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1. Tate-Sen conditions

Sen’s theory of decompletion is made to overcome the following situation. Given k a p-adic �eld and

an in�nitely rami�ed ℤp-extension k∞ = ∪nkn of k (say, kn = k(�pn )), one wants to “descend” a ℂk-

representation of Gk to a �nite level, namely over kn for some n. However, ℂ
Gk∞

k
is not k∞, but rather

̂
k∞, so taking Gk∞

-invariants gives a functor

Rep
ℂk
(Gk) → Rep

̂
k∞

(Gal(k∞/k)).

At this point, it is not obvious whether a nonzero input always yields a nonzero output, or even whether

the functor is an equivalence. However, due to the existence of Tate’s normalized trace map in this case,

there is indeed an equivalence with the representation category even over k∞! The classical Sen theory

constructs a functor

DSen ∶ Repℂk
(Gk) → Rep

k∞
(Gal(k∞/k)),

which is a quasi-inverse to W ↦ ℂk ⊗k∞
W . More precisely, for each V ∈ Rep

ℂk
(Gk), the Sen theory

�nds a unique (dimℂk
V )-dimensional Gk-stable k∞-subspace DSen(V ) ⊂ V on which Gk∞

acts trivially and

ℂk ⊗k∞
DSen(V ) = V . This is extremely useful; for example, we can justify (ℂp ⊗ �)

Gal(k/k)
= 0, where � is

the cyclotomic character.

Proof. If not, by the Sen theory and the usual Galois descent, (kn ⊗ �)
Gal(k/k)

≠ 0 for some n. However, this

implies that ker � contains Gal(k/kn), so that � has �nite image, which is false. �

The aforementioned Tate’s normalized trace map is de�ned as

Rkm/kn
∶=

1

[km ∶ kn]

Trkm/kn
∶ km → kn.

This then extends unambiguously to k∞, which de�nes Rk∞/kn
= lim

←←←←←←←←←←←←←←→
Rkm/kn

∶ k∞ → kn. The role of

normalized trace maps is that they give some control (in terms of metric) on elements of (�nite extensions

of)
̂
k∞.

The decompletion argument of Sen is further axiomatized by Colmez, who formulated the general Tate-
Sen conditions which formally imply a similar consequence as that of the classical Sen theory. We �rst

informally formulate the three Tate-Sen conditions in certain generality, and try to justify the conditions

afterwards.
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De�nition 1.1 (Tate-Sen conditions). Let k∞/k be an in�nitely rami�ed extension. Let Λ̃ be a ℚp-algebra
with a complete topology equipped by a “valuation” v ∶ Λ̃ → ℝ ∪ {+∞}. Suppose Λ̃ has an isometric and
continuous Gk-action. The following three conditions for Λ̃ are called the Tate-Sen conditions.
(TS1) There is a constant c1 ∈ ℝ>0 such that, for any �nite Galois extensions l′/l/k, there exists � ∈ Λ̃

G
l
′
∞

satisfying v(�) > −c1 and Trl′
∞
/l∞
(�) = 1.

(TS2) There is a constant c2 ∈ ℝ>0 such that, for any �nite Galois extension l/k, there exist an increasing
sequence of closed ℚp-subalgebras Λl,n ⊂ Λ̃

Gl∞ and normalized trace maps Rl,n ∶ Λ̃
Gl∞ → Λl,n for

large enough n’s. The normalized trace maps have some “uniformly controlled behavior” in terms of
c2; in particular, v(Rl,n(x)) ≥ v(x) − c2 and limn→∞ Rl,n(x) = x .

(TS3) There is a constant c3 ∈ ℝ>0 such that, for any �nite Galois extension l/k, 
 ∈ Gal(l∞/k) and n large
enough (depending on l and 
 ; the closer 
 is to 1, the larger n needs to be), (
 − 1) is invertible on
Xl,n ∶= ker(Rl,n) and v(x) ≥ v((
 − 1)x) − c3 for all x ∈ Xl,n.

In the Sen theory, Λ̃ = ℂk . The above de�nition is by no means precise, and the actual de�nition of

Tate-Sen conditions is more involved; see for example [BrCo, 14.1], [Ber]. A typical consequence of the

Tate-Sen formalism is as follows.

Theorem 1.1. If Λ̃ satis�es the Tate-Sen conditions, then the natural map

lim
←←←←←←←←←←←←←←→

l/k Galois

lim
←←←←←←←←←←←←←←→
n

H
1
(Gal(l∞/k), GLd (Λl,n)) → H

1
(Gk , GLd (Λ̃)),

is an isomorphism.

In terms ofGk-representations over Λ̃, we have the following theorem, which says that we canuniquely,

in a strong sense, �nd a descent submodule inside the given representation.

Theorem 1.2. LetW be a free rank d Gk-representation over Λ̃. Then, there exists a �nite extension l/k and
a �nite free rank d Λl,∞ ∶= lim

←←←←←←←←←←←←←←→n

Λl,n-submodule W ′
⊂ W such that W ′ is a descent of W as a Gal(l∞/k)-

representation (i.e. W = W
′
⊗Λl,∞

Λ̃ as Λ̃[Gk]-modules), and is unique in a certain sense.

If one believes the above assertions and that the Tate-Sen conditions are indeed satis�ed for Λ̃ = ℂk

(with Tate’s normalized trace maps), then we could deduce the following

Theorem 1.3. Given a p-adic representation V of Gk , for any large enough n, there exists a Galois stable kn-
vector spaceWn ⊂ (V ⊗ℚp

ℂp)
Gk∞ such that the inclusion induces an isomorphismWn ⊗kn

̂
k∞

∼

←←←←←←←→ (V ⊗ℚp
ℂp)

Gk∞ .

Remark 1.1. Theorem 1.3 implies that, for a d-dimensional p-adic Gk-representation V , (V ⊗ℚp
ℂp)

Gk∞ is

d-dimensional over
̂
k∞. On the other hand, this conclusion can be alternatively achieved from the so-called

overconvergence of p-adic representations. More precisely, Fontaine’s theory of (', Γ)-modules relates

an étale (', Γ)-module (over some period ring “Bk”) to V , and a theorem of Cherbonnier-Colmez implies

that an étale (', Γ)-module can be descended down to be over the overconvergent period ring (“B
†

k
”), from

which we can explicitly �nd a basis of (V ⊗ℚp
ℂp)

Gk∞ by using comparison isomorphism and a �-like map;

note that � does not extend to the whole W(ℂ
♭

k
) as the sum may not converge, but it extends to a subring

where the formal series gives a convergent sum.

The Cherbonnier-Colmez theorem is usually proved also by using a Tate-Sen formalism [BeCo, 4.2]. On

the other hand, if one’s objective is to just prove that (V ⊗ℚp
ℂp)

Gk∞ is of right dimension, then one can

work over the perfectoid �eld K =
̂
k∞, and the theory becomes much simpler. We sketch the argument

brie�y here. Take a GK -stable lattice T ⊂ V . Fontaine’s theory gives an equivalence of categories (where

the argument is an easy application of Galois descent; see the proof of [Ked, Theorem 2.3.5])

⎧
⎪
⎪

⎨
⎪
⎪
⎩

Free �nite rank

ℤp-representations of

GK

⎫
⎪
⎪

⎬
⎪
⎪
⎭

∼

←←←←←←←→

{

Étale '-modules

over W(K
♭
)

}

,
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where an étale '-module over W(K
♭
) is a �nite rank free W(K

♭
)-module with a semilinear Frobenius

action such that the Frobenius action takes a basis to a basis. On the other hand, the overconvergence of

étale '-module in this case (cf. [Ked, Lemma 2.4.4]) implies that the base change functor

{

Étale '-modules

over W
(0,1]

(K
♭
)

}

→

{

Étale '-modules

over W(K
♭
)

}

,

is an equivalence, where

W
(0,r]

(K
♭
) =

{

∑

i≥0

p
i
[ai] ∶ lim

i→∞(
v(ai) +

i

r )
= +∞

}

.

What this says is that there is a d-dimensional étale '-module D
(0,1]

(T ) over W
(0,1]

(K
♭
) such that there is

a comparison isomorphism

D
(0,1]

(T ) ⊗
W

(0,1]
(K

♭
)
W

(0,1]
(ℂ

♭

K
)

∼

←←←←←←←→ T ⊗ℤp
W

(0,1]
(ℂ

♭

K
),

respecting Galois and Frobenius action on both sides. What is really proved is that one �nds a (unique)

W
(0,1]

(ℂ
♭

K
)-basis of T ⊗ℤp

W
(0,1]

(ℂ
♭

K
) such that the Galois action has matrix entries inW

(0,1]
(K

♭
). The upshot

here is that the � map now linearly extends to � ∶ W
(0,1]

(K
♭
) → K . Thus, applying � to the comparison

isomorphism, we �nd a basis of T ⊗ℤp
ℂK whose Galois actions have matrix entries contained in K . The

K -module generated by the basis, which is d-dimensional, is contained in (V ⊗ℚp
ℂK )

GK
, so we get the right

dimension.

2. Example: Sen theory

We �nish the discussion of Tate-Sen formalism by justifying some conditions in the classical setting of

Sen, namely Λ̃ = ℂk . Firstly, the �rst condition (TS1) is a direct consequence of the almost purity result of

Tate:

Theorem 2.1 (Tate). Let k∞/k be an in�nitely rami�ed Galois extension, whose Galois group is locally iso-
morphic to ℤp . For any �nite extension M/k∞, the image of TrM/k∞ ∶ M → k∞

contains mk∞
.

From this, we can see that, in the classical Sen theory, (TS1) is satis�ed for any choice of c1 > 0. Namely,

Tate’s almost purity says that ml∞
⊂ Trl′

∞
/l∞
(l

′

∞

), and l∞/l is in�nitely rami�ed, we can choose a ∈ ml∞

such that v(a) < c1. Thus, 1 ∈ Trl′
∞
/l∞
(a
−1l

′

∞

), and every element in a
−1l

′

∞

has valuation bounded below

by −v(a) > −c1.

Remark 2.1. Theorem 2.1 is usually proven by studying rami�cation carefully, and intermediately one

proves that, given a �nite Galois extension k
′
/k, vp(Dk

′

n
/kn
) → 0 as n → ∞, where D denotes the di�erent.

This statement is literally the almost purity; recall that, in a perfectoid setting, almost purity is the follow-

ing assertion: for a perfectoid algebra A (over some perfectoid �eld, say), any �nite étale A-algebra B is per-
fectoid, and B◦/A◦ is almost �nite étale. As the di�erent is the annihilator of Ω

1
, that limn→∞ vp(Dk

′

n
/kn
) = 0

implies that Ω
1


k
′
∞
/k∞

is annihilated by an element of arbitrarily small valuation, thus annihilated by mk
′

∞

,

or that Ω
1


k
′
∞
/k∞

is “almost zero,” so that Trk′
∞
/k∞

∶ k
′

∞

→ k∞
is almost étale.

The proof of Theorem 2.1 indicated above inherently uses an “integral model,” and the same is true when

deriving consequences formally from the Tate-Sen conditions. However, almost purity can be proved by

exploting tilting equivalence of the generic �ber. Thus, one may think that the whole process of decom-

pletion may be done without a control of rami�cation of integral model. This is the idea that will be

demonstrated through the formalism of decompletion systems (after Kedlaya-Liu).

The conditions of (TS2) can be summarized as follows.

∙ Rl,n’s are Galois equivariant and compatible with respect to l and n.

∙ Rl,n restricted to Λl,n is the identity map.
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∙ For n large enough depending on l, v(Rl,n(x)) ≥ v(x) − c2.

∙ limn→∞ Rl,n(x) = x .

We justify some of the above aspects for the Tate’s normalized trace map Rk∞/kn
∶ k∞ → kn.

∙ First of all, we need to extend the Tate’s normalized trace to
̂
k∞, which follows from the continuity

of them, a direct consequence of Theorem 2.1.

∙ The rami�cation theory says that there is a constant n(k), c and a bounded sequence {an}n≥n(k)

such that v(Dkn/kn(k)
) = n + c + p

−n
an for all n ≥ n(k) (cf. [BrCo, Proposition 13.1.9]). Using this we

easily get that, for any c2 > 0, v(Rl,n(x)) ≥ v(x) − c2 for large n, for x ∈ l∞. By continuity we can

extend this to x ∈
̂
l∞. That limn→∞ Rl,n(x) = x also follows from this estimate.

We �nally justify (TS3). As ker(
 − 1) ⊂ ln for some large n and Xl,m ∩ ln = 0 for large enough m, for

m ≥ n ≫ 0, (
 − 1) induces a k-linear injection on Xl,n ∩ lm. As this space is �nite-dimensional, (
 − 1) is a

bijection. Taking a limit m → 0, we get that (
 − 1) induces a bijection on Xl,n ∩ l∞. Provided that we have

a bounded inverse for (
 − 1) on Xl,n ∩ l∞, we can extend the invertibility to the whole Xl,n(= Xl,n ∩
̂
l∞). For

the bound v(x) ≥ v((
 − 1)x) − c3 for x ∈ Xl,n ∩ l∞, we can try to bound v(x − Rl∞/ln
(x)) instead. One can see

that any c3 > 1 works in this case, by noticing that all elements of Gal(lk/lk−1) can be expressed as a power

of 
 for large enough k (so that x − Rl∞/ln
(x) = p

−m
P(
 )(1 − 
)x for some P(X ) ∈ ℤ[X] and m ∈ ℕ), and

that v(Trlm/ln
(x)) ≥ v(x) + v(Dlm/ln

) (so that, for large n, v(Rlm/ln
(x)) ≥ v(x) + p

−m
am − p

−n
an).
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