More

precisely, the �nite part (G(Af )-representation) remains the same, while the in�nity type varies

inside an archimedean L-packet. Such phenomenon happens precisely when the in�nitesimal

character of the in�nity type lies on the walls of Weyl chambers.

The action of∧∗a∗G in [PV] is most naturally thought as the self-Ext-algebra of a representation.

On the other hand, in our case, the representations corresponding to the target and the source

of the action is di�erent, so the action cannot be thought as an Ext-algebra, but merely as an

Ext-group. Furthermore, the translation of the action into the automorphic cohomology context

also depends on the choice of automorphic realization maps Πf ⊗ Π∞ ↪→ A(G) for each Π∞;

namely, each realization map can be always scaled by a scalar, but we want to compare them as

a whole. This problem did not arise in op. cit., as a choice of a single automorphic realization

map would rigidify the situation. In turn, we had no choice but to formulate a slightly weaker

Conjecture 1 that asserts the motivic action conjecture on the level of metric spaces.

1.2. Comparison of periods of di�erent automorphic representations. We brie�y explain

the strategy of the proof of Theorem 2. As does in [PV], we most notably assume Beilinson’s
conjectures (for Chow motives). The main new feature in this paper is that, because we need to

compare periods of two di�erent representations, we need two di�erent conjectures on periods,

one for each representation. In both evidences, we will compare periods of a holomorphic au-
tomorphic form and a generic automorphic form. For the holomorphic form, we will need the

re�ned Gan–Gross–Prasad conjecture (referred as Ichino–Ikeda conjecture in op. cit.), although in

some instances this requirement can be avoided by using the doubling construction of standard

L-functions. For the generic form, we will need the Lapid–Mao conjecture, which relates the value

of a Whittaker function to a certain L-value.

One also needs a way to detect rationality of classes for both types of forms. For the holomor-

phic forms, we can use Fourier expansion, but for those appearing in higher coherent cohomology,

we need a new machinery. We will develop the so-called cohomological period integrals for higher

coherent cohomology, which realizes integral representations ofL-functions as cup product pair-

ings in coherent cohomology. The cohomological interpretation of such integral representations

(or, at least, their appearance in the literature) is relatively new ([LPSZ], [Oh]).

1.3. Generalized complex conjugations. The archimedean motivic action conjecture as stated

in [PV] gives a recipe of rational cohomology classes, whereas our Conjecture 1 is a statement on

metrics. To formulate a similar conjecture in the setting of coherent cohomology of Shimura vari-

eties, we need a way to rigidify between di�erent automorphic representations in an archimedean

L-packet. Indeed, in retrospect, even in the easy case of modular forms, one needs complex con-

jugation to go between holomorphic and antiholomorphic limits of discrete series. Unfortunately,

beyond the case of modular forms, there is no known general operation that can move between

di�erent in�nity types. We will tentatively name such an operation a generalized complex con-
jugation, which should send an automorphic form of a certain in�nity type to an automorphic
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form of another in�nity type in the same L-packet. It seems inevitable to come up with such an

operation to formulate the full conjecture on rational cohomology classes.

The generalized complex conjugations should be naturally understood in the context of a “de-

rived” local-global compatiblity in some sense, and their existence is also suggested by the exis-

tence of similar operations in the analogous settings over the p-adic �elds (Kottwitz’s conjectures,

e.g. [FaMa]) and over the function �elds (excursion operators, e.g. [Laf]). Following the sugges-

tions of Joseph Wolf, we will investigate the nature of generalized complex conjugations using

the theory of Penrose transforms.

On the other hand, if the associated Hermitian symmetric space is a product of copies of the

upper half planes, one can come up with an operation that changes one in�nity type to another

by taking complex conjugation at certain variables. This is a partial complex conjugation, studied

in [Ha2]. Using partial complex conjugations, we can formulate a conjecture on rationality of

cohomology classes in the case of Hilbert modular forms of partial weight one. There exists a

prior work of [Ho] on the motivic action conjecture for Hilbert modular forms of parallel weight

one, which similarly uses partial complex conjugations. We compare our conjecture in the Hilbert

modular form case with the conjecture of [Ho], and explain the evidences given in op. cit. are

also consistent with our conjecture.

1.4. Summary. In §2, we take an e�cient route to the statement of the Archimedean motivic

action conjecture (Conjecture 2.13) and its more accessible variant, the Period conjecture (Con-

jecture 2.15). The objective of the section is to set the conjecture in a context. We in particular

defer the abstract discussion of how to derive the conjectures, parallel to those of [PV, §2-§5], to

later sections, as it requires more advanced theory on representation theory of real groups.

In §3 and §4, we provide our main evidence for the Period conjecture (Conjecture 2.15). Sim-

ilarly to [PV, §7], we prove that, for G = Sp4 and SU(2, 1), the Period conjecture is compati-

ble with several well-accepted conjectures on periods of automorphic forms, such as the Beilin-

son’s conjectures, the Lapid–Mao conjecture and the re�ned Gan–Gross–Prasad conjectures. To

use these, we review how certain period integrals can be interpreted as cup product pairings of

(higher) coherent cohomology classes on Shimura varieties.

In §5, we discuss the issue on formulating a motivic action conjecture on rationality of coherent

cohomology classes. Most notably, we suggest the notion of generalized complex conjugations,
which move between di�erent members of a single archimedean L-packet. In §5.1, we formulate

a precise conjecture in the case of Hilbert modular forms using partial complex conjugations,

and compare our conjecture with the conjecture of [Ho]. In §5.2, we spell out conditions that

the generalized complex conjugations should satisfy, and formulate the full conjecture assuming

their existence. In Appendix A, we review the formulation of Beilinson’s conjecture for motives

over a general number �eld, as many references state the conjecture for only Q-motives. Finally,

we develop a representation theory background in Appendix B, parallel to [PV, §2-§4]. Although

Appendix B is independent of the development of the rest of the paper, the section is suggestive

of a correct foundation in which the motivic action conjectures need to be developed.

1.5. Problems and questions. There are several interesting questions that arise in this work.

(1) Place the generalized complex conjugations in the context of some form of “derived” local-

global compatibility, motivated by the strong form of Arthur conjectures as realized in the

function �eld case via excursion operators as in [Laf]. A correct formulation should be
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in accordance with the existing statements of derived local-global compatibility as in [Fe]

and [Zhu].

(2) The compatibility between the Period Conjecture, Conjecture 2.15, and the existing period

conjectures relies on the yet-to-be-calculated archimedean zeta integrals. These can be

conducted using explicit integral formulae of (generalized) Whittaker functions, e.g. [KO],

[Od].

(3) As we deal with motives over a more general number �eld and Shimura varieties over a

number �eld other than Q, in every aspect of our discussion, the choice of a complex em-

bedding is always implicit. In particular, there must be a relation between the conjectures

in this paper for the conjugates of Shimura varieties (e.g. [Va]).

(4) It seems extremely hard to detect rationality of coherent cohomology classes if the Hecke

operators can only cut a space that is of dimension larger than one. For example, if X is

a Hilbert modular surface, and if ω is the parallel weight one line bundle, then it seems

extremely di�cult to determine whether a class in H1(X,ω) is de�ned over Q, or even to

produce a class in it.

(5) It is expected that the motivic action conjecture will involve L-packets even in the case of

δ > 0. It may be possible to formulate the conjecture for the same eigensystem appearing

in cohomology with di�erent coe�cients.

1.6. Notation. Let G be a connected reductive algebraic group over Q. For simplicity, let us

assume thatG is quasisplit,G(R) is connected, and that the center ofG does not have a nontrivial

R-split torus. Also, we assume that there exists a twisting element in the sense of [BG, De�nition

5.2.1]
2

. Let gQ be the Q-Lie algebra ofG, and let gR, gC be its base change to R and C, respectively.

We occasionally drop the subscript forC. LetWG be the Weyl group ofG. We endow an invariant,

θ-invariant, R-invariant bilinear formB on gR, such thatB(X, θ(X)) is negative de�nite, where θ
is the Cartan involution. We will use this to talk about inner product on weight space, Riemannian

metric on the Hermitian symmetric domain, etc. In speci�c examples, we may and will choose

B to induce a preferred Riemannian metric on the Hermitian symmetric space (for example, one

may want the Riemannian metric to be dxdy on the upper half plane H = {x+ iy | y > 0}). We

also use B to any other bilinear form induced from B.

Suppose further that G gives rise to a Shimura variety, which means that there is a symmetric

spaceX forG(R) which can be endowed with a structure of Hermitian symmetric domain (which

we will �x). Fix a point h ∈ X , which gives rise to a Hodge cocharacter h : S = ResC/R Gm,C →
GR which in turn induces a real Hodge structure of weight 0 on gR, g = g−1,1 ⊕ g0,0 ⊕ g1,−1

.

Given an open compact subgroup Γ ⊂ G(Af ), there exists a quasi-projective variety YG(Γ), a

Shimura variety, de�ned over a number �eld E, whose complex points
3

have an analyti�cation

isomorphic to the double quotient G(Q)\(X ×G(Af )/Γ).

Let K ⊂ G(R) be the stabilizer of h. Let T be the Cartan subgroup of K . Then, X ∼= G(R)/K
and g0,0 = k := Lie(K)C. We denote p+ = g−1,1

, p− = g1,−1
and p = k⊕p−. Then, p is a parabolic

subalgebra of g, giving rise to a parabolic subgroup P ⊂ GC with LieP = p. We also �x once and

for all a positive system of roots for k. The holomorphic tangent space ofX at h is identi�ed with

2
This is to avoid the subtlety of di�erence between C-algebraicity and L-algebraicity.

3
Note that the choice of a point in a Hermitian symmetric domain gives the re�ex �eld as a sub�eld of C, so

there is a preferred complex embedding; e.g. [Va, Notation 4.6]. In particular, one can expect that the statement of the

conjecture depends a priori on the choice of a Hermitian symmetric domain. It could be interesting to check if our

conjecture is consistent with conjugation of Shimura varieties.
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p+, so there is a G(R)-equivariant embedding of complex manifolds X → Ď := G(C)/P (C),

sending h 7→ P (C). In this regard, K = G(R) ∩ P (C), and K(C) is the Levi subgroup of P (C).

Also, any �nite-dimensional holomorphic representation V of P (C) gives rise to an algebraic

vector bundle over YG(Γ), an automorphic vector bundle, denoted [V ], which is an algebraization

of the pullback of the holomorphic vector bundle on X which in turn is the restriction of the

vector bundle G(C)×P (C) V → Ď on Ď. If V factors through K(C), namely if it is induced from

a representation of K(C), we will call [V ] an automorphic vector bundle coming from the Levi. If

not, we will call V nearly, following [LPSZ].

To save space, we may abbreviate some words with repeated appearances: discrete series into

DS, limit of discrete series into LDS, and nondegenerate limit of discrete series (see the paragraph

before Theorem 2.4 for its de�nition) into NLDS. All real group representations are thought as

(g, K)-modules.

For automorphic representations, their L-functions are normalized so that
1
2

is the center of

symmetry. For pure motives, theire L-functions are normalized so that, if w is its weight,
w+1

2
is the center of symmetry. For both kinds of L-functions, w is called the motivic weight of the

L-function. For an automorphic representation Π = Πf ⊗ Π∞ of G(A), the �eld of rationality

FΠ is the �xed �eld of the isomorphism class of Πf as a G(Af )-representation ([Cl, §3.1]). An

inner product on the space of automorphic forms, denoted A(G), can be given as either the L2
-

norm on G(Q)/G(A) with respect to the Tamagawa measure or the measure coming from the

Riemannian metric of the symmetric space, as the norms are all scaled by the same scalar factor.

The second norm is the same as the usual Petersson norm, which we will denote as 〈, 〉P .

For the integral representations, we �x a nontrivial additive character ψ =
∏

p ψp of A/Q. For

a cuspidal automorphic form ϕ =
∏

p ϕp of cuspidal automorphic representation π =
⊗′

p πv of

G(A), its Whittaker transform Wϕ(g) is de�ned as Wϕ(g) =
∫
NG(Q)\NG(A)

ϕ(ng)ψ(n−1)dn, for

some choice of NG that needs to be speci�ed when talking about Whittaker model. Locally, a

generic G(Qp)-representation πp is isomorphic to the space of functionsWp := {Wp : G(Qp)→
C | Wp(ng) = ψp(n)Wp(g) for n ∈ NG(Qp)}; one can choose isomorphisms (a local Whittaker
model) πp

∼−→ Wp, fp 7→ Wfp that are compatible with the global Whittaker model; namely,

Wϕ(g) =
∏

pWϕp(gp).

We use notational convention for motives as in [PV, §2], except that we will deal with motives

over a more general number �eld. In that case, we put the complex embedding in the subscript,

such as Mσ, compB,dR,σ, etc.

2. Archimedean L-packets and the motivic action conjecture

In this section, we take the shortest path to the statement of the Archimedean motivic action

conjecture for Shimura varieties, Conjecture 2.13. More abstract justi�cation of the formulation of

the Conjecture, including a parallelism between [PV] and our conjecture, is discussed in Appendix

B and §5.2.

2.1. (p, K)-cohomology and automorphic forms. Firstly, we quickly review how coherent

cohomology of Shimura varieties is related to automorphic forms via the theory of (p, K)-cohomology.

Recall that, as the singular cohomology of locally symmetric spaces can be calculated in terms of

(g, K)-cohomology, the coherent cohomology of Shimura varieties can be calculated in terms of

the so-called (p, K)-cohomology. By reinterpreting what the Dolbeault cohomology calculates

in the setting of Shimura varieties, one gets the following
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Proposition 2.1 (See [Su, (2.12)]). We have

H i(YG(Γ), [V ]) ∼= H i(p, K;C∞(G(Q)\G(A)/Γ)K−finite ⊗ V ),

where the left hand side is analytic cohomology, and V is understood as a (p, K)-module with trivial
p-action.

Furthermore, there is an analogue of Franke’s theorem for coherent cohomology of Shimura

varieties.

Theorem 2.2 (Su, [Su, Theorem 6.7]). For any su�ciently re�ned polyhedral cone decomposition
Σ, there is a natural Hecke-equivariant isomorphism

H i(XΣ
G(Γ), [V ]can) ∼= H i(p, K;A(G)Γ ⊗ V ),

whereXΣ
G(Γ) is the corresponding toroidal compacti�cation, [V ]can is the canonical extension of [V ],

andA(G) is the space of automorphic forms, namely the space of rightK-�nite, Z(g)-�nite smooth
functions on G(Q)\G(A) of moderate growth.

Remark 2.3. We would be only interested in a part of coherent cohomology localized at a cus-

pidal Hecke eigensystem, so it is unlikely that the full power of Su’s theorem is required.

The calculation of coherent cohomology is therefore about (p, K)-cohomology of automorphic

representations. As far as the coherent cohomology is concerned, the choice of Σ is ine�ective,

so we may occasionally drop the superscript Σ if there is no confusion.

We will be interested in the situation where a Hecke eigensystem appears in multiple degrees of

coherent cohomology. Namely, for an admissible G(Af )-representation Πf and an automorphic

vector bundle E of YG(Γ), we are interested in

H∗(XG(Γ), Ecan)[Πf ].

By Theorem 2.2, we have a canonical isomorphism

H∗(XG(Γ), Ecan) ∼=

 ⊕
Πf⊗Π∞⊂A(G)

H∗(p, K; Π∞ ⊗ E)

⊗C ΠΓ
f ,

where the sum runs over all automorphic representations with the �nite part being Πf , and E
is the algebraic P (C)-representation such that [E] = E . Thus, it is possible that several di�erent
Π∞’s can appear in the decomposition, if H∗(p, K; Π∞ ⊗ E) 6= 0 for several di�erent Π∞’s. In-

deed, this can be the case if, for example, some of Π∞ is a nondegenerate limit of discrete series

(NLDS) and not a discrete series (DS); recall that a nondegenerate limit of discrete series is a limit

of discrete series whose in�nitesimal character is not orthogonal to any compact root. Unlike

the case of “δ > 0” as in [PV], the appearance of single Hecke eigensystem in multiple cohomo-

logical degrees in our setting necessarily implies that, by the following Theorem, there are many
di�erent archimedean representations involved:

Theorem-De�nition 2.4 (See [VZ], [Sc2]). Let Π∞ be the (g, K)-module associated to a DS

or a NLDS representation of G(R). Then, there is a unique 0 ≤ i ≤ dimX and a �nite-

dimensional irreducible K-representation V such that H i(p, K; Π∞ ⊗ V ) 6= 0. Furthermore,

dimCH
i(p, K; Π∞⊗V ) = 1. We will denote iΠ∞ and VΠ∞ for the i and V corresponding to Π∞.
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Indeed, the above Theorem says that a single archimedean representation can only contribute

to a single degree. We will see that the raison d’être of appearance of a Hecke eigensystem in

multiple degrees is that the in�nity type Π∞ can change in an archimedean L-packet without

changing the �nite part. We will see in detail in Appendix B how an archimedean L-packet

(rather than a single G(R)-representation) appears in the context of motivic action. For now, we

move on to the formulation of the “metric” conjecture which does not involve abstract real group

representation theory nor Lie algebra cohomology. From now on, for the sake of simplicity, we

assume the following

Assumption 2.5. Let Π = Πf ⊗Π∞, with Πf =
∏

p<∞Πp, be a cuspidal automorphic automor-

phic representation with Π∞ an NLDS (see Notation)
4

. We hereafter assume the following:

(GEN) Πf is globally generic.

(NEW)

For each p <∞, there exists a compact open subgroup Γp ≤ G(Zp) such that dimC ΠΓp
p = 1.

(Sp4)

If G = Sp4, a holomorphic Siegel modular newform fΠ in Πf ⊗ Πhol
∞ , where Πhol

∞ is a holomorphic

(limit of) discrete series, has a nontrivial special Bessel period B(fΠ, F ) 6= 0 for some imaginary

quadratic �eld F . Here, B(fΠ, F ) =
∑

A=

(
a b/2
b/2 c

)
,4ac−b2=DF ,A∼MTAM for M∈SL2(Z)

aA, where

fΠ(Z) =
∑

S aSe
2πi tr(SZ)

is the q-expansion of fΠ, and −DF is the discriminant of F .

(SU(2, 1))

If G = SU(2, 1), de�ned using an imaginary quadratic �eld K , (1) there exists a split place v such

that Πv is supercuspidal, and (2) if p is not split in K where Πp is also not unrami�ed, either Πp is

supercuspidal or the stabilizer of an anisotropic vector SU(1, 1)(Qp) ⊂ SU(2, 1)(Qp) is compact.

The purpose of Assumption 2.5 is to isolate the e�ect of archimedean L-packet phenomenon

amongst others and to use existing results on the re�ned Gan–Gross–Prasad conjectures. We

believe that, for example, it would be not di�cult to formulate the Conjectures without (NEW).

De�nition 2.6. Under Assumption 2.5, let Γ(Πf ) = Γ :=
∏

p Γp. Also, when we say a vector

f ∈ Π is a newform, it means f =
∏

p fp ⊗ f∞ such that, not only fp ∈ Π
Γp
p , but also f∞ is a

highest weight vector of the minimal K-type of Π∞ (which exists as we will be only concerned

about either DS or LDS). We de�ne Πnew
f =

∏
p Π

Γp
p , and also Πnew

∞ to be the one-dimensional C-

vector subspace of Π∞ generated by highest weight vectors of the minimalK-type. In particular,

f being a newform means that f ∈ Πnew
f ⊗ Πnew

∞ .

In view of Theorem-De�nition 2.4, the above “newform” appears in

H iΠ∞ (XG(Γ), [VΠ∞ ]can)[Πf ],

which we denote by H iΠ∞ (X)[Πf ].

4
This would ensure that FΠ, the �eld of de�nition, is a number �eld, by our assumption in Notation that there

exists a twisting element in the sense of [BG, De�nition 5.2.1]. Note that the twisting element indeed exists for

G = Sp4 (as it is split and has simply-connected derived subgroup) and SU(2, 1) (as the half-sum of positive roots

is integral).
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Note that a choice of a highest weight vector of VΠ∞ induces a natural isomorphism

H iΠ∞ (p, K; Π∞ ⊗ VΠ∞) ∼= Πnew
∞ ,

de�ned as follows. Given v ∈ Πnew
∞ , de�ne a K-homomorphism

f :
(
∧iΠ∞ (p/k)

)
⊗ V ∗Π∞ → Π∞,

by sending the highest weight vector (induced from the choice of a highest weight vector of VΠ∞

and the roots of g) of the highest K-type of the source to v and sending all other K-types to

zero. This de�nes a class in HomK(∧iΠ∞ (p/k),Π∞ ⊗ VΠ∞) which is closed in the corresponding

Chevalley–Eilenberg complex for the (p, K)-cohomology, thus a class inH iΠ∞ (p, K; Π∞⊗VΠ∞).

Remark 2.7. In this paper, each conjecture will consider a �xed �nite type Πf and a coe�cient

vector bundle V , so in that context we �rstly �x a choice of a highest weight vector of V before

anything else.

De�nition 2.8. For f =
∏

p≤∞ fp ∈ Πnew
f ⊗Πnew

∞ , we de�ne [f ] ∈ H iΠ∞ (X)[Πf ] to be the class

corresponding to

[f∞]⊗
∏
p<∞

fp ∈ H iΠ∞ (p, K; Π∞ ⊗ VΠ∞)⊗ Πnew
f ⊂ H iΠ∞ (X)[Πf ],

where [f∞] ∈ H iΠ∞ (p, K; Π∞ ⊗ VΠ∞) corresponds to f∞ ∈ Πnew
∞ via the above natural isomor-

phism H iΠ∞ (p, K; Π∞ ⊗ VΠ∞) ∼= Πnew
∞ .

2.2. Metrics on cohomology. To formulate the main Conjecture 2.13, we need to de�ne met-

rics on the coherent cohomology of Shimura varieties as well as motivic cohomology. To de�ne

metrics on both motivic cohomology and Dolbeault cohomology, we �x an admissible bilinear
form on gC in the following sense.

De�nition 2.9 (Admissible bilinear form). An admissible bilinear form B on gC is an invariant,

θ-invariant Hermitian bilinear form on gC such that the following conditions are satis�ed.

(1) It is a natural extension of aR-valued bilinear form on gR such thatB(X, θ(X)) is negative

de�nite, where θ is the Cartan involution that �xes kR.

(2) It is Q-valued on gQ.

For example, if G(R) is semisimple, the extention of the Killing form as a Hermitian bilinear

form on gC is an admissible bilinear form.

Firstly, the coherent cohomology of toroidal compacti�cations of Shimura varieties

H∗(XG(Γ), [V ]can),

can be given a Hermitian metric
5

, induced from a Hermitian metric on the Hermitian symmetric

domain and the automorphic vector bundle (which is always possible by the compactness of K ,

see e.g. [BKK, §5]), which is in turn induced from our choice of admissible bilinear form on gC.

The choice of Hermitian metric induces Hermitian metrics on the entries of Dolbeault complex

A 0,∗([V ]can). By taking the formal adjoint ∂
∗

of ∂, one can de�ne the Laplacian ∆ = ∂∂
∗

+ ∂
∗
∂

on each entry of Dolbeault complex. By Hodge theory, the Dolbeault cohomology H i([V ]can)
is identi�ed with the space of harmonic (0, i)-forms H i([V ]can), which is just the kernel of the

5
This coincides with the metric on the Lie algebra cohomology (see e.g. [BW, §II.2]), and this will be reviewed

later in Appendix B.
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Laplacian ∆. The restriction of Hermitian metric on A 0,i([V ]can) to the space of harmonic (0, i)-

forms gives rise to a Hermitian metric on the Dolbeault cohomology.

On the other hand, the motivic cohomology that would have to appear in the motivic action

conjectures is that of the adjoint motive. As in [PV, §4.2], we assume a conjecture on the existence

of adjoint motive.

Conjecture 2.10. For Π = Πf ⊗ Π∞ satisfying Assumption 2.5, there exists an adjoint motive
Ad Π, in the sense of [PV, De�nition 4.2.1], over the re�ex �eld E with coe�cients in FΠ.

To endow a Hermitian metric on the adjoint motivic cohomology H1
M((Ad Π)OE ,Q(1)), con-

sider the Beilinson regulator for Ad Π. Recall that the Beilinson regulator is a map from motivic

cohomology to Deligne cohomology,

H1
M((Ad Π)OE ,Q(1))→ H1

D((Ad Π)R,R(1)),

where the Deligne cohomology group of a motive M over a number �eld k is de�ned as (see [Ra,

(6.1.22)])

H i
D(MR, A) =

∏
w complex places of k

H i
D(M ×k,w C, A)×

∏
w real places of k

H i
D(M ×k,w R, A).

Under the Beilinson’s conjectures, the Beilinson regulator gives rise to an isomorphism

H1
M((Ad Π)OE ,Q(1))⊗Q R ∼−→ H1

D((Ad Π)R,R(1)).

Remark 2.11. Note that the Betti realization, on which the Beilinson regulator depends, depends
on the complex embedding E ↪→ C. In our discussion, we use the preferred embedding that

came with the datum of re�ex �eld
3

. In the following discussions, we always use this complex

embedding.

From §B.3, we know that the target of the Beilinson regulator is identi�ed with ĝϕ(WC/R)
, where

ϕ : WC/R → LG is the corresponding Lanvlands parameter, and that this is identi�ed as a Lie

subalgebra of t̂. We de�ne a Hermitian bilinear form on t̂ as the dual Hermitian bilinear form of

the one we chose for t, and this restricts to a Hermitian bilinear form on the Deligne cohomology.

De�nition 2.12. Let X be a �nite-dimensional Q-vector space, together with an embedding

ι : Q ↪→ C. A Hermitian bilinear form on X is a Hermitian metric on X ⊗Q,ι C.

By [PV, Lemma 2.2.2], the volume of H1
M((Ad Π)OE ,Q(1)) is in fact independent of choice of

the admissible Hermitian bilinear form.

2.3. Archimedean motivic action conjecture for Shimura varieties. Now, we are able to

state the Archimedean motivic action conjecture for Shimura varieties as follows.

Conjecture 2.13 (Archimedean motivic action conjecture for Shimura varieties, metric version).
Let Π = Πf ⊗ Π∞ satisfy Assumption 2.5, with Π∞ being a NLDS but not being a DS. LetM =

H1
M((Ad Π)OE ,Q(1)) andHi = H i(X)[Πf ], where both are regarded as Q-vector spaces equipped

with a Hermitian bilinear form (see De�nition 2.12), induced from a �xed admissible Hermitian bi-
linear form on gC. Then, there is an isomorphism of gradedQ-vector spaces equipped with Hermitian
metrics,

∧∗M∗ ⊗Himin ∼=
imax⊕
i=imin

Hi,
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where imin and imax are the bottom and top degrees, respectively, of appearance of Πf in the coho-
mology H∗(X)[Πf ].

Remark 2.14. It seems that, to descend the coe�cient �eld from Q to a number �eld, one may

have to take a �eld larger than EFΠ (the compositum of the re�ex �eld and the �eld of de�nition

of Πf ) even in the case of SL2(Q); see [Ho, Corollary 4.6].

The relationship between the above Conjecture and the philosophy of motivic action conjec-

tures will be fully discussed in Appendix B.

A special subset of the Main conjecture (Conjecture 2.13) concerning the norms of top and
bottom degrees can be formulated without reference to motivic cohomology, assuming Beilinson’s

conjectures for Chow motives [PV, Conjecture 2.1.1].

Conjecture 2.15 (Comparison of top and bottom in Conjecture 2.13). Let Π be as in Conjceture
2.13. Let V be the automorphic vector bundle coming from the Levi, such thatH i(p, K;V ⊗Π∞) 6=
0 for some i, and Πmin,Πmax be the members of the archimedean L-packet of Π∞ such that the
degree that Πmin (Πmax, respectively) has nontrivial (p, K)-cohomology with coe�cient in V is the
minimum (maximum, respectively) cohomological degree, denoted imin (imax, respectively) in the L-
packet. Let fmin ∈ Πnew

f ⊗ Πnew
min and fmax ∈ Πnew

f ⊗ Πnew
max such that [fmin], [fmax] ∈ H∗(X)[Πf ]

are de�ned over Q. Then,

〈fmin, fmin〉P
〈fmax, fmax〉P

∼Q×∩R

∣∣∣∣πimin−imax
L∞(1,Π,Ad)

L∞(0,Π,Ad)
· L(1,Π,Ad)

volF 1HdR(Ad Π)

∣∣∣∣2 ,
where the volume is computed with respect to the metric induced by any weak polarization (see [PV,

§2.2.3])6.

Proposition 2.16. Assuming the Beilinson conjecture, Conjecture 2.15 is equivalent to the isometry
statement in Conjecture 2.13 for top and bottom degrees,

∧topM∗ ⊗Himin ∼= Himax .

In particular, if imax = imin + 1, Conjecture 2.13 and Conjecture 2.15 are equivalent.

Proof. The key is to compare the top and the bottom degrees of the graded vector spaces and

relate them with the volumes, which is independent of the choice of metric. Namely, we need to

prove the analogue of [PV, Lemma 2.2.2],

volS H
1
M((Ad Π)OE ,Q(1)) ∼Q×

L∗(0,Ad Π)

volS F 1HdR(Ad Π)
,

for S the Hermitian inner product induced by a weak polarization, and the statement will fol-

low after applying functional equation. This now follows from the Beilinson’s conjecture over a

general number �elds, as in [Ra, §6]. Namely, there is a fundamental exact sequence, [Ra, (6.4.2)],

(?) 0→ F 1HdR((Ad Π)C)→ H0
B((Ad Π)R,C)→ H1

D((Ad Π)R,C(1))→ 0,

where

H0
B((Ad Π)R,C) =

∏
w complex places of E

H0
B(M ×E,w C,C)×

∏
w real places of E

H0
B(M ×E,w R,C),

6
The volume is independent of the choice of weak polarization, see [PV, Lemma 2.2.2].
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is similarly de�ned as the “real Deligne cohomology”. The Beilinson’s conjecture over a general

number �eld says that the determinant of the fundamental exact sequence (?) has incompatible

Q-rational structures, and are o� precisely by L∗(0,Ad Π) (see [Ra, §6.4]):

det(H0
B((Ad Π)R,Q))L∗(0,Ad Π) ∼Q× detF 1HdR((Ad Π)Q) · det(H1

M((Ad Π)OE ,Q(1))).

Regarding this as an equality inside the determinant of the fundamental exact sequence (?), com-

puting the volumes would give the desired statement. �

We will later prove Conjecture 2.13 in special cases where Conjecture 2.15 is equivalent to

Conjecture 2.13 (namely, the appearances of Hecke eigensystem span over two degrees).

Example 2.17 (Sanity check: SL2). The simplest example is the case of G = SL2,Q, where the

conjecture is about weight one elliptic modular forms. Let f ∈ S1(Γ) be a weight one cuspidal new

eigenform with Fourier coe�cients in Q, generating an automorphic representation Π. Then, the

complex conjugate f ∈ Π, which also satis�es 〈f, f〉P = 〈f, f〉P . Thus, we are led to the follow-

ing question: for what c ∈ C× does cf de�ne a Q-coherent cohomology class in H1(X(Γ), ω)?

After calculating the archimedean L-factors (which is elementary), Conjecture 2.15 says that

|c|−2 ∼Q×∩R

(
π−2 L(1,Π,Ad)

volF 1HdR(Ad Π)

)2

.

Note that Π is a pure weight 0 motive, and so is Ad Π; therefore, F 1HdR(Ad Π) = 0, which

means that

|c| ∼Q×∩R
π2

L(1,Π,Ad)
.

It is well-known that L(1,Π,Ad)π−2 ∼Q× 〈f, f〉P . Thus, the conjecture says

|c| ∼Q×∩R
π

〈f, f〉P
.

Let cfdz de�ne a Dolbeault cohomology class f∨ ∈ H1(X(Γ), ω), which is, by de�nition, de�ned

over Q. By Serre duality, 〈f, f∨〉S ∈ Q, where 〈−,−〉S denotes the Serre duality.

On the other hand, the Serre duality in this case coincides with Petersson inner product scaled

by the factor of
1

2πi
(e.g. [DMOS, p. 22]), namely 2πi〈f, f∨〉S = 〈f, cf〉P = c〈f, f〉P . Thus, means

that c ∼Q×
1

〈f,f〉P
,
7

which is consistent with our conjecture. That these facts can be realized as an

instance of motivic action conjecture was realized in [HV] and was explicitly spelled out in [Ho].

2.4. An approach towards the motivic action conjecture. Unlike [PV] or the case of SL2,

the top and bottom degrees are most of the time not complementary (namely, iΠmin
+ iΠmax 6=

dimCX), so the conjecture has nothing to do with any form of duality. We will nevertheless prove

a form of the conjecture by relating this with cohomological period integrals. These are integral

representations of certain L-functions that

• apply to automorphic forms appearing in higher coherent cohomology,

• and admit an interpretation as cup product pairing in coherent cohomology.

This is useful in verifying our conjectures as the coherent cohomological cup product can detect
rationality of higher coherent cohomology classes.

We will show that a strategy similar to [PV, §7] can also show that our period conjecture,

Conjecture 2.15, is true in certain cases.

7
Indeed, 〈f, f〉P is a real number.
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Theorem 2.18. Let G be either Sp4 or SU(2, 1), and let Π be a globally generic cuspidal automor-
phic representation ofG(AQ) satisfying Assumption 2.5. Assume the working hypothesis on periods,
Assumption 2.22. Then, Conjecture 2.15 is true, up to the factor of an archimedean zeta integral (see
Remarks 3.6, 4.5).

In the two cases, we will compare periods of holomorphic LDS appearing inH0
and generic LDS

appearing H1
. The tools that we will use are summarized in the following table.

LDS type Detecting rationality Relation with Petersson norm

Holomorphic (H0
) Rational Fourier coe�cient Doubling method, Re�ned GGP conjectures

Generic (H>0
) Cohomological period integrals Lapid–Mao conjecture

A slightly more detailed outline is as follows. We would need to know how Q-algebraicity of

coherent cohomology classes inH0
andH1

is related to Petersson norms. ForH0
, the classes are

represented by holomorphic automorphic forms, where their algebraicity is detectable by Fourier

coe�cients. In the language of periods, these are related to Bessel or Fourier–Jacobi periods,

which are related to Petersson norms via the re�ned Gan–Gross–Prasad conjectures. ForH1
, the

classes are represented by generic automorphic forms
8

. The Petersson norms of corresponding

automorphic forms are related to the Whittaker periods via the Lapid–Mao conjecture [LM]. Due

to its simple statement, we recall the conjecture here:

Conjecture 2.19 ([LM]). Let Π be a globally generic representation, satisfying (NEW) of Assump-
tion 2.5. Let f = ⊗pfp ∈ Π be a newform. Then,

〈f, f〉
|W (1)|2

∼Q×
L(1,Π,Ad)

∆G(1)|W∞(1)|2
,

where 〈, 〉 is the L2-norm (as opposed to the Petersson norm), ∆G(s) is the L-function of the dual
to the Artin motive attached to G as de�ned in [Gr], and W (W∞, respectively) is the Whittaker
function of f (f∞, respectively).

The Whittaker periods are then related to Q-algebraicity of coherent cohomology classes via

cohomological period integrals. On one hand, the period integral has automorphic interpretation,

which connects to Whittaker periods. On the other hand, the period integral has cohomological

interpretation, so that in particular it descends to Q, hence detects Q-algebraicity.

Finally, as the conjectures are formulated using invariants coming from the motivic formalism,

we would be working with the corresponding motives and compute motivic invariants (dubbed

“Hodge-linear algebra”). We will work with the adjoint motive, as in Conjecture 2.10, as well as

the motive of the given automorphic representation
9

:

Conjecture 2.20. For Π as in Assumption 2.5, there exists a motiveMΠ that is uniquely character-
ized by [Cl, §4.3.3].

Remark 2.21. The adjoint motive of Conjecture 2.10 is the motive associated to L(s,Π,Ad) in

the above sense.

8
In both cases of our concern, the in�nity type corresponding to H1

belongs to a generic (L)DS, which is a

numerical coincidence that only happens in certain special examples.

9
The construction of those motives is a subtle matter, as we work with limits of discrete series. Indeed, the

corresponding Galois representations have been constructed, but only by using congruences.
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Thus, the “working hypothesis” is as follows.

Assumption 2.22 (Working hypothesis). We assume the following conjectures
10

. There are nu-

merous instances of these conjectures being veri�ed, and we do not attempt to list them here.

(1) Beilinson’s conjecture for Chow motives, Conjecture 2.1.1 of [PV].

(2) Lapid–Mao conjecture, Conjecture 2.19.

(3) Existence of motives, Conjecture 2.10 and Conjecture 2.20.

3. Evidence I: The case of Sp4

We �rst provide the evidence for the motivic action conjecture (Conjecture 2.13) for the case

of certain irregular automorphic forms on G(A) = Sp4(A). In this case, we will use an integral

reprsentation of the spinor L-function by Novodvorsky ([No]), whose coherent cohomological

interpretation was given by [LPSZ].

Let Π be a globally generic cuspidal automorphic representation of G = GSp4(AQ), namely

that the Whittaker transform (see §1.6, Notation) de�nes a realization of Π as a space of functions

on G(Q)\G(A) satisfying a transformation property under the N(A)-action. We choose unram-

i�ed vectors ϕ0
v ∈ Πv for v �nite with Πv unrami�ed such that, if ψv is unrami�ed, Wϕ0

v
(1) = 1.

Suppose that Π satis�es Assumption 2.5.

De�nition 3.1. Let M ⊃ FΠ be a number �eld. A ψ-Whittaker function W on G is called to be

de�ned overM if it takes values in M(µ∞) and satis�es

σ(W (g)) = W (w(κ(σ))g),

for all g ∈ G(Af ) and σ ∈ Gal(Q/M), wherew(x) = diag(x3, x2, x, 1) and κ : Gal(Q/Q)→ Ẑ×
is the cyclotomic character.

Remark 3.2.
(1) The convention is made so that, if ψ is unrami�ed, the unrami�ed ψ-Whittaker function

W withW (1) = 1 is de�ned over FΠ. As L(s,Π,Ad) is regular at s = 1,W (1) is nonzero

by [LM, §3.1]. Thus, W is de�ned over M if and only if W (1) ∈M×
.

(2) Indeed, our conditions on G and Π imply that FΠ is a number �eld (see Notation). Thus,

the space of ψ-Whittaker functions, which naturally has an action of Aut(C/Q) as in

[GHL, §4.1], is �xed by Aut(C/FΠ). Thus, there exists a nontrivial ψ-Whittaker function

de�ned over M .

3.1. Whittaker periods via cohomological period integrals. The purpose of this subsection

is to prove the following

Theorem 3.3. Let ϕ ∈ Πnew = Πnew
f ⊗ Πnew

∞ . Let F be an imaginary quadratic �eld such that
the special Bessel period of Π for F is not identically zero (see (Sp4) of Assumption 2.5). If [ϕ] (see
De�nition 2.8) is de�ned over a number �eld F ′ ⊃ FFΠ, then Λ (1/2,Π) Λ (1/2,Π⊗ χF )Wϕ is a
nontrivial ψ-Whittaker function de�ned over F ′, where χF is the quadratic character associated to
F .

10
Even though the re�ned Gan–Gross–Prasad conjectures are being mentioned throughout the paper, they are

not required as an assumption, because we have an unconditional alternative result using the doubling method (and

they are equivalent if one assumes Beilinson’s conjectures anyways).
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Proof. Let C ∈ C× be such that
Wϕ

C
is de�ned over F ′, which exists by Remark 3.2(2). We would

like to show that

CΛ(1/2,Π)Λ(1/2,Π⊗ χF ) ∈ F ′×.

We �rst prove that the above quantity is nonzero. This is because, by [FuMo, (1.26)], the nonva-

nishing of L(1/2,Π)L(1/2,Π ⊗ χF ) is equivalent to nonvanishing of the special Bessel period

B(fΠ, F ) in (Sp4) of Assumption 2.5; that the special Bessel period de�ned in this paper is the

Bessel period (up to explicit nonzero scalar) in [FuMo] follows from the calculation of [DPSS,

Proposition 3.5].

We now consider Novodvorsky’s integral representation of spinor L-function. This is, roughly

speaking, the period integral of ϕ times an Eisenstein series over an embedded product of two

modular curves. More precisely, there is an embedding of H = GL2×GL1 GL2 into G, which is

most naturally thought as SO(2, 2) ↪→ SO(3, 2). Let B ⊂ H be the upper triangular Borel. For

Φ1,Φ2 : A2 → C and χ1, χ2 a unitary Grössencharcter, we de�ne an Eisenstein series on H with

respect to B, E(h, χi,Φi, si). The following are well-known (e.g. [LPSZ, Proposition 7.3]).

Proposition 3.4. Suppose we are taking the “weight k-section” for Φi,∞.

(1) For −k
2

+ 1 ≤ s1, s2 ≤ k
2
half-integral, equivalent modulo 1 to k

2
, this de�nes a nearly

holomorphic form on H , which can be thought as an H0 class of some automorphic vector
bundle over a Shimura variety for H .

(2) If χi’s and Φi’s are valued in a number �eld F , then the H0 class is de�ned over F .

Let (λ1, λ2) be the Harish–Chandra character of the (necessarily generic) (L)DS Π∞. Let ΓH =
H ∩ Γ, and let i : XH(ΓH) ↪→ XG(Γ) be the closed embedding of certain toroidal compacti�ca-

tions of the corresponding Shimura varieties
11

. Then, Novodvorsky’s integral representation can

be understood via a cup product pairing

H2(XG, V )⊗CH
0(XH ,W )

(id,i∗)−−−→ H2(XG, V )⊗CH
1(XG,W

′)
∪−→ H3(XG, V⊗W ′)

S−→ H0(XG,O) = C,

where ∪ is the cohomological cup product and S is the Serre duality pairing, induced from a

morphism of algebraic Q-representations of K∞, V ⊗W ′ → g−1,1
(namely, the pairing is nor-

malized such that, on the level of representations of K∞, the Q-structures are compatible). Here,

W andW ′
are certain automorphic vector bundles overXH andXG, respectively, corresponding

to [VH(λ1 − λ2 − 1, 0)]⊗ ωH(1, 1) and [L̃1], if we use the notation of [LPSZ, §6]. The reinterpre-

tation, done in [LPSZ, §7.4], of Novodvosky’s integral asserts that, given an imaginary quadratic

�eld F , there is a coherent cohomology class [E] ∈ H0(XH(ΓH),W ) de�ned over FFΠf , which

corresponds to a nearly-holomorphic Eisenstein series E under the Hodge splitting of [LPSZ,

§6.3], such that

〈[ϕ], [E]〉 = CΛ (1/2,Π) Λ (1/2,Π⊗ χF ) ,

where χF is the Hecke character corresponding to F . As 〈, 〉 is de�ned over Q, the left hand side

is in F ′, which is what we are looking for. �

11
That the closed immertion of open Shimura varieties extends to a closed immersion of toroidal compacti�cations

with respect to certain re�nements of polyhedral cone decomposition is achieved by [Lan2], but the situation is

simplier in this case, because XH , being a productof modular curves, is unique.

16



3.2. Hodge-linear algebra. We now put the relevant Hodge-linear algebra that proves the case

of Sp4. For the sake of simplicity, we assume we work with a parallel weight (2, 2) Siegel

modular form, or Harish–Chandra parameter (1, 0), although the Hodge-linear algebra calcu-

lation stays the same for general weights. Our goal is to convert, using elementary linear alge-

bra, volF 1HdR(AdM) into an expression that involves Deligne’s periods c+(M), c−(M), δ(M)
whose de�nitions will be recalled later. We will then be able to express volF 1HdR(AdM) with

L-values, using Deligne’s conjectures. We will prove

Proposition 3.5. For a motiveM associated to Π (in the sense of Conjecture 2.20), we have

volF 1HdR(AdM) ∼Q×

√
c+(M)c−(M)

3

δ(M)3/2
.

Proof. The motive M of Π should be of rank 4 and weight 1, with the Hodge decomposition

HB(M)⊗Q C = H1,0(M)⊕H0,1(M), dimCH
1,0(M) = dimCH

0,1(M) = 2,

which is of the type of the Hodge structure de�ned by the corresponding archimedean Langlands

parameter. In this case,

δ(M)
(
c±(M), resp.

)
∈ C×/Q×,

is the determinant of the comparison map

HB(M)⊗ C ∼−→ HdR(M)⊗ C
(
HB(M)+ ⊗ C→ HB(M)⊗ C ∼−→ HdR(M)⊗ C � (HdR(M)/F 1HdR(M))⊗ C, resp.

)
,

with respect to the bases coming from the underlying Q-structures on both sides.

Let e+
1 , e

+
2 be aQ-basis ofHB(M)+

and e−1 , e
−
2 be aQ-basis ofHB(M)−. Let f1, f2 ∈ F 1HdR(M)

be a Q-basis, and g1, g2 ∈ HdR(M)/F 1HdR(M) be a Q-basis, and g̃1, g̃2 ∈ HdR(M) be lifts of

g1, g2. Given two C-bases of HB(M)⊗ C ∼= HdR(M)⊗ C, we can write an expression(
e+

1 e+
2 e−1 e−2

)
=
(
f1 f2 g̃1 g̃2

)A B

C D

 ,

for A,B,C,D ∈M2(C). Note that by de�nition δ(M) = det ( A B
C D ).

We have canonical isomorphisms

H1,0(M) ∼= F 1HdR(M)⊗ C, H0,1(M) ∼=
HdR(M)

F 1HdR(M)
⊗ C.

Let f1,B, f2,B ∈ H1,0(M) and g1,B, g2,B ∈ H0,1(M) be the images of f1, f2, g1, g2 under the above

canonical isomorphisms. Then fi,B and fi coincide as elements of HB(M)⊗C ∼= HdR(M)⊗C,

whereas g̃i − gi,B ∈ H1,0(M). So,(
f1 f2 g̃1 g̃2

)
=
(
f1,B f2,B g1,B g2,B

)12 M

02 12

 .

In particular, if we write(
e+

1 e+
2 e−1 e−2

)
=
(
f1,B f2,B g1,B g2,B

)A′ B′

C ′ D′

 ,

then det ( A B
C D ) = det

(
A′ B′

C′ D′

)
.

17



Also, there must be relations

cB(f1,B) = ag1,B + bg2,B,

cB(f2,B) = cg1,B + dg2,B.

Using that F∞e
+
i = e+

i , F∞e
−
i = −e−i and that F∞(fi,B) = cB(fi,B) and F∞(gi,B) = cB(gi,B) (as

in [PV, Lemma, §8.2.1]), one has

cB(A′1if1,B + A′2if2,B) = C ′1ig1,B + C ′2ig2,B,

cB(B′1if1,B +B′2if2,B) = −(D′1ig1,B +D′2ig2,B),

for i = 1, 2. This can be packaged into C ′ = ( a cb d )A′, D′ = − ( a cb d )B′. So

δ(M) = det

 A′ B′

( a cb d )A′ − ( a cb d )B′

 = det

A′ B′

02 −2 ( a cb d )B′

 = 4 det

a c

b d

 detA′ detB′.

Note on the other hand that c+(M) = detC , c−(M) = detD. As C ′ = C , D′ = D, we see that

c+(M)c−(M) ∼Q× δ(M) det

a c

b d

 .

Note that, as M is self-dual, M∨ ∼= M(1), which implies AdM = (AdM)∗ = (Sym2M)(1).

We are also led to calculate volF 1HdR(AdM) (we know it does not depend on the choice of

weak polarization up to Q×-ambiguity). We know that (volF 1HdR(AdM))2 ∼Q× λ, where

ϕ(cB(v+)) = λv−. Here, v+, v− areQ-bases vectors for detF 1HdR(AdM) and det
(

HdR(AdM)
F 0HdR(AdM)

)
,

respectively, and ϕ : ∧dimF 1HdR(AdM)(HdR(M)⊗C)→ det
(

HdR(AdM)
F 0HdR(AdM)

)
is the natural projec-

tion. As AdM = (Sym2M)(1), we can take f 2
1 , f1f2, f

2
2 and g2

1, g1g2, g
2
2 asQ-bases ofF 1HdR(AdM)

and
HdR(AdM)
F 0HdR(AdM)

, respectively. Now from the known relations,

cB(f 2
1 ) ≡ a2g2

1 + 2abg1g2 + b2g2
2,

cB(f1f2) ≡ acg2
1 + (ad+ bc)g1g2 + bdg2

2,

cB(g1g2) ≡ c2g2
1 + 2cdg1g2 + d2g2

2,

where ≡ is mod F 0HdR(AdM)⊗ C. So

λ = det


a2 2ab b2

ac ad+ bc bd

c2 2cd d2

 = (ad− bc)3.

Therefore, we obtain

volF 1HdR(AdM) ∼Q×

√
c+(M)c−(M)

3

δ(M)3/2
.

�
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3.3. Completion of the proof.

Proof of Theorem 2.18 for Sp4. Now we apply the relevant period conjectures for this case. Let

fhol, fgen be newforms (see Assumption 2.5) in Πf ⊗ Πhol, Πf ⊗ Πgen, respectively, where Πhol is

the corresponding holomorphic NLDS in the L-packet of Πgen. Let us assume that [fhol] and [fgen]

are de�ned over Q. Let F be the imaginary quadratic �eld as in Theorem 3.3. Then, a theorem of

Furusawa–Morimoto
12 13

implies that

(A)

〈fhol, fhol〉
|B(fhol, F )|2

∼Q× π
−6 L(1,Π,Ad)

L(1/2,Π)L(1/2,Π⊗ χF )
.

Since [fhol](see De�nition 2.8) is de�ned over Q, we know thatB(fhol, F ), a Q-linear combination

of Fourier coe�cients of fhol, is in Q. Thus, in the setting of Theorem 2.18, 〈fhol, fhol〉 ∼Q×

π−6 L(1,Π,Ad)
L(1/2,Π)L(1/2,Π⊗χF )

.

We now relate the Q-rationality of fgen with 〈fgen, fgen〉. Note that Theorem 3.3 is about the

relationship between rationality of Whittaker functions and that of coherent cohomology classes,

for the anti-generic LDS (namely, those appearing inH2
of coherent cohomology). Thus, as [fgen]

is de�ned over Q, by Serre duality,

(B) 〈fgen, fgen〉P = (2πi)3〈[fgen], [f gen]〉coh,

where 〈−,−〉coh is the cohomological cup product de�ned over Q normalized so that it is induced

from the Q-morphism of algebraic K∞-representations W ⊗ Hom(W, g−1,1) → g−1,1
. If we let

C ∈ C× be such that C[f gen] is de�ned over Q, we see that the RHS is∼Q× π
3C−1

. On the other

hand, by Theorem 3.3,

Λ(1/2,Π)Λ(1/2,Π⊗ χF )WCfgen
= CΛ(1/2,Π)Λ(1/2,Π⊗ χF )Wfgen

,

is de�ned over Q. We now invoke the Lapid–Mao conjecture, Conjecture 2.19:

〈fgen, fgen〉
|W (1)|2

∼Q× π
9 · L(1,Π,Ad)

|W∞(1)|2
.

By Remark 3.2(1), Wfgen
(1) 6= 0, so that

(C) CΛ(1/2,Π)Λ(1/2,Π⊗ χF )Wfgen
(1) ∈ Q×.

Since Wfgen
(1) = Wfgen(1), we have

π9L(1,Π,Ad)

|W∞(1)|2
|Wfgen(1)|2 Lapid–Mao∼Q× 〈fgen, fgen〉

(B)∼Q× π
3C−1 (C)∼Q× π

3Wfgen(1)Λ(
1

2
,Π)Λ(

1

2
,Π⊗χF ),

or

(D)

Wfgen(1) ∼Q× π
−6 |W∞(1)|2Λ(1

2
,Π)Λ(1

2
,Π⊗ χF )

L(1,Π,Ad)
∼Q× π

−10 |W∞(1)|2L(1
2
,Π)L(1

2
,Π⊗ χF )

L(1,Π,Ad)
.

12
See [FuMo, Theorem 1] for the case of discrete series; the case of limit of discrete series is also an upcoming

work of them.

13
This is a speci�c case of the re�ned Gan–Gross–Prasad conjecture for Bessel periods, [Li, Conjecture 2.5]. This

special case is also sometimes called Böcherer’s conjecture.
19



We need to compute
〈fhol,fhol〉P
〈fgen,fgen〉P

, which can be now seen as follows.

〈fhol, fhol〉P
〈fgen, fgen〉P

Lapid–Mao + (A)∼Q×
π−6 L(1,Π,Ad)

L(1/2,Π)L(1/2,Π⊗χF )

π9|Wfgen(1)|2L(1,Π,Ad)
|W∞(1)|2

= π−15 |W∞(1)|2

|Wfgen(1)|2L(1/2,Π)L(1/2,Π⊗ χF )

(D)∼Q× π
−15 |W∞(1)|2

π−20 |W∞(1)|4L(1/2,Π)3L(1/2,Π⊗χF )3

L(1,Π,Ad)2

∼Q×
π9

|W∞(1)|2

L∞(1,Π,Ad)

L∞(0,Π,Ad)
· L(1,Π,Ad)
√
L(1/2,Π)L(1/2,Π⊗χQ(i))

3

π3

2

,(E)

which involves elementary calculation of archimedean L-factors.

On the other hand, by Deligne’s conjectures, Proposition 3.5 implies that

volF 1HdR(AdM) ∼Q×

√
L(1/2,Π)L(1/2,Π⊗ χQ(i))

3

π3
.

Thus, the parenthized term in (E) is precisely the RHS of Conjecture 2.15, which �nishes the

proof. �

Remark 3.6. Unfortunately, for now, the author has been unable to calculate W∞(1). It is how-

ever very believable that the archimedean zeta integral against a preferred, nice test vector is

equal to an archimedean local L-factor, which is ∼Q× half-integral powers of π. In our case,

there is even an explicit integral expression of W∞(1), as written in [CI]:

W∞(1) = 16e−2ππ
7
2

∫ c+i∞

c−i∞
π−2sΓ(s+

1

2
)2U(s+

1

2
, 1, 4π)Γ(s)

ds

2πi
,

where U(a, b, z) = 1
Γ(a)

∫∞
0
e−ztta−1(1 + t)b−a−1dt is the con�uent hypergeometric function of

the second kind.

4. Evidence II: The case of SU(2, 1)

In this section, we provide the evidence for the Period conjecture (Conjecture 2.15) for the

case of certain irregular automorphic forms on G(A) = SU(2, 1)(A). In this case, we will use

an integral reprsentation of the base-change L-function by Gelbart and Piatetski-Shapiro ([GPS],

completed by [KO]), whose coherent cohomological interpretation was given by [Oh].

Let Π be a globally generic cuspidal automorphic representation of G = SU(2, 1)(AQ) as in

the previous subsection that also satis�es Assumption 2.5.

De�nition 4.1. Let M ⊃ FΠ be a number �eld. A ψ-Whittaker function W on G is called to be

de�ned overM if it takes values in M(µ∞) and satis�es

σ(W (g)) = W (w(κ(σ))g),

for all g ∈ G(Af ) and σ ∈ Gal(Q/M), where w(x) = diag(x, 1, x−1) and κ : Gal(Q/Q) → Ẑ×
is the cyclotomic character.

Again, by Remark 3.2(1), W is de�ned over M if and only if W (1) ∈M×
.
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4.1. Whittaker periods via cohomological period integrals. The purpose of this section is

to prove the following

Theorem 4.2. Let ϕ ∈ Πnew = Πnew
f ⊗ Πnew

∞ . If [ϕ] (see De�nition 2.8) is de�ned over a number
�eld F ′ ⊃ FΠ, then Λ (1/2, BC(Π))Wϕ is a nontrivial ψ-Whittaker function de�ned over F ′.

Proof. Let C ∈ C× be such that
Wϕ

C
is de�ned over F ′, which exists by Remark 3.2(2). We would

like to show that

CΛ(1/2, BC(Π)) ∈ F ′×.
First of all, this is indeed nonzero as BC(Π) is cuspidal and tempered.

We consider Gelbart–Piatetski-Shapiro integral representation of base changeL-function. This

is, roughly speaking, the period integral of ϕ times an Eisenstein over an embedded modular

curve. More precisely, there is an embedding of H = U(1, 1) into G. Let B ⊂ H be the upper-

triangular Borel. For Φ : A2 → C and χ a unitary Grössencharacter of the imaginary quadratic

�eld F used for the de�nition of unitary groups, we de�ne an Eisenstein series onH with respect

to B, E(h, χ,Φ, s). The same arithmeticity condition as Proposition 3.4 applies, as the objects

involved are elliptic modular forms.

Using the notation of Example B.3(3), let (m,n) = (a − b, b − c) be the Harish–Chandra

character
14

of Π∞. Let ΓH = H ∩ Γ, and let i : XH(ΓH) ↪→ XG(Γ) be the closed embedding

of closed Shimura varieties, as before. Then, Gelbart–Piatetski-Shapiro’s integral representation

can be understood via a cup product pairing

H1(XG, V )⊗CH
0(XH ,W )

(id,i∗)−−−→ H1(XG, V )⊗CH
1(XG,W

′)
∪−→ H2(XG, V⊗W ′)

S−→ H0(XG,O) = C,
where ∪ is the cohomological cup product, S is a Serre duality pairing, normalized as in the proof

of Theorem 3.3 (namely, the pairing induced from a morphism of K∞-representations de�ned

over Q). Here, W and W ′
are certain automorphic vector bundles over XH and XG, respectively,

corresponding to [VH(|m−n|−1)]⊗ωH(1, 0) and [L̃1], if we use the notation analogous to [LPSZ,

§6]. The reinterpretation, done in [Oh], of Gelbart–Piatetski-Shapiro’s integral asserts that there

is a coherent cohomology class [E] ∈ H0(XH(ΓH),W ) de�ned over FFΠf , which corresponds

to a nearly-holomorphic Eisenstein series E under the Hodge splitting as in [LPSZ, §6.3], such

that

〈[ϕ], [E]〉 = CΛ (1/2, BC(Π)) ,

where BC means base-change. As 〈, 〉 is de�ned over Q, the left hand side is in F ′. On the other

hand, the right hand side is nonzero as observed above. Thus, the desired statement follows. �

4.2. Hodge-linear algebra. We now conduct relevant calculations in Hodge-linear algebra to

prove Theorem 2.18 for G = SU(2, 1). For the sake of simplicity, we assume that we work with

the case of Harish-Chandra character (1, 1, 0); the same calculation yields the proof for general

weights. Our goal is, as in §3.2, to convert volF 1HdR(AdM) into an expression that involves

Deligne’s periods. We will prove

Proposition 4.3. For a motiveM associated with Π in the sense of Conjecture 2.20, we have

volF 1HdR(AdM) ∼Q×
π3c+(BC(M))3/2

δ(Mσ)1/2
.

14
Note that G is now SU(2, 1), so only the di�erences matter.
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Proof. In this case, the motiveM is a motive overF with coe�cients inQ. If we denote σ : F → C
by the preferred complex embedding, then as the minimal K-type is just (1, 1, 1), by the recipe

in [HLS, 2.3],

HB(Mσ)⊗Q C =Cv1 ⊕ Cv2︸ ︷︷ ︸
H1,0

⊕ Cv3︸︷︷︸
H0,1

, HB(Mσ)⊗Q C =Cv1 ⊕ Cv2︸ ︷︷ ︸
H−1,0

⊕ Cv3︸︷︷︸
H0,−1

.

We can choose vi and vi so that F∞(vi) = vi. Then,BC(M) := ResF/QMF = Mσ⊕Mσ(−1) and

AdM = Mσ ⊗Mσ. The Deligne period δ of a motive, as before, is the determinant of the Betti-

to-de Rham comparison map with respect to natural underlying Q-structures. Also, c+(BC(M))
in this case would be the determinant of the map

HB(BC(M))+⊗C ↪→ HB(BC(M))⊗C ∼−→ HdR(BC(M))⊗C � (HdR(BC(M))/F 1HdR(BC(M)))⊗C,

with respect to the natural underlying Q-structures.

Let e+
1 , e

+
2 , e

+
3 be aQ-basis ofHB(BC(M))+

, e−1 , e
−
2 , e

−
3 be aQ-basis ofHB(BC(M))−, f1f2, f3 ∈

F 1HdR(BC(M)) be an F -basis, g1, g2, g3 ∈ HdR(BC(M))/F 1HdR(BC(M)) be an F -basis, and

g̃1, g̃2, g̃3 ∈ HdR(BC(M)) be lifts of g1, g2, g3. We can further assume that f1, f2 ∈ F 1HdR(Mσ),

f3 ∈ F 1HdR(Mσ), g̃1, g̃2 ∈ HdR(Mσ), g̃3 ∈ HdR(Mσ). Given two C-bases of HB(M) ⊗ C ∼=
HdR(M)⊗ C, we can express the map into a matrix,(

e+
1 e+

2 e+
3 e−1 e−2 e−3

)
=
(
f1 f2 f3 g̃1 g̃2 g̃3

)A B

C D

 ,

for A,B,C,D ∈M3(C).

Under the canonical isomorphisms

H1,0(BC(M)) ∼= F 1HdR(BC(M))⊗ C, H0,1(BC(M)) ∼=
HdR(BC(M))

F 1HdR(BC(M))
⊗ C,

let

f1,B, f2,B, f3,B ∈ H1,0(BC(M)), g1,B, g2,B, g3,B ∈ H0,1(BC(M)),

be the images of f1, f2, f3, g1, g2, g3 under the above isomorphisms. Then, by the same argument

as in §3.2,(
e+

1 e+
2 e+

3 e−1 e−2 e−3

)
=
(
f1,B f2,B f3,B g1,B g2,B g3,B

)A′ B′

C D

 .

As cB(f1,B), cB(f2,B), cB(f3,B) and g1,B, g2,B, g3,B are two C-bases of H0,1(BC(M)), there is a

system of linear relations(
cB(f1,B) cB(f2,B) cB(f3,B)

)
=
(
g1,B g2,B g3,B

)
X,

for some X ∈ GL3(C). Using the same technique as [PV, Lemma, §8.2.1], we see that C =
XA′, D = XB′, which similarly implies that

c+(BC(M))2 ∼Q× δ(BC(M)) detX,

where we used c+(BC(M)) ∼Q c
−(BC(M)) due to the decompositionBC(M) = Mσ⊕Mσ(−1)

as in [HL, (8)]. Furthermore, as g1,B, g2,B ∈ H0,1(Mσ) and g3,B ∈ H0,1(Mσ(−1)), it turns out
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that X is of form Y
µ

 , Y ∈ GL2(C), µ 6= 0.

We know that (volF 1HdR(AdM))2 ∼Q× λ, where ϕ(cB(v+)) = λv−, v+ = (f1⊗f3)∧ (f2⊗f3)

and v− = (g1 ⊗ g3) ∧ (g2 ⊗ g3). This implies that λ = µ2 detY = µ detX .

Now, as in [Ha4, §1.2], consider the determinant motive det(M). An F -rational basis vector of

HdR(det(Mσ)) can be taken as vσ := f1∧f2∧ g̃3, and similarly vσ := g̃1∧ g̃2∧f3 can be taken as

an F -rational basis vector of HdR(det(Mσ)). On the other hand, if we take eσ to be a Q-rational

basis vector of HB(det(Mσ)), then F∞(eσ) =: eσ is a Q-rational basis vector of HB(det(Mσ)).

Then eσ = δ(Mσ)vσ and eσ = δ(Mσ)vσ, so

cB(vσ) = δ(Mσ)−1eσ.

On the other hand,

cB(vσ) = F∞(vσ) = (detY · µ−1)vσ,

so

δ(Mσ) = µ−1δ(Mσ) detY.

On the other hand, due to the polarization, we have [Ha4, (1.2.5)],

δ(Mσ) = δ(Mσ)−1(2πi)−6.

Thus,

π6δ(Mσ)2 detY ∼Q× µ,

so

µ2 ∼Q× π
6δ(Mσ)2 detX ∼Q× c

+(BC(M))2π6 δ(Mσ)

δ(Mσ)
∼Q× c

+(BC(M))2π12δ(Mσ)2,

or

µ ∼Q× π
6δ(Mσ)c+(BC(M)),

which implies that

(volF 1HdR(AdM))2 ∼Q×
π6

δ(Mσ)
c+(BC(M))3,

as desired. �

4.3. Completion of the proof.

Proof of Theorem 2.18 for SU(2, 1). Let fhol, fgen be newforms (see Assumption 2.5) in Πf ⊗ Πhol

and Πf ⊗ Πgen, respectively, such that [fhol], [fgen] are de�ned over Q. Then, under the assump-

tions of (SU(2, 1)) of Assumption 2.5
15

, [Zha, Theorem 1.2]
16

implies that

(F)

〈fhol, fhol〉P
|FJ(fhol)|2

∼Q× π
−2 L(1,Π,Ad)

L(1/2, BC(Π))
,

15
There is an extra condition on large residue characterstic in loc. cit., but this restriction is recently removed by

[BP, Theorem 1].

16
This is a special case of the re�ned Gan–Gross–Prasad conjecture for Fourier–Jacobi periods (see e.g. [Xu,

§1.1]), which is also often referred as the Ichino–Ikeda conjecture.
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where FJ(fhol) is the special Fourier–Jacobi period of fhol, de�ned by

FJ(fhol) =

∫
SU(1,1)(Q)\ SU(1,1)(A)

fhol(h)dh,

integrated against the Tamagawa measure. This period is in turn expressed as an inner product

of (algebraic) theta functions,

FJ(fhol) ∼Q× 〈a(0, fhol)(v), 1〉,

where a(0, fhol) is the zero-th Fourier–Jacobi coe�cient of fhol and 1 is the constant function

(regarded as a trivial theta function). Note that the nonvanishing of FJ(fhol) (and thus a(0, fhol))

is also a part of the content of [Zha, §1.1].

By [Lan1], a(0, fhol) is identi�ed with the algebraic Fourier–Jacobi coe�cient, and in particular

is in Q×, as [fhol] is de�ned over Q. Thus, we have 〈fhol, fhol〉P ∼Q× π
−2 L(1,Π,Ad)

L(1/2,BC(Π))
.

On the other hand, we exploit the fact that H1
is the middle degree of the Shimura variety.

Note that the in�nity type of f gen is a generic LDS as well (with di�erent in�nitesimal character

from fgen). Suppose C ∈ C× is a constant where C[f gen] is de�ned over Q. Then,

〈fgen, fgen〉P = (2πi)2〈[fgen], [f gen]〉coh(G)

∼Q× π
2C−1,

where the cohomological cup product pairing 〈−,−〉coh is the Serre duality pairing induced from

a Q-morphism of algebraic K∞-representations V ⊗ Hom(V, g−1,1)→ g−1,1
.

By Theorem 4.2,

Λ(1/2, BC(Π))WCfgen
= CΛ(1/2, BC(Π))Wfgen

,

is de�ned over Q. We now invoke the Lapid–Mao conjecture (Conjecture 2.19), which says

〈fgen, fgen〉P ∼Q× |Wfgen(1)|2L(1,Π,Ad)

|W∞(1)|2
.

By Remark 3.2(1), Wfgen
(1) 6= 0, and CΛ(1/2, BC(Π))Wfgen

(1) ∈ Q× as observed in the begin-

ning of the section. Thus, we have

|Wfgen(1)|2L(1,Π,Ad)

|W∞(1)|2
Lapid–Mao∼Q× 〈fgen, fgen〉P

(F)∼Q× π
2Λ(1/2, BC(Π))Wfgen(1).

By using Wfgen
(1) = Wfgen(1), we have

(H) Wfgen(1) ∼Q× π
2 |W∞(1)|2Λ(1/2, BC(Π))

L(1,Π,Ad)
.

On the other hand, Theorem 4.2 says

Wfgen(1) ∼Q×
1

Λ(1/2, BC(Π))
,

which gives an extra relationship that we can utilize; namely,

Λ(1,Π,Ad) ∼Q× Λ(1/2, BC(Π))2|W∞(1)|2π2.
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For example, by combining (F) and (G), we have

(I) 〈fgen, fgen〉P ∼Q× π
4 |W∞(1)|2Λ(1/2, BC(Π))2

L(1,Π,Ad)
.

Remark 4.4. Note that this is already observed in [Ha4, Corollary 1.3.5], under the assump-

tion of Deligne’s conjectures. In particular, assuming Deligne’s conjectures, we deduce that

|W∞(1)| ∼Q×πZ 1.

Combining these, we get

〈fhol, fhol〉P
〈fgen, fgen〉P

Lapid–Mao + (H)∼Q×
π−2 L(1,Π,Ad)

L(1/2,BC(Π))

π4 |W∞(1)|2Λ(1/2,BC(Π))2

L(1,Π,Ad)

∼Q×
1

|W∞(1)|2
L(1,Π,Ad)2

L(1/2, BC(Π))3

∼Q×
π18

|W∞(1)|2

(
L∞(1,Π,Ad)

L∞(0,Π,Ad)
· L(1,Π,Ad)

L(1/2, BC(Π))3/2

)2

,

∼Q×
π21

|W∞(1)|2

(
L∞(1,Π,Ad)

L∞(0,Π,Ad)
· L(1,Π,Ad)

volF 1HdR(AdM)

)2

,

by Deligne’s conjecture applied to Proposition 4.3. We are done, as the paranthesized term is the

RHS of Conjecture 2.15. �

Remark 4.5. Similarly to Remark 3.6, W∞(1) is given by the inverse Mellin transform of the

formulae given in [KO, Theorem 5.5], which the author at the moment is unable to compute.

5. Towards motivic action conjecture for rationality of classes

The original motivic action conjecture of [PV] involves the rational structure of singular co-

homology. To derive a similar conjecture, we would have to come up with a way to normalize all

the (choice of newforms of) automorphic representations at once. Recall that, in the case of mod-

ular forms, this is done by using complex conjugation. Unfortunately, so far there is no general

construction of an operation that can move between di�erent in�nity types. We will tentatively

name such an operation a generalized complex conjugation. Approaching the generalized com-

plex conjugations using the theory of cycle spaces and Penrose transform will be the subject of

the author’s forthcoming work. For now, we will have to content ourselves with a preliminary

analysis on what a generalized complex conjugation should be.

On the other hand, as the name suggests, the usual complex conjugation can be used when the

symmetric space is the upper half plane. More generally, if the symmetric space is a product of

upper half planes (e.g. in the case of Hilbert modular varieties), then the complex conjugations

with respect to each variable would be a good candidate for generalized complex conjugation;

these are called partial complex conjugations [Ha2] in the literature. In this case, we can deduce

a precise conjecture on the Q-rational structure of coherent cohomology, from the generalities

of Appendix B. There is an existing work of Horawa exactly on this problem [Ho], and we will

compare our conjecture with that of op. cit. In particular, we observe that the numerical evidences

given in op. cit. are compatible with both conjectures.
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5.1. The case of Hilbert modular forms: comparison with [Ho]. The work [Ho] states a

similar conjecture, Conjecture 3.21 of op. cit., on what archimedean motivic action should be

for Hilbert modular forms of partial weight one. It uses the partial complex conjugation, which

utilizes the fact that every (limit of) discrete series for SL2(R)d is holomorphic or antiholomorphic

in each variable.

De�nition 5.1 (Partial complex conjugations). Let F be a totally real �eld of degree d and ϕ be

a holomorphic automorphic form for G = ResF/Q GL2,F , seen as a holomorphic function on the

symmetric space for G(R), (C− R)d, of weight (k1, · · · , kd; r) where ki ≥ 1, ki ≡ r(mod 2) for

i = 1, · · · , d. For I ⊂ {1, · · · , d}, ϕI is the automorphic form for G = ResF/Q SL2,F , de�ned by

ϕI(g) = ϕ(gJ I) for J I = (J I1 , · · · , J Id ) given by J Ij = ( −1 0
0 1 ) if j ∈ I and J Ij = id2 if j /∈ I . This

is called the partial complex conjugation.

The main conjecture of op. cit., [Ho, Conjecture 3.21], describes the rationality of cohomology

classes in terms of partial complex conjugations. In particular, it implies that the decomposition

H i(X)[Πf ] = H i(p, K;ω ⊗ I(λ))⊗ ΠΓ
f =

(⊕
π∈Pλ H

i(p, K;ω ⊗ π)
)
⊗ ΠΓ

f descends to Q.

We have not been successful in approaching the conjecture. On the other hand, based on

the materials developed in Appendix B, we suggest a slightly di�erent conjecture. We use the

language of [Ho, §3] belwo.

Conjecture 5.2 (Motivic action conjecture for Hilbert modular varieties; compare with [Ho, Con-

jecture 3.21]). Let f be a parallel weight one form. For each u ∈ U∨f , let ui ∈ (Ad0M⊗ιC)σic0σ
−1
i ∼=

C be the σi-component ofU∨f ⊗ιC as in [Ho, Proposition 3.2], where the isomorphism is given by the
natural Q-structure on sld2. Then, for every u ∈ U∨f not in the kernel of the pairing of [Ho, Lemma

3.1],

2πi
d∑
i=1

ω
{i}
f

log(|τ ⊗ ι(u)|)
∈ H1(X(Γ), ω),

de�nes a cohomology class over Q.

Conjecture 5.2 suggests a rather di�erent Q-rationality structure than Conjecture 3.21 of op.
cit. For example, Conjecture 5.2 does not imply that the decomposition of coherent cohomology

as a (p, K)-cohomology of archimedean representations is Q-rational.

On the other hand, in some special cases, the two conjectures coincide. Indeed, in [Ho, §5], a

numerical evidence in favor of the conjecture of [Ho] is given for base change forms in the case

of Hilbert modular forms for real quadratic �elds. We claim that, for such Hilbert modular forms,

the two conjectures coincide:

Proposition 5.3. Let f be a Hilbert modular eigen-cuspform of parallel weight one for a real qua-
dratic �eld F . If f is a base change form, then [Ho, Conjecture 3.21] implies Conjecture 5.2.

Proof. Let σ1, σ2 be the two real embeddings of F , and suppose f is a base change form of f0.

Indeed, it is shown in [Ho, Corollary 5.2] that the space of Q-Stark units for f , Uf⊗Q, is naturally

isomorphic to (Uf0 ⊗Q)⊕2
, and the decomposition is compatible with the Beilinson regulator. In

particular, the Q-vector space spanned by the log of Stark units of f is exactly the Q-vector space

spanned by the log of Stark units of f0. In particular, both Conjecture 5.2 and [Ho, Conjecture
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3.21] are equivalent to the statement that

Qω{1}f ⊕Qω{2}f =
log(uf0)

2πi
H1(X(Γ)Q, ω),

where uf0 ∈ Uf0 . �

Indeed, a base change form satis�es an extra symmetry with respect to the “change of two

upper half planes”, namely

H2 (x,y)7→(y,x)−−−−−−→ H2,

and this extra symmetry guarantees that the Q-splitting of our form is compatible with the Q-

splitting of the form in [Ho, Conjecture 3.21].

5.2. Desiderata for generalized complex conjugations. To have a normalized choice of new-

forms simultaneously, we would like a certain way to relate di�erent newforms. Example 2.17

suggests that the complex conjugation should play a role in the tentative statement of the full

motivic action conjecture regarding rationality of cohomology classes. On the other hand, the

complex conjugation can go back and forth between only two types of LDS’s. For example, it

sends a vector in the “holomorphic LDS” to that in the “anti-holomorphic LDS.” Since a gen-

eral motivic action conjecture involves many more LDS’s, we suggest that there are generalized
complex conjugations that can go between any of π ∈ Pλ.

We denote a generalized complex conjugation, sending an automorphic form v ∈ Π⊗ AC(λ)
to another automorphic form in Π⊗ AC′(λ), by cC,C′ . There are several desired properties:

• cC,C′ is C-linear,

• If Chol, Cantihol are in Cλ, cChol,Cantihol
(f) = f ,

• 〈f, f〉P = 〈cC,C′(f), cC,C′(f)〉P (Condition (B)),

• cC′,C′′ ◦ cC,C′ = cC,C′′ and cC,C = id,

• cC′1×C′2,C1×C2
= (cC′1,C1

, cC′2,C2
), for G(R) = G1(R)×G2(R).

It is still unclear how to formulate a set of conditions which will uniquely characterize cC,C′ ’s. Al-

though the nature of generalized complex conjugations still remains mysterious, using the ideas

of Penrose transform and its related geometry, it could be possible to construct the purported

generalized complex conjugations, following the suggestion by Joseph Wolf. This is the subject

of the author’s forthcoming work.

Remark 5.4. The last bullet point suggests that the partial complex conjugation (e.g. [Ha2], [Sh1])

serves the role of generalized complex conjugations in the case of Hilbert modular forms. Un-

fortunately, for Chol and Canithol to be both in Cλ, λ has to be orthogonal to all compact roots,

and this is allowed only if there is no compact root (as we exclude degenerate limit of discrete

series from our discussion). Thus, we cannot use the usual complex conjugation besides when

the associated symmetric space is a product of several upper half planes.

Remark 5.5. It is a relatively well-accepted technique in the case of unitary groups to use theta

correspondence to move between di�erent in�nity types, as suggested by the recipe of [Pr]. In-

deed, for a unitary group, [HLS] proves that the theta correspondences and character twists act

transitively upon the full Vogan L-packet (see [Vo2]). However, due to the idiosyncrasies of the

recipe for the theta correspondence, it is still unclear whether the theta correspondence should

be the generalized complex conjugation in this case.
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Remark 5.6. We also speculate that this is the archimedean version of excursion operators (�rst

appeared in the work of [Laf] on the global Langlands correspondence over function �elds, and

extended to the context of mixed characteristic local Langlands via Kottwitz’s conjecture, e.g.

[FaMa], [RV]). Indeed, the isotypic decomposition with respect to the excursion algebra canoni-

cally decomposes the automorphic spectrum into L-indistinguishable pieces, which would mean

that the excursion operators can go around di�erent members of an L-packet.

Under the hypothesis on existence of generalized complex conjugations cC,C′ , we can formulate

the motivic action conjecture in the Shimura variety context in its full form.

Conjecture 5.7. Let λ,Π as in Conjecture 2.13. Let fh ∈ Πnew
f ⊗ πnew

h be a newform such that
[fh] (see De�nition 2.8) is de�ned over Q. Let Eλ ∼= Ext1

(p,K)(I(λ), πh) be de�ned such that Cαi ∼=
Ext1

(p,K)(π{1,··· ,nλ}−{i}, πh) sends 1αi to the homomorphism cCh,C{1,··· ,nλ}−{i}(fh) 7→ fh (using the
identi�cation from Proposition B.5). Then, for v ∈ H1

M((Ad∗Π)OE ,Q(1)) ⊂ H1
D((Ad∗Π)R,C(1)),

a(v) · fl de�nes a coherent cohomology class [a(v) · fl] ∈ H il+1(XG(Γ), [VA(λ)]) that is de�ned over
Q.

One can easily state a similar conjecture for the action of

∧∗H1
M((Ad Π)OE ,Q(1)), but it is no

deeper than the conjecture stated above.

There is basically one known case of what generalized complex conjugation should be, and it

is the case of Hilbert modular forms.

Appendix A. Beilinson’s conjecture over a general number field

In this section, we recall the statement of Beilinson’s conjecture we will need in the paper. A

usual formulation of the conjecture involves motives over Q with coe�cients in Q, but we would

have to relax both to be arbitrary number �elds. A standard reference of this matter is [Ra, §6].

A.1. Chow motives. We recall the de�nition of Chow motives over a number �eld k, Mk,rat

in [PV, §2.1.1]. de�ned by cohomological correspondences up to rational equivalence. If k is a

number �eld, then for a Chow motive M ∈Mk,rat, there are the following cohomology theories,

motivated by the cohomology theories of smooth proper k-varieties.

• For each prime `, there is `-adic cohomologyH i(MK ,Q`(r)), which is a �nite-dimensional

`-adic representation of Gal(K/K).

• For each embedding σ : k ↪→ C, there is Betti cohomology H i
B(Mσ,Q(r)), which is a

pure Q-Hodge structure. If σ is a real embedding, it is equipped with the in�nite Frobe-
nius Frσ,∞. On H i

B(Mσ,Q(r)) ⊗Q C, the involution Frσ,∞⊗cB preserves the Hodge de-

composition, where cB is the complex conjugation on the second factor. If σ is a complex

embedding, Frσ,∞ is rather an isomorphism of Q-vector spaces

Frσ,∞ : H i
B(Mσ,Q(r))

∼−→ H i
B(Mσ,Q(r)).

• There is de Rham cohomology H i
dR(M)(r), which is a �nite-dimensional k-vector space,

equipped with a decreasing �ltration F kH i
dR(M)(r).

We will not care much about `-adic realization, as it plays no role in the paper. For each embedding

σ : k ↪→ C, there is a comparison isomorphism

compσ : H i
B(Mσ,Q(r))⊗Q C ∼= H i

dR(M)(j)⊗k,σ C,
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such that⊕p≥kHp,q
corresponds to (F kHdR)⊗C. If σ is a real embedding, Frσ,∞⊗cB corresponds

to 1⊗cdR, where cdR is the complex conjugation on the second factor ofH i
dR(M)(j)⊗k,σC. If σ is

a complex embedding, Frσ,∞⊗cB corresponds to 1⊗ cdR in the sense that there is a commutative

diagram

H i
B(Mσ,Q(r))⊗Q C

compσ //

Frσ,∞⊗cB
��

H i
dR(M)(j)⊗k,σ C

1⊗cdR

��
H i
B(Mσ,Q(r))⊗Q C compσ

// H i
dR(M)(j)⊗k,σ C

Another key player is the Deligne cohomology. For a complex smooth projective variety X and

a subring A ⊂ C invariant under complex conjugation, the Deligne cohomology H i
D(X,A(r)) is

de�ned as the hypercohomology of the complex

A(r)D : A(r)→ OX
d−→ Ω1

X
d−→ · · · d−→ Ωr−1

X ,

regarded as a complex of analytic sheaves. This admits a complex conjugation of coe�cients,

denoted cD , which is induced from the complex conjugation on A(r)D . Similarly, there is in�nite

Frobenius for Deligne cohomology.

In the formulation of Beilinson’s conjecture over Q, a central role is played by the cohomology

of MR. It plays the same role in Beilinson’s conjecture over general number �elds, even though

it may sound peculiar to consider the base-change of M to R even if k is not a real �eld.

De�nition A.1. Given a sub�eld A ⊂ C stable under complex conjugation, de�ne

H i
dR(MR)(r) =

( ⊕
σ:k↪→C

H i
dR(M)(r)⊗k,σ C

)1⊗cdR

H i
B(MR, A(r)) =

( ⊕
σ:k↪→C

H i
B(Mσ,Q(r))⊗Q A

)⊕σ Frσ,∞⊗cB

H i
D(MR, A(r)) =

( ⊕
σ:k↪→C

H i
D(Mσ, A(r))

)⊕σ Frσ,∞⊗cD

.

Concretely, cohomology of MR is the part �xed by Fr∞⊗cB = 1 ⊗ cdR via Betti-de Rham

comparison isomorphism. Furthermore, there is a Chern class map

rD : H i
M(M,Q(r))→ H i

D(MR,R(r)).

The source of Chern class map is too large, and we choose a subspaceH i
M(MOk ,Q(r)) ⊂ H i

M(M,Q(r))
consisting of classes that “extend to a good proper model of M over Ok”. If M = h(X) for a

smooth proper k-variety X , which has a regular proper model X over Ok, then

H i
M(MOk ,Q(r)) = H i

M(M,Q(r)) ∩ (im(K2r−iX→ K2r−iX)⊗Q),

where the latter image of K-theory groups is the image via the Chern class characters, and this

de�nition is independent of choice ofX. In general, using alterations, Scholl de�ned this subspace

in [Sch, Theorem 1.1.6] and showed that this is a unique way to assign subspaces satisfying

various natural properties. The restriction of Chern class charcater into the integral subspace,

rD : H i
M(MOk ,Q(r))→ H i

D(MR,R(r)),
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is called the Beilinson regulator.

A.2. Beilinson’s conjecture for Chow and Grothendieck motives. From now on, we as-

sume that r ≥ i+1
2

17

. Beilinson’s conjecture is formulated using fundamental exact sequences,

which we review. From the de�nition of Deligne cohomology, for a complex smooth projective

variety X , there is a long exact sequence

· · · → H i−1
B (X,A(r))→ H i−1

B (X,C)

F rH i−1
dR (X)

→ H i
D(X,A(r))→ H i

B(X,A(r))→ · · · .

As this long exact sequence intertwines the involutions that de�ne the cohomology of MR, for a

Chow motive M de�ned over a number �eld k,

H i
D(MR,R(r)) =

H i−1
B (MR,C)

F rH i−1
dR (MR) +H i−1

B (MR,R(r))
=
H i−1
B (MR,R(r − 1))

F rH i−1
dR (MR)

,

which gives rise to two fundamental exact sequences,

0→ F rH i−1
dR (MR)→ H i−1

B (MR,R(r − 1))→ H i
D(MR,R(r))→ 0,

0→ H i−1
B (MR,R(r))→ H i−1

dR (MR)

F rH i−1
dR (MR)

→ H i
D(MR,R(r))→ 0.

The �rst two entries of the two fundamental exact sequences as above have natural Q-structures,

yielding the Q-structure on detH i
D(MR,R(r)). Let R be the one from the �rst sequence, and

DR be the one from the second exact sequence.

Conjecture A.2 (Beilinson’s conjecture). Suppose either r > i
2

+ 1, or r = i
2

+ 1 and there is no
Tate cycle, namely H i

ét(Mk,Q`(i/2))Gal(k/k) = 0. Then, the following hold.
(1) The Beilinson regulator

rD : H i+1
M (MOk ,Q(r))⊗ R→ H i+1

D (MR,R(r)),

is an isomorphism.
(2) Let M be the Q-structure de�ned on detH i+1

D (MR,R(r)) via the Beilinson regulator and
the Q-structure of the motivic cohomology. Then,

M = L(h−i(M∨), 1− r)∗R = L(hi(M), r)DR.

Remark A.3. The motives we will be working with come from automorphic representations in

the sense of [Cl, §4.3.3], and for that purpose, we would rather like to work with Grothendieck
motives, where the equivalence relation used is numerical equivalence, which is equivalent to ho-

mological equivalence under the Standard Conjecture D, which we have to assume. Fortunately,

[PV, §2.1.9] works with arbitrary base �eld, so a similar set of assumptions would naturally lead

to Beilinson’s conjecture for Grothendieck motives.

Appendix B. Deligne cohomology and Lie algebra cohomology

In this appendix, we develop a representation theoretic background parallel to [PV, §2-§4].

This is to correctly guess the motivic action conjectures, namely Conjecture 2.13 and Conjecture

5.7.

17
This is equivalent to that the weight of M , i−2r, is negative. This is not a restriction as one can always reduce

to this case possibly after using functional equation.
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B.1. Nondegenerate limit of discrete series as constituents of reducible principal se-
ries. We need to understand what kinds of in�nity types can appear in the coherent coho-

mology of Shimura varieties, given the �nite part and the coe�cient. Fortunately, the (p, K)-

cohomology of unitaryG(R)-representations is computed by Vogan–Zuckerman. As far asG(R)-

representations are concerned, we will be only interested in discrete series, or in general nonde-

generate limits of discrete series.

For a (L)DS, its L-packet consists of all (L)DS with the same in�nitesimal character. Thus each

such L-packet is consisted of |WG|/|WK | elements, and in particular, upon choosing a system of

positive roots ∆+
K forK , can be indexed by Weyl chambers which makes all roots in ∆+

K positive.

Given an in�nitesimal character λ and a Weyl chamber C , letAC(λ) be the corresponding (L)DS.

This is in accordance with the notation of [VZ]. In particular, AC(λ) = Aq(λC) for q = k ⊕ pC ,

where pC is the subalgebra of noncompact roots in ∆+
C , the system of positive roots determined

by C , and λC is the Weyl conjugate of λ that is contained in C . By the relatively straightforward

nature of K-multiplicities of such representations, we have the following formulae.

Proposition B.1. Given λ and C as above, we have the following,

iAC(λ) = dimC(p− ∩ pC),

VAC(λ) = V (λC + 2ρ(p+)),

the highest weight representation of K with highest weight λC + 2ρ(p+), where 2ρ(p+) is the sum
of all roots in p+.

Therefore, if λ lies on some wall of the Weyl chambers, then it can happen that VAC(λ) = VAC′ (λ)

for di�erent Weyl chambers C,C ′. This is the setting we will be interested in. In such cases, we

drop the subscript C if there is no issue of confusion.

TheoremB.2. Letλ be a nondegenerate analytically integral character. LetCλ = {C Weyl chamber |
λ ∈ C}, and Pλ = {AC(λ) | C ∈ Cλ}. Then, there is a parabolic subgroup Q ⊂ G(R) and a dis-
crete series representation ρ of the LeviMQ such that

I(λ) := IndGQ ρ =
⊕
π∈Pλ

π,

where IndGQ ρ is the normalized induction. These satisfy the following properties.
(1) Q is a parabolic subgroup which is minimal with respect to the property that the Langlands

parameter ϕ : WC/R → LG corresponding to the representations in Pλ can be arranged so
that ϕ(WC/R) ⊂ LQ. Furthermore, if we denote TMQ

by a Cartan subgroup ofMQ, then one
can further assume that ϕ(C×) ⊂ LTMQ

and that ϕ(WC/R) normalizes LTMQ
.

(2) |Cλ| is a power of 2, and λ⊥ ⊂ g is spanned by a superorthogonal set of real roots.
(3) The in�nitesimal character of ρ is the restriction of λ.

Proof. We freely use the terminology of [Kn]. The property (3) is clear. The content of [Kn, §14.15]

implies that any NLDS appears as a direct summand of such principal series with multiplicity

one; this is via repeated application of generalized Schmid identities [Kn, Theorem 14.68]. The

relation between Q and the Langlands parameter follows from the discussion before [La, Lemma

1]. Since the parabolic subgroup appears as Cayley transform of the minimal parabolic in the

sense of [KZ], and one chooses noncompact simple roots for the Cayley transform, which in
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fact form a superorthogonal set of roots by [Kn, Theorem 14.64], based only on the in�nitesimal

character and not the chamber, it follows that

{IndGQ ρ̃ | ρ̃ DS, in�nitesimal character = the restriction of λ},
sees every NLDS with in�nitesimal character λ at least once as its constituent. The number of

constituents is exactly |WG|/|WK |, so each such NLDS appears exactly once. Each IndGQ ρ has

constituents π = AC(λ) such the representative of λ (thought as a Weyl orbit) in C is a �xed

character (namely, C’s that appear are all adjacent to a single representative of the Weyl orbit of

λ). This is an equivalence relation, so this implies I(λ) is precisely consisted of AC(λ) where C
contains λ (regarded as an actual character). As the R-group is a direct sum of bunch of Z/2Z by

[Kn, §14.15], we get (2). �

Example B.3. We explain how Theorem B.2 is realized in some examples. In the �gures, red

arrows are the compact roots, so NLDS’s are those lying on a wall not orthogonal to red arrows.

(1) SL2(R). Let Q ⊂ SL2(R) be the upper triangular Borel, and let ρ = det /| det | : Q →
{±1}. Then I

SL2(R)
Q ρ = D+

0 ⊕ D−0 , the sum of the two NLDS, holomorphic (“weight 1”)

and anti-holomorphic (“weight −1”).

(2) Sp4(R) (e.g. [Mu]). There are four types of LDS, two of them being holomorphic and anti-

holomorphic, respectively, and the other two being large (i.e., maximal Gelfand–Kirillov

dimension). We call the one adjacent to the holomorphic chamber generic and the other

one adjacent to the anti-holomorphic chamber anti-generic. Using the notation of [Mu], a

singular in�nitesimal character is of one of the forms (p, 0), (0,−p) or (p,−p) with p ∈ N.

The Langlands parameter ϕλ for in�nitesimal character λ = (a, b) is given by

ϕλ(re
iθ) = diag(ei(a+b)θ, ei(a−b)θ, e−i(a+b)θ, e−i(a−b)θ), ϕλ(j) =

 0 (−1)a+bI2

I2 0

 .

• λ = (p, 0) lies on the wall between the holomorphic chamber and the generic cham-

ber. Then, Q is the so-called Klingen parabolic, whose Levi is GL1(R) × SL2(R),

and ρ is the (trivial extension of the) holomorphic DS D+
p of SL2(R) of in�nitesimal

character p (or, equivalently, weight p+ 1).

• λ = (p,−p) lies on the wall between the generic chamber and the anti-generic cham-

ber. Then, Q is the so-called Siegel parabolic, whose Levi is GL2(R), and ρ is the DS
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D2p of GL2(R) with central charcater 2p (which is as SL2(R)-representation the same

as D+
2p ⊕D−2p).

• λ = (0,−p) lies on the wall between the anti-generic chamber and the anti-holomorphic

chamber. This situation is complex-conjugate to the situation of λ = (p, 0). Thus, Q
is again the Klingen parabolic, but ρ is the anti-holomorphic DS of the same in�ni-

tesimal character.

(3) U(2, 1) (e.g. [Wa], [Ro, §12]). There are three types of LDS, holomorphic, generic and

anti-holomorphic. There are two typse of NLDS’s , those lying on the wall between the

holomorphic chamber and the generic chamber, and those lying on the wall betweent the

generic chamber and the anti-holomorphic chamber. The Langlands parameters for (L)DS

are of the form

ϕ(z) = diag((z/z)a, (z/z)b, (z/z)c), ϕ(j) =


1

−1

1

 ,

for a, b, c ∈ Z, and the parameter only depends on the unordered set {a, b, c}. Ordering

a ≥ b ≥ c, the two types of NLDS can occur for a = b > c and a > b = c.

• a = b > c lies on the wall between the holomorphic chamber and the generic cham-

ber. Then, Q is the upper-triangular Borel (when U(2, 1) is seen as the unitary group

for the diagonal Hermitian matrix such as diag(1, 1,−1)), whose Levi is C××S1
, and

ρ is the character diag(α, β, α−1) 7→ αaβbα−c for α ∈ C×, β ∈ S1
.

• a > b = c lies on the wall between the generic chamber and the anti-holomorphic

chamber. The situation is completely symmetric to the previous case.

B.2. Action of the Ext-space. We can now build an archimedean realization of motivic ac-

tion from abstract nonsense. Recall that for a (p, K)-module M , H i(p, K;M) can be regarded

as Exti(p,K)(1,M), the i-th Ext group in the category of (p, K)-modules, where 1 is the trivial
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module. Thus, there is a natural action

Extm(p,K)(M,N)× Extn(p,K)(1,M)→ Extm+n
(p,K)(1, N).

In particular, if λ is a nondegenerate singular character as above, with π1, π2 ∈ Pλ with iπ1 < iπ2 ,

there is a natural action

Ext
iπ2−iπ1

(p,K) (π1, π2)×H iπ1 (p, K; π1 ⊗ VA(λ))→ H iπ2 (p, K; π2 ⊗ VAλ),

where VA(λ) is the common coe�cient for all π ∈ Pλ. Thanks to Theorem B.2, the situation can

be vastly simpli�ed.

Theorem B.4. Let λ be as above.
(1) There is a unique πl ∈ Pλ such that iπl = il := min{iπ | π ∈ Pλ}.
(2) For each π ∈ Pλ, Ext

iπ−iπl
(p,K) (πl, π) is one-dimensional.

(3) Let nλ = log2 |Pλ|, and Iλ = {π ∈ Pλ | iπ = iπl + 1}. Then, nλ = #I .

Proof. As in the proof of Theorem B.2, [Kn, §14.15] gives us a recipe of how λ is constructed in

terms of superorthogonal roots {α1, · · · , αnλ}, it follows that the chambers in Cλ are of the fol-

lowing form: there is one chamber Cl that is the “most holomorphic” chamber (namely, dim(Cl∩
p+) is the largest) and a set of superorthogonal noncompact roots {α1, · · · , αn} ⊂ Cl such that

all other chambers C ∈ Cλ are of the form

C{i1,··· ,ik} := (Cl − {αi1 , · · · , αik}) ∪ {−αi! , · · · ,−αik}.
These imply (1) and (3). To show (2), we use the Hochschild–Serre spectral sequence for Lie

algebra cohomology, [Vo1, Proposition 6.1.29]. In our setting, we apply a spectral sequence

Ep,q
2 = Extp(k,K)(X,H

q(p−, Y ))⇒ Extp+q(p,K)(X, Y ),

for X = πl, Y = π. Since the category of (k, K)-modules is semisimple, there is no higher Ext

and the spectral sequence trivially degnerates at the E2-page:

Extm(p,K)(πl, π) = Hom(k,K)(πl, H
m(p−, π)).

On the other hand, the main result of [Wi] says that, if we choose the maximal nilpotent subalge-

bra b− ⊂ k such that n := b−⊕p− is a maximal nilpotent subalgebra of g, thenH∗(n, π) can only

have weights WKλ+ ρ, where ρ is the half sum of positive roots in g, where the positivity is de-

�ned so that n is spanned by the negative roots. Furthermore, each such weight occurs in exactly

one cohomological degree. To relate this result to our setting, we use another Hochschild–Serre

spectral sequence,

Ep,q
2 = Hp(b−, H

q(p−, π))⇒ Hp+q(n, π).

Suppose Vτ be a K-type that appears in Hm(p−, π), with highest weight τ . Then, by Kostant’s

theorem [Ko, Theorem 5.14], Hp(b−, Vτ ) has a nonzero µ-isotypic part if and only if µ = w(τ +
ρk) + ρk for some w ∈ WK of length p, where ρk is the half sum of positive roots in k, where

the positive system is de�ned so that b− is spanned by the negative roots in k. In particular, µ
determines p and τ , which implies that this spectral sequence also degenerates at the E2-page.

This implies that theK-types ofH∗(p−, π) are of highest weight λ+ρwp−−ρk for w ∈ WG/WK ,

and these are precisely the minimal K-types of π′ ∈ Pλ.

Let τl be the highest weight of the minimal K-type of πl. Then, all other minimal K-types of

π′ ∈ Pλ are of highest weight of the form τl−
∑nλ

i εiαi for εi ∈ {0, 1}. By Blattner’s formula for

πl [Sc2], all K-types of πl are of highest weight τl + δ, where δ is a positive linear combination
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of noncompact positive simple roots, where positivity is de�ned by Cl. In particular, this is a

cone lying in the direction towards α1, · · · , αnλ , so the only K-type that appears both in πl and

Hm(p−, π) are τl, whence dim Extm(p,K)(πl, π) ≤ 1. We have an exact formula for when nonzero

Ext group occurs, which turns out to be iπ − iπl . Note that the same argument can be used to

deduce the following: if I ⊂ J ⊂ {1, 2, · · · , nλ}, then Ext#J−#I
(p,K) (πI , πJ) is one-dimensional. �

Proposition B.5. For I ( {1, · · · , nλ} with i /∈ I , there is a natural identi�cation

Ext1
(p,K)(πI , πI∪{i})

∼= HomC(πnew
I , πnew

I∪{i}).

Proof. We think the Ext group as the group of actual extensions. In particular, Ext1
(p,K)(πI , πI∪{αi})

is naturally identi�ed with the one-dimensional vector space of the short exact squences of

(p, K)-modules,

0→ πI∪{αi} → V → πI → 0.

Such extension is uniquely identi�ed by a scalar λ ∈ C in a way as follows. The sequence splits

as a short exact sequence of K-modules, so the minimal K-type τI of πI has a canonical lift in

V , also denoted as τI . Let v ∈ τI be the chosen highest weight vector. As αi /∈ I , v as a vector in

πI satis�es αi · v = 0, where αi is seen as an element of U(p). However, if v is seen as a vector

in V , αi · v is nonzero precisely when the extension is nonsplit, and is sent to the line of highest

weight vector of the minimal K-type of πI∪αi}. Upon �xing such a highest weight vector v′, we

have αi · v = λv′ for some λ ∈ C, and this gives an isomorphism Ext1
(p,K)(πI , πI∪{αi})

∼= C. �

Remark B.6 (An important new di�culty in the δ = 0 case). It is very important to notice that,

in our setting, the motivic action depends on the choice of highest weight vectors of minimal K-
types of NLDS’s, which was not necessary in the δ 6= 0 case of [PV]. This is because our setting

involves many di�erent representations, whereas in the setting of [PV] one deals with a single

representation. This will give rise to the conjecture on “generalized complex conjugations” in

Section 5.2.

In the same vein, what naturally acts on the cohomology is not an Ext-algebra, but merely the

Ext-group Ext1(I(λ), πh). However, one can identify this with an exterior algebra as follows.

There is a natural identi�cation of (p, K)-cohomology of πI for I ⊂ {1, · · · , nλ},

H∗(p, K; πI ⊗ VA(λ)) = HomK(∧∗p−, πI ⊗ VA(λ))

= HomK(∧∗p− ⊗ σ∅, σI)
= (∧∗p+)αI ,

where σJ is the minimal K-type of πJ , and αI =
∑

i∈I αi. In particular, this is identi�ed with

(∧∗Eλ)αI , where Eλ ⊂ p+ is the span of {α1, · · · , αnλ}, because these form a superorthogonal set

of roots. Thus, one can think of the exterior algebra

∧∗ Eλ as acting on the (p, K)-cohomologies of

π’s in Pλ. Note that, however, the choice of highest weight vectors of minimalK-types underlies

everything.

We will also occasionally use another notation, λ⊥, for Eλ, to be more indicative of its de�nition.

The action can be connected back to coherent cohomology of Shimura varieties. Consider the

Πf -isotypic part of the coherent cohomology of XG(Γ) with coe�cient [VA(λ)]; by Theorem 2.2,

we have a natural isomorphism

H iΠ∞ (X)[Πf ] ∼= H i(p, K; Π∞ ⊗ VA(λ))⊗C ΠΓ
f ,
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for each Π∞ ∈ Pλ. Thus, using the notation of Theorem B.4, we obtain an action

∧∗Eλ ⊗C H
il(X)[Πf ]→ H il+∗(X)[Πf ].

B.3. Deligne cohomology as an Ext-space. We now relate the Ext-space with motivic co-

homology. By [PV, (2.2.8)] and the de�nition of adjoint motive in Conjecture 2.10, there is

a natural isomorphism H1
D((Ad Π)C,R(1)) ∼= HB((Ad Π)C,R)WC/R

, and its complexi�cation

HB((Ad Π)C,C)WC/R
can be naturally identi�ed with ĝϕ(WC/R)

, the centralizer of the image of

WC/R under the Archimedean Langlands parameter ϕ : WC/R → LG.

We arrange ϕ in a way that is done in Theorem B.2. Then, the centralizer of ϕ(C×) is the Levi

component M̂QAQ, where Lie M̂QAQ = t̂ ⊕ λ̂⊥C . Thus, Lie M̂Q is a direct sum of nλ-copies of

sl2(C). Since the centralizer of ( 0 −1
1 0 ) in sl2(C) is a one-dimensional torus, ĝϕ(WC/R) = C⊕nλ is

an nλ-dimensional abelian Lie algebra, one coming from each αi. It is therefore noncanonically

isomorphic to λ⊥. This also shows that ĝϕ(WC/R)
gives a Cartan subalgebra ĥ = t̂ ∩ Lie M̂Q of

Lie M̂Q.

There is on the other hand a natural map ĝϕ(WC/R) → Ext1
(g,K)(I(λ), πh) whose de�nition does

not depend on any arbitrary choice. Namely, twisting σ by a character ofH ⊂MQ gives a family

of deformations of I(λ) = IndGQ(σ), and the same deformation can be applied to extensions:

namely, taking IndGQ of Ext∗h(1,1) gives rise to a map

Ext∗h(1,1)→ Ext∗(g,K)(IndGQ(σ), IndGQ(σ)).

Note that Ext∗h(1,1) =
∧∗ ĥ, so we have a natural map

∧∗ĥ = Ext∗h(1,1)→ Ext∗(g,K)(I(λ), I(λ)) =
⊕
π∈Pλ

Ext∗(g,K)(I(λ), π) � Ext∗(g,K)(I(λ), πh),

where the last map is the projection map. This isomorphism is natural, so this de�nes a degree-
descending action of

∧∗H1
D(Ad Π,C(1)) onH ih−∗(X)[Πf ]. Dually, this de�nes a degree-ascending

action of

∧∗H1
D(Ad Π,C(1))∗ on H il+∗(X)[Πf ].
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