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Discrete series representations are building blocks of all archimedean representation theory

(depending on your viewpoint). But the very de�nition of discrete series is more or less that it is

a building block... That these can be also explicitly parametrized and constructed is miraculous.

For the discrete series to even exist, we need rankG = rankK, or equivalently Zg(c) =
k (c = Z(k)), i.e. there is a compact Cartan subgroup, and we assume this forever.

1. Realization of holomorphic discrete series

This is probably exactly how people in arithmetic geometry think about discrete series. Namely

you only consider the cases where the symmetric space G/K is Hermitian, so that there is nice

notion of holomorphicity, and then you consider a holomorphic vector bundle over it coming

from �nite-dimensional representation of K (“weight” of a modular form). The space of smooth

sections, L2
-sections, or sections under whatever norm condition, is then a realization of holo-

morphic discrete series. This is exactly how you would want to de�ne classical modular forms.

1.1. SU(1, 1) andmore. We know that holomorphic discrete series of SU(1, 1) can be realized as

some space of analytic functions on the upper half plane with certain transformation properties.

Another way of realizing this is found by HC, using the complexification of SU(1, 1). Let

G = SU(1, 1) ⊂ SL2(C) and B be the lower standard Borel of SL2(C). Then the elements of

GB has a unique decomposition as N
<1
TN where N is the unipotent radical of B, T is the

diagonal and N
<1

=

{(
1 z
0 1

)
| |z| < 1

}
. Furthermore, GB ⊂ SL2(C) is an open subset, and

the complex structure is the same as the product complex structure one gets from the above

decomposition (all three are complex analytic spaces).
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Now the n-th discrete series is alternatively realized as

Vn := {F : GB → C holomorphic | |F |L2 <∞, F (xb) = ξn(b)−1F (x)}.

Here ξn

(
a 0
c a−1

)
= a−n, and G acts on Vn by L(g)F (x) = F (g−1x).

This kind of decomposition exists in general.

Theorem 1.1 (HC decomposition). Under the running assumption,GB ⊂ GC is open, P+×KC×
P− → GC is one-to-one, holomorphic, regular with open image, and there is a bounded open subset
Ω ⊂ P+ such that GB = ΩKCP−.

Here the de�nitions are in accordance with the SU(1, 1)-case. For example, if G = SU(n,m),

then the decomposition is(
A B
C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
.

Now we can mimic the de�nition for generalG, except we need to de�ne transformation factor ξ.

For an analytically integral λ ∈ (hC)∗, let ξλ be the corresponding holomorphic one dimensional

representaiton of TC
, and extend this trivially toB; this is the transformation factor. Let (Lλ, Vλ)

be the representation constructed by this procedure.

Theorem 1.2. If λ is dominant wrt∆+
K then Vλ is a Hilbert space andLλ is a unitary representation.

It is a (nonzero) discrete series representation if furthermore 〈λ+δ, α〉 < 0 for all positive noncompact
roots α.

λ here is rather the “Blattner parameter” because it is the (highest wt of the) lowest K-type

(in contrast to HC parameter which is λ + δ). You see that for SU(1, 1) you only allow n ≥ 2
because λ = −ne1, δ = e1 and there is only one noncompact positive root, which is 2e1.

Proof sketch. You actually start from the purported lowest K-type and hope to generate all and

nothing goes wrong in the process. More precisely, for the unitary representation ofK associated

to λ, consider the matrix coe�cient map with respect to highest weight vector of norm one,

extended to a map of GB using HC decomposition. Then this has right transformation property,

so really the whole thing goes through if and only if this has �nite L2
norm, which is shown to

be equivalent to the condition in the theorem via technical but not so di�cult proof. �

2. Realization of discrete series I: Unitary trick

This is due to Flensted-Jensen. This is what’s in Knapp’s book.

There are three ideas:

(1) Analogue of Peter-Weyl theorem holds: for π discrete series, π̃ ⊗ π occurs once in

L2(G) ∼= L2((G×G)/∆G). In this isomorphism Z(gC) ∼= D((G×G)/∆G). So we can

instead try to look for left-(K ×K)-�nite functions on (G×G)/∆G that are eigenfunc-

tions for all left-(G×G)-invariant di�erential operators on (G×G)/∆G.

(2) Solving a dual problem: for simplicity we denote G × G = G2
etc. Then G2

can be

seen as

(
G 0
0 G

)
, and ∆G can be seen as the �xed point subset under the involution ι

given by

(
x 0
0 y

)
7→
(
y 0
0 x

)
. An idea is to replace the triple (K2, G2,∆G) with some
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another triple where the corresponding involution is the Cartan involution Θ. This is

somewhat analogous to Weil’s unitary trick. In the Lie algebra level, if we denote the

Cartan involution as θ, then θι has ±1 eigenspaces(
X

θX

)
: +1(

X
−θX

)
: −1

So if we were to apply unitary trick then the “dual” should be

(
X

θX

)
+ i

(
Y
−θY

)
.

This is basically the same as (
Z

θZ

)
, Z ∈ gC.

We call this gC. Similarly, the dual of k2
becomes

kC := {
(
Z

θZ

)
| Z ∈ kC}.

The dual of ∆g becomes

u := {
(
X

X

)
| X ∈ k⊕ ip},

so the dual of the triple on the group level should be (KC, GC, U), where U is the set of

�xed points of the Cartan involution of GC. Here note that the complexi�cation is still

written in superscript so KC, GC are some di�erent real reductive groups di�erent from

complexi�cation.

Now we have the following decompositions:

G2 = (K × 1)(antidiag exp p(g))(diagG),

GC = (exp p(kC))(antidiag exp p(g))U.

The upshot here, strategy something like Weil’s unitary trick, is that{
left K2

-�nite fn on G2/ diagG, eig. of D(G2/ diagG)
}
↔ {left KC-�nite fn on GC/U , eig. of D(GC/U )} .

For example, given a left K2
-�nite function on G2/ diagG, we �nd the corresponding

KC-�nite function on GC/U by

• Restrict to antidiag exp p(g), extend trivially to U
• Left action by K2

by �n-dim-rep, extend holomorphically to action by (K2)C, and

restrict to KC, because (K2)C = (KC)C!

(3) Generalized Poisson kernel: The problem now became something like �nding function

on G/K that are eigenfunctions on D(G/K) for K ⊂ G maximal compact. Over the

upper half plane, this includes �nding harmonic functions, so classically we would use

the Poisson kernel

P (x+ iy, t) =
y

(x− t)2 + y2
.

Under G/K ∼= H for G = SL2(R), one readily calculates that the Poisson kernel is the

same as exp(−2ρH(a−1n−1n′)), where naK ↔ x + iy, n′ =

(
1 0
−t 1

)
, and expH(g) is
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the A-component of the G = NAK decomposition. More generally, for ν ∈ (a∗p)
C

and

x ∈ G,

g 7→ exp(−νH(g−1x)),

is an eigenfunction of D(G/K).

Back to our setting, so we want to �nd good ν and h, a function on U , such that

ψC(gC) :=

∫
U

e−νHC(g−1
C u)h(u)du,

transforms �nite-dimensionally under left KC-action. As KC ∩ U = diagK , if we let

h(u)du to be the Haar measure on diagK , i.e.

ψC(gC) =

∫
diagK

e−νHC(g−1
C u)du,

then for kC ∈ KC,

ψC(kCgC) =

∫
diagK

e(ν−2ρKC )HC(kCu)e−νHC(g−1
C u)du.

So the �nite-dimensionality is achieved for a choice of ν if {exp(ν − 2ρKC)HC(kCu) |
kC ∈ KC} is �nite dimensional! This happens if ν is the highest restricted weight for an

irreducible �nite-dimensional representation ofKC having a nonzero diagK-vector. This

imposes some positivity conditions.

Integrality conditions are imposed when you consider transforming the function back

to the original setting of (K2, G2, diagG). For example, for G = SU(1, 1) again, an el-

ement of KC can be written as kC =

(
et+iθ

e−t−iθ

e−t+iθ

et−iθ

)
, and exp(νHC(kC)) is of

form e2rt
for some complex number r. Now that this function can be holomorphicall ex-

tended to (KC)C means sth like r ∈ Z!

There are some other subtleties but this is the gist of the argument.

That this is everything is also extremely di�cult to prove, but this is not the point of this.

3. Realization of discrete series II: Dirac operator and spin structure on G/K

To motivate the use of Dirac operators, we review realization of holomorphic discrete series

using Dolbeault cohomology (Narasimhan–Okamoto [?]). Motivation for [?] is pretty obvious:

BWB. I.e. you already know for complex groups htwtreps are all obtained as some cohomology

group over a complex variety. For reference we state

Theorem 3.1 (Borel–Weil–Bott). Let G be a semisimple complex algebraic group, and let λ be an
integral weight of T . LetLλ be the line bundle overG/B twisting the principalB-bundleG→ G/B
byλ bywhichwemean the character ofB pulled back fromB/U = T . Then, eitherH∗(G/B,Lλ) =
0, or H∗(G/B,Lλ) is concentrated in one degree and the only nonvanishing cohomology, endowed
with the natural G-action, is the contragredient of the htwtrep of G w/ htwt w ∗ λ, where w ∈ W is
the unique w ∈ W where w ∗ λ is dominant (and the nonvanishing cohomological degree is `(w)).

Here note the dominant chamber is contained in exactly one of the “shifted Weil chambers” so

there can be at most one such w.

So we imagine something like this can happen also for real group reps. Indeed for SL2(R) this

certainly is the case.
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3.1. Narasimhan–Okamoto. Notation: g, gC
Suppose G/K has hermitian symmetric structure. Choose an ordering of roots of (gC, hC)

compatible with the complex structure on G/K . For τΛ an irreducible unitary rep of K of htwt

Λ, let EΛ be the holomorphic vector bundle on G/K associated to the contragredient represen-

tation. Let H0,q
2 (EΛ) be the Hilbert space of square-interable harmonic forms of type (0, q) with

coe�cient in EΛ. The G-rep πqΛ = H0,q
2 (EΛ) is unitary and it decomposes into �nite number of

irreps. One is then trying to say discrete series is realized by these constructions.

• First one shows πqΛ decomposes into �nite sum of discrete series.

• One gives a character of alternating sum of πqΛ.

• One shows that πqΛ is concentrated in one degree.

Some steps:

(1) Preliminaries: let pC = p+ ⊕ p− where p+ is identi�ed with antiholomorphic tangent

vectors at eK of G/K . We take Pn to be the set of positive noncompact roots (so that

p+ =
∑

α∈Pn CXα) and Pk be the set of positive compact roots.

Let F be the set of all integral forms on hC (i.e. λ’s where 2〈λ, α〉/〈α, α〉 is integer for

every root α). Let F ′ be the subset where 〈λ + ρ, α〉 6= 0 for all root α, and F ′0 be the

subset where 〈λ+ ρ, α〉 > 0 for all compact positive root α.

EΛ is a hermitian vb on G/K corresponding to the contragredient of VΛ a K-rep. Let

(v1, · · · , vr) be a ONB of VΛ. Let z1, · · · , zn be ONB of gC where from 1 to m its in p+,

from m + 1 to n − m it’s in kC, from n − m + 1 to n it’s in p− and furthermore from

m+ k + 1 to m+ k + l it’s in hC.

Let Cq(G, V ∗Λ ) = ∧qp− ⊗ C∞(G) ⊗ V ∗Λ and Lq2(G, V ∗Λ ) accordingly. We have an em-

bedding C0,q(EΛ) ↪→ Cq(G, V ∗Λ ) onto the 0-weight isotypic component (K acts trivially).

Similarly L0,q
2 (EΛ) maps isometrically onto Lq2(G, V ∗Λ )(0). Let Adq± be theK-rep on Λqp±.

(2) Now you’ve connected Lie algebra world and geometry using this embedding η. The

Laplacian, from geometry world, in Lie algebra language acts as an operator

1

2
(〈Λ + 2ρ,Λ〉 − 1⊗ ν(C)⊗ 1)

where ν is the obvious action of U(gC) on C∞(G), and C is the Casimir. This is called

the Okamoto-Ozeki formula, similar to the Kuga’s formula; philosophy is the same,

namely Casimir and Laplacian are the same up to linear change.

(3) Discrete series is an in�nitesimal equivalence class of irreducible unitary G-reps of a sub-

representation (closed invariant subspace) of L2(G). For a unitary rep π of G, let πd, the

discrete part, be the smallest closed invariant subspace which contains every irreducible

closed invariant subspace of π.

DS is parametrized by F ′0 as follows: for each λ ∈ F ′ let Θλ+ρ be the unique invariant

eigendistribution corresponding to λ+ ρ, which satis�es

∆(expH)Θλ+ρ(expH) =
∑
s∈WG

ε(s)es(λ+ρ)(H),

where H ∈ h and ∆(expH) =
∏

α∈P (eα(H)/2 − e−α(H)/2), just as in Weyl character

formula. Then for each λ ∈ F ′0, there is a unique DS ωλ+ρ such that Θωλ+ρ
= (−1)mε(λ+

ρ)Θλ+ρ where m = −1
2

dimG/K and ε(λ+ ρ) = sgn(
∏

α∈P 〈λ+ ρ, α〉).
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(4) Let π̃qΛ be the representation L0,q
2 (EΛ). Then, the discrete part of π̃qΛ is in�nitesimally

equivalent to a sum ⊕
ω DS

mτqΛ
(ω)ω∗,

wheremmeans the multiplicity ofK-type, and τ qΛ = Adq+⊗τΛ. We know the sum is �nite

because a K-type occurs in only �nitely many DS (Harish-Chandra).

(5) Let L2(G)ω, for DS ω, be the smallest closed subspace of L2(G) containing all matrix

coe�cients of ω. LetCω(G) = L2(G)ω∩C(G). Then for any ω′ DS, f ∈ Cω′(G), Θω(f) =
0 if ω′ 6= ω∗, and is d(ω)−1f(1) if ω′ = ω∗, where d(ω) is the formal degree.

(6) Now the key part is the following. For a K-�nite function ϕ, let T qϕ =
∫
G
ϕ(g)T qg dg

be the operator on Lq2(G, V ∗Λ ) where T qg is the left-action of g on L2(G). Consider K̃q
ϕ

which involves �rst projecting down to discrete-part, then to weight 0 part (K-invariant

part) and then composing with T qϕ. This is an operator of �nite rank, and is an integral

transform with End(∧qp− ⊗ V ∗Λ )-valued C∞ kernel function Kq
ϕ given by

Kq
ϕ(x, y) =

∫
K

ϕ(xky−1) Adq−(k)⊗ τ ∗Λ(k)dk.

Using this,

m∑
q=0

(−1)q tr K̃q
ϕ =

m∑
q=0

(−1)q
∫
G

dx

∫
K

tr Adq−(k)ϕ(xkx−1)χΛ(k)dk.

Because

∑m
q=0(−1)q tr Adq−(k) = det(1− Ad1

−(k)), the above alternating sum becomes∫
G

dx

∫
K

det(1− Ad1
−(k))ϕ(xkx−1)χΛ(k)dk.

If you apply Weyl’s integral formula and Weyl character formula this simpli�es into (−1)qΛΘω∗Λ+ρ
(ϕ),

where qΛ is the number of noncompact positive roots α such that 〈Λ + ρ, α〉 > 0. Now

the original character formula we want follows from Hodge-theoretic style consequence

that cohomology is harmonic form.. using Okamoto-Ozeki...

(7) Now using very soft analysis one proves that the vanishing when q 6= qΛ and |〈Λ+ρ, α〉| >
cqΛ for all α ∈ Pn, where

• QΛ = {α ∈ Pn | 〈Λ + ρ, α〉 > 0}
• Γq = {

∑
α∈Q α | Q ⊂ Pn, |Q| = q}

• γΛ =
∑

α∈QΛ
α

• cqΛ = 1
2

max(〈2wγΛ − ρ− γ, ρ− γ〉+ 〈ρ, ρ〉 | w ∈ WG, γ ∈ Γq).

3.2. Dirac cohomology. Notation: g0, g
Basic idea is that things appearing in real group reps (Laplacian, g/k) are squares. Suppose g0

has a nondegenerate symmetric bilinear form B extending Killing form on the semisimple part,

and suppose B is positive de�nite on p0 and negative de�nite on k0. Then natural actions on p0

are form-preserving, i.e. acts as an element of so(p). Then this admits a double cover by a spin

group...! This is the basic idea behind everything.

In particular, adjoint k-action, which is a Lie algebra morphism k→ so(p), embeds further into

Cl(p), the Cli�ord algebra of p with respect to B. Then...

• can consider K̃ , the double cover of K by pulling back using Spin(p0)→ SO(p0)
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• alsoA = U(g)⊗Cl(p), associative Z/2Z-graded superalgebra (grading comes from Clif-

ford side),

• then can consider (A, K̃)-modules, which is sort of extension of (g, K)-modules. Indeed

K̃-action and A-action can be compared because k-action is connected to both Cl(p)-

action and U(g)-action.

Miracle: (g, K)-modules and (A, K̃)-modules are the same thing‼‼ In this regard there is a

hidden extra “square-root symmetry”. The equivalence is given by M 7→ M ⊗ S, for a (g, K)-

module, where S is a spinor representation of Cl(p). This is an irreducible Z/2Z-graded Cl(p)-

module which is unique when dim p is odd and there are two if dim p is even.

In this context the Dirac operator is D ∈ A K
, given by

D =
∑

Yi ⊗ Zi ∈ U(g)⊗ Cl(p),

where Yi is a basis of p and Zi is a dual basis.

As expected, Dirac operator is something like the square root of Casimir. For γ an irreducible

fdrep of K̃ of htwt τ , D2
acts on the γ-isotypic component of X ⊗ S by the scalar −‖Λ‖2 +

‖τ + ρk‖2
, where Λ is the in�nitesimal character of X . If X is unitary, then D is symmetric wrt

the (induced) hermitian form, so D2
acts positively; thus we immediately get the restriction of

possible K-types that could appear:

‖τ + ρk‖2 ≥ ‖Λ‖2

(Parasarathy-Dirac inequality)

Dirac operator gives an interesting invariant for each (g, K)-module X , the Dirac cohomol-
ogy (of Vogan):

HD
V (X) = kerD/(kerD ∩ imD)

This inherits K̃-action because D ∈ AK . If X is unitary admissible, then HD
V (X) = kerD, so it

is some sum of K-types. If it is nonvanishing, then it is extremely powerful invariant:

Theorem 3.2. (1) (Huang-Pandzic) If a K̃-type of htwt τ contributes to nonzero Dirac cohmol-
ogy HD

V (X), then Λ and τ + ρk are in the same Weyl orbit!!!
(2) Unipotent reps, highest weight modules, discrete series, Vogan-Zuckerman modules all have

nonvanishing Dirac cohomology.

3.3. Parthasarathy, Dirac operator and the discrete series. Notation: g, gC
Now the idea is structurally similar to Narasimhan–Okamoto but the reason why it worked is

because 1. there is Hodge-type theorems where harmonic forms = cohomology, and 2. Kuga-type

lemma could apply to something that has geometric meaning b/c basically Ω0,q = ∧qp−. Here

still one wants to use EV , the vb corresponding to (contragredient of) K-rep V , but here what

we rather use is the bundle corresponding to L± ⊗ V where L± are half-spin representations of

Spin(p) corresponding to a choice of a G-invariant spin structure on G/K . Letting C±(EV ) be

the space of smooth sections of EL±⊗V , the Dirac operator sends D : C±(EV ) → C∓(EV ). If

we de�ne H±2 (EV ) be the space of square-integrable sections in kerD, then H±2 are the stages of

realization. Some steps:

(1) A spin structure on a Riemannian manifold of dimension n means a principal Spin(n)-

bundle F̃ onM such that the principal SO(n)-bundle F̃ ×Spin(n) SO(n) is equivlent to the

principal SO(n)-bundle F of orthogonal frames of M . In the case when M = G/K , F
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is given by G ×K SO(p). Thus, the spin structure on G/K means K → Spin(p) lifting

K → SO(p) (up to going into covering space).

In our case rankG = rankK means p has even dimension, so the spin repσ : Spin(p)→
Aut(L) splits into L = L+⊕L− each of which is of dimension 2m−1

, wherem = dim p/2;

these are called half spin representations. We let χ be the K-rep on L and χ± on L±.

(2) For aK-rep τ , χ⊗τ gives a vbEL⊗V . NowL is a module for Cl(pC) and since pC ⊂ Cl(pC),

one has a natural bilinear pairing pC ⊗ L → L given by the spin rep of Cli�ord algebra.

Now this is a Spin(p)-module homomorphism, where pC is regarded as a Spin(p)-module

also. In this pairing we know pC⊗L± maps into L∓. So this gives EpC⊗L⊗V → EL⊗V and

EpC⊗L±⊗V → EL∓⊗V .

On the other hand, there is a connection for each vb, and because the cotangent bundle

is identi�ed with EpC , so connection is thought as

∇ : C(EL⊗V )→ C(EpC⊗L⊗V )

and similarly for L±. Now the Dirac operator is given by

D : C(EL⊗V )→ C(EpC⊗L⊗V )→ C(EL⊗V )

composing connection and the Cli�ord spin action.

(3) Now we de�ne � = D2
. It has Kuga-like formula. We de�ne L±2 (EV ),H±2 (EV ) (the latter

de�ned as kernel of Dirac operator). Let π± be the G-rep H±2 (EV ). Then for ϕ a K-�nite

function, we de�ne π̃±ϕ =
∫
G
ϕ(g)π̃±(g)dg, and then tr π̃+

ϕ − tr π̃− = (−1)pλΘw(λ+ρ)(ϕ).

The rest is similar.

3.4. Huang-Pandzic. This treats Renard’s lecture note in more detail. That a nonzero K̃-type

in the Dirac cohomology predics the in�nitesimal character is called Vogan’s conjecture. How

is it proved?

• Vogan showed that this would follow from two smaller conjectures. First is that, for any

z ∈ Z(g), there is unique ζ(z) ∈ Z(k∆) and some a, b ∈ U(g)⊗ Cl(p) such that z ⊗ 1 =
ζ(z) + Da + bD. Here k∆ is the diagonal embedding k → U(g) ⊗ Cl(p). Second is that,

the map ζ : Z(g) → Z(k∆) is a homomorphism of algbras, and under Harish-Chandra

isomorphisms this is S(h)W → S(t)WK
, restriction of polynomials on h∗ to t∗. This is

because, if x ∈ (X⊗S)(γ) represents a nonzero Dirac cohomology class (i.e. Dx = 0 but

not in the image ofD) then z⊗1 acts by Λ(z) on x, where Λ is the in�nitesimal charcater

ofX . Because (z⊗1−ζ(z))x = Dax+bDx = Dax and because ζ(z) also acts as a scalar

(γ+ρk)(ζ(z)), as x is not in the image ofD, (z⊗1−ζ(z))x = 0. So Λ(z) = (γ+ρk)(ζ(z)),

and this means Λ is the extension of γ + ρk to h given as 0 on a.

• Let’s try to prove the �rst. We are using the Z/2Z-grading. Let d(a) = Da − εaaD for

homogeneous a ∈ U(g) ⊗ Cl(p), which de�nes an operator supercommuting with D.

This is K-equivariant, and de�nes a di�erential on AK , and changes odd/evenness.

Huang-Pandzic proved the �rst by showing that ker d = Z(k∆) ⊕ im d. This would

immediately imply the �rs assertion because, for any z ∈ Z(g), z⊗1 is central inAK , so it

commutes withD, and therefore d(z⊗1) = Dz⊗1−(z⊗1)D = 0. Thus z⊗1 = ζ(z)+da
for some a ∈ AK and ζ(z) ∈ Z(k∆), and da = Da + aD, so thsi gives the �rst assertion

with in fact a = b.
To prove this we consider the �ltration on U(g) ⊗ Cl(p), which is induced from the

�ltration on U(g). It is K-invariant, so it induces a �ltration on AK . Obviously D ∈
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F1AK , the di�erential raises the �ltration degree by 1. We denote the corresponding

graded di�erential by d, because d2a = [D, a] so it really de�nes a di�erential. The graded

di�erential on gr∗ U(g) ⊗ Cl(p) ⊗ Sym(g) ⊗ Cl(p) ∼= Sym(k) ⊗ Sym(p) ⊗ ∧p is given

by (−2d) id⊗dp where dp : Sym(p)⊗ ∧p→ Sym(p)⊗ ∧p is the Koszul di�erential. The

proof is just straightforward calculation.

Now that we’re given with the fact, we can use a very well-known fact about Koszul

di�erentials: if V is a vector space with a Koszul di�erential dV : S(V )⊗∧(V )→ S(V )⊗
∧(V ), then ker dV = C1 ⊗ 1 ⊕ im dV . This is because of the following: by de�nition for

v ∈ V , dV (v ⊗ 1) = 0, dV (1 ⊗ v) = v ⊗ 1, and if you consider another map h by

h(v⊗1) = 1⊗v, h(1⊗v) = 0, then hdV +dV h = deg, the degree operator (multiplication

by the degree), which implies that if deg a 6= 0, dV a = 0 implies a = 1
deg a

dV h(a); and C1

is in the kernel while is not in the image. Now using this we see that d on the associated

graded gives ker d = S(k)⊗ 1⊗ 1⊕ im d. As this commutes with K , on the K-invariant

associated graded the kernel is S(k)K ⊗ 1 ⊗ 1 ⊕ im d. Now we can do induction on the

degree on actual A using the associated graded version.

• Second is not so hard..

Now it talks about cubic Dirac operator. Let R be a closed subgroup of a compact semisimple Lie

group. Let g = r ⊕ s. Then one de�nes a cubic Dirac operator D ∈ U(g) ⊗ Cl(s) similarly. this

is cubic because Cl(s)-part is something like B(X, [Y, Z]). This is the ordinary Dirac operator

when (g, r) is symmetric, and the cubic term is neccessary modi�cation to have a nice square.

Most part of Vogan’s conjecture carries over to this case. Also Kostant showed that

H∗(G/R,C) ∼= TorZ(g)
∗ (C, Z(r)),

where Z(r) is Z(g)-module via the ζ map.

Now the cubic Dirac operator is deifned by using complexi�ed Lie algebras so we can extend

this to any real Lie groups.

3.5. Atiyah–Schmid. For the vanishing appearing in Parthasaranthy you need some nice regu-

larity condition (slightly worse than regularity you want for discrete series in general). Atiyah–

Schmid used instead L2
-sections of twisted spinor bundles. They proved a general L2

-index the-

orem (as Fredholm..) for Dirac operators. Then L2
-Plancherel theorem + general abstract non-

sense from functional analysis shows that if index is nonzero (which is computed by L2
-index

theorem), then ker gives you a nonzero rep and anything appearing inside is discrete series. This

general abstract nonsense sort of circumvents the use of Dirac-Parthasaranthy inequality (at least

it seemed like to me) because you can just talk about K-types appearing in nonzero Dirac coho-

mology which determines what the discrete series is by Vogan’s conjecture.

Or maybe not..

4. Realization of discrete series III: L2
-Dolbeault cohomology of G/T

Notation: g0, g
This is called the Langlands conjecture (or the multiplicity is the Langlands conjecture.. idk).

Namely, that a discrete series should be realize as an L2
-Dolbeault cohomology of a line bundle

over G/T where T is compact Cartan.

This is somehow more e�ective.. This can go a bit beyond, realizing certain limit of discrete

series. And also it is a nice picture that it talks with its complex analogue which is BWB.
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4.1. Schmid’s two papers. Namely, On a conjecture of Langlands and L2-cohomology and the
discrete series.

(1) Let b = t⊕ n be Borel such that n corresponds to antiholomorphic vectors of D := G/T .

Given an element λ ∈ t∗ that is integral (i.e. eλ makes sense), you can obviously attach a

holomorphic line bundle Lλ. The normalization convention is that L−2ρ is the canonical

bundle of D.

(2) Consider A0,i(Lλ), the space of compactly supported smooth Lλ-valued (0, i)-forms on

D. Then there is ∂ : A0,i(Lλ)→ A0,i+1(Lλ), and from invariant hermitian metric there is

adjoint ∂
∗

: A0,i(Lλ)→ A0,i−1(Lλ). The Laplacian � = ∂∂
∗

+ ∂
∗
∂ is strongly elliptic. It

can be extended toL0,i
2 (Lλ), namely square-integrable (0, i)-forms, and its kernelHi(Lλ)

is the space of square-integrable harmonic (0, i)-forms. This is called L2
-cohomology; but

it is not really a sheaf cohomology.

(3) On the other hand, becauseA0,i(Lλ) = (C∞c (G)⊗∧in∗)−λ,L0,i
2 (Lλ) = (L2(G)⊗∧in∗)−λ.

By Plancherel theorem,

L0,i
2 (Lλ) =

∫
Ĝ

πι ⊗ (πι ⊗ ∧in∗)−λdι.

(4) Hi(Lλ) is expressed in terms of operators ∂ and ∂
∗
, and because we are picking a partic-

ular K-type, it follows that

Hi(Lλ) =

∫
Ĝ

πι ⊗Hi(π∗ι )−λdι,

where for any unitary irrep π ofG,Hp(π) is the kernel of δ+δ∗ acting on π⊗∧pn∗, where

δ : π(K) ⊗∧n∗ → π(K) ⊗∧n∗ is the coboundary operator in Lie algebra cohomology and

δ∗ is the formal adjoint.

(5) Now modulo analytic di�culties (g-action vs G-action on Hilbert space) it is formality

that, for any unitary G-irrep π, Hp(π) ∼= Hp(n, π(K)). Casselman-Osborne says that

Hp(n, π(K))µ 6= 0 implies that π must have in�nitesimal character χ−µ−ρ, which means,

by Harish-Chandra, thatHp(Lλ) is a �nite direct sum of discrete series.

(6) The rest becomes the calculation of n-cohomology of discrete series representations. This

is pretty formal and very similar to Borel-Weil-Bott.

Theorem 4.1. Hp(n, (πλ)(K))µ vanishes in all dimensions unless µ− ρ ∈ Wλ. If µ− ρ =
wλ, then Hp(n, (πλ)(K))µ is concentrated in one degree p = k, and is one-dimensional at
that degree, where

k = #{α ∈ Φc ∩Ψ | (α, µ− ρ) > 0}+ #{α ∈ Φn ∩Ψ | (α, µ− ρ) < 0},

where Ψ is the root system using n as negative roots.

Some words about the proof:

(a) Let λ de�ne positive roots Ψ̃ = {α ∈ Φ | (α, λ) > 0}, and because only Wλ matters

we assume that Ψ̃∩Φc = Ψ∩Φc
. Blattner’s conjecture says that the minimalK-type

of πλ is of highest weight λ + ρ̃n − ρ̃c, where ρ̃ means sum of positive roots wrt Ψ̃
(and same for n, c), and allK-types are of htwt this minimalK-type + sum of positive

noncompact roots in Φn ∩ Ψ̃.
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(b) Spectral sequence for Lie algebra cohomology, for the pair (n, k ∩ n), says that there

is a ss

Ep,q
1 = Hq(k ∩ n, (πλ)(K) ⊗ ∧p(n/k ∩ n)∗)µ ⇒ Hp+q(n, (πλ)(K))µ.

Letting p− = p ∩ n, (n/k ∩ n)∗ ∼= p/p− the ss is rewritten as

Ep,q
1 = Hq(k ∩ n, (πλ)(K) ⊗ ∧p(p/p−))µ ⇒ Hp+q(n, (πλ)(K))µ.

(c) Now it’s really a matter of calculating Hq(k ∩ n, Vν ⊗ ∧p(p/p−))µ for a K-type Vν
with htwt ν = λ + ρ̃n − ρ̃c + B for B sum of positive (Ψ̃) noncompact roots. The

weights appearing in ∧p(p/p−) are exactly sum of p-tuples of roots in Φn ∩ Ψ. So if

Hq(k ∩ n, Vν ⊗ ∧p(p/p−))µ 6= 0, then there are p distinct roots γ1, · · · , γp ∈ Ψn ∩ Ψ
such that Hq(k ∩ n, Vν)µ−γ1−···−γp 6= 0. Then Lie algebra version of BWB (due to

Kostant) says that there is w ∈ W such that

µ− γ1 − · · · − γp − ρc = w(ν + ρc)

q = #{α ∈ Φc ∩Ψ | wα ∈ Φc ∩Ψ}.
(d) On the other hand Dirac operator computes nilpotent Lie algebra cohomology, so it

follows that w−1(ρn−γ1−· · ·−γp) = ρ̃n−
∑
βi for βi distinct roots in Φn∩ Ψ̃. This

implies that µ− ρ = w(ν + ρ̃c − ρ̃n +
∑
βi). This implies that the minimal K-type

only survives, etc.

To be continued:

• Milicic-Schmid-Vilonen-Wolf, ...

• Carayol, Gri�ths-Green-Kerr, ...
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