DECOMPLETIONS

GYUJIN OH

Contents

 Tate-Sen conditions
Example: Sen theory References

1 3 4

1. TATE-SEN CONDITIONS

Sen's theory of decompletion is made to overcome the following situation. Given k a p-adic field and an infinitely ramified \mathbb{Z}_p -extension $k_{\infty} = \bigcup_n k_n$ of k (say, $k_n = k(\mu_{p^n})$), one wants to "descend" a \mathbb{C}_k representation of G_k to a finite level, namely over k_n for some n. However, $\mathbb{C}_k^{G_{k_{\infty}}}$ is not k_{∞} , but rather $\widehat{k_{\infty}}$, so taking $G_{k_{\infty}}$ -invariants gives a functor

$$\operatorname{Rep}_{\mathbb{C}_k}(G_k) \longrightarrow \operatorname{Rep}_{\widehat{k}}(\operatorname{Gal}(k_{\infty}/k)).$$

At this point, it is not obvious whether a nonzero input always yields a nonzero output, or even whether the functor is an equivalence. However, due to the existence of *Tate's normalized trace map* in this case, there is indeed an equivalence with the representation category even over k_{∞} ! The classical Sen theory constructs a functor

$$D_{\text{Sen}}$$
 : $\operatorname{Rep}_{\mathbb{C}_k}(G_k) \to \operatorname{Rep}_{k_{\infty}}(\operatorname{Gal}(k_{\infty}/k)),$

which is a quasi-inverse to $W \mapsto \mathbb{C}_k \otimes_{k_{\infty}} W$. More precisely, for each $V \in \operatorname{Rep}_{\mathbb{C}_k}(G_k)$, the Sen theory finds a unique $(\dim_{\mathbb{C}_k} V)$ -dimensional G_k -stable k_{∞} -subspace $D_{\operatorname{Sen}}(V) \subset V$ on which $G_{k_{\infty}}$ acts trivially and $\mathbb{C}_k \otimes_{k_{\infty}} D_{\operatorname{Sen}}(V) = V$. This is extremely useful; for example, we can justify $(\mathbb{C}_p \otimes \chi)^{\operatorname{Gal}(\overline{k}/k)} = 0$, where χ is the cyclotomic character.

Proof. If not, by the Sen theory and the usual Galois descent, $(k_n \otimes \chi)^{\text{Gal}(\overline{k}/k)} \neq 0$ for some *n*. However, this implies that ker χ contains $\text{Gal}(\overline{k}/k_n)$, so that χ has finite image, which is false.

The aforementioned Tate's normalized trace map is defined as

$$R_{k_m/k_n} := \frac{1}{[k_m : k_n]} \operatorname{Tr}_{k_m/k_n} : k_m \to k_n.$$

This then extends unambiguously to k_{∞} , which defines $R_{k_{\infty}/k_n} = \lim_{n \to \infty} R_{k_m/k_n} : k_{\infty} \to k_n$. The role of normalized trace maps is that they give some control (in terms of metric) on elements of (finite extensions of) $\widehat{k_{\infty}}$.

The decompletion argument of Sen is further axiomatized by Colmez, who formulated the general *Tate-Sen conditions* which formally imply a similar consequence as that of the classical Sen theory. We first informally formulate the three Tate-Sen conditions in certain generality, and try to justify the conditions afterwards.

Definition 1.1 (Tate-Sen conditions). Let k_{∞}/k be an infinitely ramified extension. Let $\widetilde{\Lambda}$ be a \mathbb{Q}_p -algebra with a complete topology equipped by a "valuation" $\upsilon : \widetilde{\Lambda} \to \mathbb{R} \cup \{+\infty\}$. Suppose $\widetilde{\Lambda}$ has an isometric and continuous G_k -action. The following three conditions for $\widetilde{\Lambda}$ are called the **Tate-Sen conditions**.

- (TS1) There is a constant $c_1 \in \mathbb{R}_{>0}$ such that, for any finite Galois extensions l'/l/k, there exists $\alpha \in \widetilde{\Lambda}^{G_{l_{\infty}}}$ satisfying $v(\alpha) > -c_1$ and $\operatorname{Tr}_{l'_{\infty}/l_{\infty}}(\alpha) = 1$.
- (TS2) There is a constant $c_2 \in \mathbb{R}_{>0}$ such that, for any finite Galois extension l/k, there exist an increasing sequence of closed \mathbb{Q}_p -subalgebras $\Lambda_{l,n} \subset \widetilde{\Lambda}^{G_{l_{\infty}}}$ and normalized trace maps $R_{l,n} : \widetilde{\Lambda}^{G_{l_{\infty}}} \to \Lambda_{l,n}$ for large enough n's. The normalized trace maps have some "uniformly controlled behavior" in terms of c_2 ; in particular, $v(R_{l,n}(x)) \ge v(x) - c_2$ and $\lim_{n\to\infty} R_{l,n}(x) = x$.
- (TS3) There is a constant $c_3 \in \mathbb{R}_{>0}$ such that, for any finite Galois extension l/k, $\gamma \in \text{Gal}(l_{\infty}/k)$ and n large enough (depending on l and γ ; the closer γ is to 1, the larger n needs to be), $(\gamma 1)$ is invertible on $X_{l,n} := \ker(R_{l,n})$ and $v(x) \ge v((\gamma 1)x) c_3$ for all $x \in X_{l,n}$.

In the Sen theory, $\widetilde{\Lambda} = \mathbb{C}_k$. The above definition is by no means precise, and the actual definition of Tate-Sen conditions is more involved; see for example [BrCo, 14.1], [Ber]. A typical consequence of the Tate-Sen formalism is as follows.

Theorem 1.1. If $\widetilde{\Lambda}$ satisfies the Tate-Sen conditions, then the natural map

$$\varinjlim_{l/k \text{ Galois } n} H^1(\text{Gal}(l_{\infty}/k), \text{GL}_d(\Lambda_{l,n})) \to H^1(G_k, \text{GL}_d(\Lambda)),$$

is an isomorphism.

In terms of G_k -representations over Λ , we have the following theorem, which says that we can **uniquely**, in a strong sense, find a descent submodule inside the given representation.

Theorem 1.2. Let W be a free rank d G_k -representation over Λ . Then, there exists a finite extension l/k and a finite free rank d $\Lambda_{l,\infty} := \lim_{n \to \infty} \Lambda_{l,n}$ -submodule $W' \subset W$ such that W' is a descent of W as a $\operatorname{Gal}(l_{\infty}/k)$ -representation (i.e. $W = W' \bigotimes_{\Lambda_{l,\infty}} \tilde{\Lambda}$ as $\tilde{\Lambda}[G_k]$ -modules), and is unique in a certain sense.

If one believes the above assertions and that the Tate-Sen conditions are indeed satisfied for $\tilde{\Lambda} = \mathbb{C}_k$ (with Tate's normalized trace maps), then we could deduce the following

Theorem 1.3. Given a p-adic representation V of G_k , for any large enough n, there exists a Galois stable k_n -vector space $W_n \subset (V \otimes_{\mathbb{Q}_p} \mathbb{C}_p)^{G_{k_{\infty}}}$ such that the inclusion induces an isomorphism $W_n \otimes_{k_n} \widehat{k_{\infty}} \xrightarrow{\sim} (V \otimes_{\mathbb{Q}_p} \mathbb{C}_p)^{G_{k_{\infty}}}$.

Remark 1.1. Theorem 1.3 implies that, for a *d*-dimensional *p*-adic G_k -representation V, $(V \otimes_{\mathbb{Q}_p} \mathbb{C}_p)^{G_{k_{\infty}}}$ is *d*-dimensional over $\widehat{k_{\infty}}$. On the other hand, this conclusion can be alternatively achieved from the so-called **overconvergence of** *p*-adic representations. More precisely, Fontaine's theory of (φ, Γ) -modules relates an étale (φ, Γ) -module (over some period ring " \mathbb{B}_k ") to *V*, and a theorem of Cherbonnier-Colmez implies that an étale (φ, Γ) -module can be descended down to be over the overconvergent period ring (" \mathbb{B}_k^{\dagger} "), from which we can explicitly find a basis of $(V \otimes_{\mathbb{Q}_p} \mathbb{C}_p)^{G_{k_{\infty}}}$ by using comparison isomorphism and a θ -like map; note that θ does not extend to the whole $W(\mathbb{C}_k^{\bullet})$ as the sum may not converge, but it extends to a subring where the formal series gives a convergent sum.

The Cherbonnier-Colmez theorem is usually proved also by using a Tate-Sen formalism [BeCo, 4.2]. On the other hand, if one's objective is to just prove that $(V \otimes_{\mathbb{Q}_p} \mathbb{C}_p)^{G_{k_{\infty}}}$ is of right dimension, then one can work over the perfectoid field $K = \widehat{k_{\infty}}$, and the theory becomes much simpler. We sketch the argument briefly here. Take a G_K -stable lattice $T \subset V$. Fontaine's theory gives an equivalence of categories (where the argument is an easy application of Galois descent; see the proof of [Ked, Theorem 2.3.5])

$$\left\{\begin{array}{c} \text{Free finite rank} \\ \mathbb{Z}_p\text{-representations of} \\ G_K \end{array}\right\} \xrightarrow{\sim}_{2} \left\{\begin{array}{c} \text{Étale } \varphi\text{-modules} \\ \text{over } W(K^{\flat}) \end{array}\right\},$$

where an *étale* φ -module over $W(K^{\flat})$ is a finite rank free $W(K^{\flat})$ -module with a semilinear Frobenius action such that the Frobenius action takes a basis to a basis. On the other hand, the overconvergence of étale φ -module in this case (cf. [Ked, Lemma 2.4.4]) implies that the base change functor

$$\left\{\begin{array}{c} \text{Étale } \varphi\text{-modules} \\ \text{over } W^{(0,1]}(K^{\flat}) \end{array}\right\} \longrightarrow \left\{\begin{array}{c} \text{Étale } \varphi\text{-modules} \\ \text{over } W(K^{\flat}) \end{array}\right\}$$

is an equivalence, where

$$W^{(0,r]}(K^{\flat}) = \left\{ \sum_{i\geq 0} p^i[a_i] : \lim_{i\to\infty} \left(\upsilon(a_i) + \frac{i}{r} \right) = +\infty \right\}.$$

What this says is that there is a *d*-dimensional étale φ -module $D^{(0,1]}(T)$ over $W^{(0,1]}(K^{\flat})$ such that there is a comparison isomorphism

$$D^{(0,1]}(T) \otimes_{W^{(0,1]}(K^{\flat})} W^{(0,1]}(\mathbb{C}_K^{\flat}) \xrightarrow{\sim} T \otimes_{\mathbb{Z}_p} W^{(0,1]}(\mathbb{C}_K^{\flat}),$$

respecting Galois and Frobenius action on both sides. What is really proved is that one finds a (unique) $W^{(0,1]}(\mathbb{C}_K^{\flat})$ -basis of $T \otimes_{\mathbb{Z}_p} W^{(0,1]}(\mathbb{C}_K^{\flat})$ such that the Galois action has matrix entries in $W^{(0,1]}(K^{\flat})$. The upshot here is that the θ map now linearly extends to $\theta : W^{(0,1]}(K^{\flat}) \to K$. Thus, applying θ to the comparison isomorphism, we find a basis of $T \otimes_{\mathbb{Z}_p} \mathbb{C}_K$ whose Galois actions have matrix entries contained in K. The *K*-module generated by the basis, which is *d*-dimensional, is contained in $(V \otimes_{\mathbb{Q}_p} \mathbb{C}_K)^{G_K}$, so we get the right dimension.

2. Example: Sen theory

We finish the discussion of Tate-Sen formalism by justifying some conditions in the classical setting of Sen, namely $\tilde{\Lambda} = \mathbb{C}_k$. Firstly, the first condition (TS1) is a direct consequence of the almost purity result of Tate:

Theorem 2.1 (Tate). Let k_{∞}/k be an infinitely ramified Galois extension, whose Galois group is locally isomorphic to \mathbb{Z}_p . For any finite extension M/k_{∞} , the image of $\operatorname{Tr}_{M/k_{\infty}} : \mathcal{O}_M \to \mathcal{O}_{k_{\infty}}$ contains $\mathfrak{m}_{k_{\infty}}$.

From this, we can see that, in the classical Sen theory, (TS1) is satisfied for any choice of $c_1 > 0$. Namely, Tate's almost purity says that $\mathfrak{m}_{l_{\infty}} \subset \operatorname{Tr}_{l_{\infty}'/l_{\infty}}(\mathcal{O}_{l_{\infty}'})$, and l_{∞}/l is infinitely ramified, we can choose $a \in \mathfrak{m}_{l_{\infty}}$ such that $v(a) < c_1$. Thus, $1 \in \operatorname{Tr}_{l_{\infty}'/l_{\infty}}(a^{-1}\mathcal{O}_{l_{\infty}'})$, and every element in $a^{-1}\mathcal{O}_{l_{\infty}'}$ has valuation bounded below by $-v(a) > -c_1$.

Remark 2.1. Theorem 2.1 is usually proven by studying ramification carefully, and intermediately one proves that, given a finite Galois extension k'/k, $v_p(\mathfrak{D}_{k'_n/k_n}) \to 0$ as $n \to \infty$, where \mathfrak{D} denotes the different. This statement is literally the almost purity; recall that, in a perfectoid setting, almost purity is the following assertion: for a perfectoid algebra A (over some perfectoid field, say), any finite étale A-algebra B is perfectoid, and B°/A° is almost finite étale. As the different is the annihilator of Ω^1 , that $\lim_{n\to\infty} v_p(\mathfrak{D}_{k'_n/k_n}) = 0$ implies that $\Omega^1_{\mathcal{O}_{k'_n}/\mathcal{O}_{k_\infty}}$ is annihilated by an element of arbitrarily small valuation, thus annihilated by $\mathfrak{m}_{k'_{\infty}}$, or that $\Omega^1_{\mathcal{O}_{k'_n}/\mathcal{O}_{k_{\infty}}}$ is "almost zero," so that $\operatorname{Tr}_{k'_{\infty}/k_{\infty}} : \mathcal{O}_{k'_{\infty}} \to \mathcal{O}_{k_{\infty}}$ is almost étale.

The proof of Theorem 2.1 indicated above inherently uses an "integral model," and the same is true when deriving consequences formally from the Tate-Sen conditions. However, almost purity can be proved by exploting tilting equivalence of the generic fiber. Thus, one may think that the whole process of decompletion may be done without a control of ramification of integral model. This is the idea that will be demonstrated through the formalism of *decompletion systems* (after Kedlaya-Liu).

The conditions of (TS2) can be summarized as follows.

- $R_{l,n}$'s are Galois equivariant and compatible with respect to l and n.
- $R_{l,n}$ restricted to $\Lambda_{l,n}$ is the identity map.

- For *n* large enough depending on *l*, $v(R_{l,n}(x)) \ge v(x) c_2$.
- $\lim_{n\to\infty} R_{l,n}(x) = x$.

We justify some of the above aspects for the Tate's normalized trace map $R_{k_{\infty}/k_{n}}$: $k_{\infty} \rightarrow k_{n}$.

- First of all, we need to extend the Tate's normalized trace to $\widehat{k_{\infty}}$, which follows from the continuity of them, a direct consequence of Theorem 2.1.
- The ramification theory says that there is a constant n(k), c and a bounded sequence $\{a_n\}_{n \ge n(k)}$ such that $v(\mathfrak{D}_{k_n/k_{n(k)}}) = n + c + p^{-n}a_n$ for all $n \ge n(k)$ (cf. [BrCo, Proposition 13.1.9]). Using this we easily get that, for any $c_2 > 0$, $v(R_{l,n}(x)) \ge v(x) - c_2$ for large n, for $x \in l_{\infty}$. By continuity we can extend this to $x \in \widehat{l_{\infty}}$. That $\lim_{n \to \infty} R_{l,n}(x) = x$ also follows from this estimate.

We finally justify (TS3). As $\ker(\gamma - 1) \subset l_n$ for some large n and $X_{l,m} \cap l_n = 0$ for large enough m, for $m \ge n \gg 0$, $(\gamma - 1)$ induces a k-linear injection on $X_{l,n} \cap l_m$. As this space is finite-dimensional, $(\gamma - 1)$ is a bijection. Taking a limit $m \to 0$, we get that $(\gamma - 1)$ induces a bijection on $X_{l,n} \cap l_\infty$. Provided that we have a bounded inverse for $(\gamma - 1)$ on $X_{l,n} \cap l_\infty$, we can extend the invertibility to the whole $X_{l,n}(=X_{l,n} \cap \widehat{l_\infty})$. For the bound $v(x) \ge v((\gamma - 1)x) - c_3$ for $x \in X_{l,n} \cap l_\infty$, we can try to bound $v(x - R_{l_\infty/l_n}(x))$ instead. One can see that any $c_3 > 1$ works in this case, by noticing that all elements of $\operatorname{Gal}(l_k/l_{k-1})$ can be expressed as a power of γ for large enough k (so that $x - R_{l_\infty/l_n}(x) = p^{-m}P(\gamma)(1 - \gamma)x$ for some $P(X) \in \mathbb{Z}[X]$ and $m \in \mathbb{N}$), and that $v(\operatorname{Tr}_{l_m/l_n}(x)) \ge v(x) + v(\mathfrak{D}_{l_m/l_n})$ (so that, for large $n, v(R_{l_m/l_n}(x)) \ge v(x) + p^{-m}a_m - p^{-n}a_n)$.

References

- [Ber] L. Berger, *Galois representations and* (φ , Γ)-modules, Course given at IHP in 2010, Preprint.
- [BeCo] L. Berger, P. Colmez, Familles de représentations de de Rham et monodromie p-adique, Astérisque 319, 2008.
- [BrCo] O. Brinon, B. Conrad, CMI notes on p-adic Hodge theory, Preprint, Clay Mathematics Institute, 2009.
- [Ked] K. Kedlaya, *New methods for* (φ, Γ) *-modules*, Res. Math. Sci. **2:20** (Robert Coleman memorial issue), 2015.