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Notations:

• H = lim←−H
1(X1(pr)Q,Zp)

ord
m , where m is an Eisenstein maximal ideal m ⊃ I of T0, the

ordinary cuspidal Hecke algebra. Whenever there is a tilde ˜ it is something about modular
forms (as opposed to cusp forms).
• Λ = Zp[[Z×p ]].
• ξ is the p-adic Riemann zeta function. In particular T0/I = Λ/ξ.
• Γ = Gal(Q(ζp∞)/Q) ∼= Z×p . We denote K = Q(ζp∞).
• X = lim←−Cl(Q(ζpr))[p∞] ∼= Gal(L/K) where L is the maximal unramified pro-p abelian
extension of K.
• κ is the cyclotomic character.
• We replace T0 by T0

m.
• ∆ = Gal(Q(ζp)/Q) ∼= (Z/pZ)×.
• θ : (Z/pZ)× → Q×p is an even character.

This note covers [FuKa, Chapters 6.3, 6.4, 9.1, 9.2, 9.3, 9.4, 9.5].
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1. “Theorem A”

Recall the “Theorem A” of Preston’s talk, which is the commutativity of the diagram

“ lim←−K2(X1(pr))”
H-S //

eval. at ∞
))

H1(Z[1/p], H(2))
resp //

eval. at ∞
��

H1(Qp, Hquo(2))
log //

∪(1−p−1) log κ

��

D(Hquo(1)) = SΛ

mod I
uu

X
ξ′Υ

// P

Going through the top horizontal row and to P , we get ξ′, and going through the diagonal arrow
and the bottom row to P , we get ξ′Υ$. Thus “Theorem A” is really the proof of

Theorem 1.1 (Fukaya-Kato). ξ′Υ$ = ξ′,

which is a very strong evidence of Sharifi’s conjecture.
We will talk first about the construction of Υ and then focus on the commutativity of the middle

square. After that, we will talk a bit about geometry and the commutativity of the left triangle.
Namely, we will try to cover every non-analytic part of the commutativity.

The correct diagram, minus the right triangle, is as follows.

Theorem 1.2. The following diagram is commutative.

lim←−rH
2
ét(X1(pr)Z[1/p],Zp(2))

pullback through ∞-cusp **

Hoch-Serre// H1(Z[1/p], H(2))
resp //

eval. at ∞
��

H1(Qp, P (2))

∪(1−p−1) log κ
��

X
ξ′Υ

// P

All the maps will be justified some time later in this note. In particular, the middle vertical arrow
is H1(Z[1/p], H(2))→ H1(Z[1/p], Q(2)) ∼= X(1).

We will see many maps as connecting maps arising from some long exact sequence. Something
like the following will eventually be shown.

• Evaluation at ∞ map is a connecting map.
• Υ is a connecting map.
• ∪(1− p−1) log(κ) is ξ′ times a connecting map (!).

For a cleaner treatment, we fix a ∆-character θ so that we study a θ-isotypic part, i.e. we take θ-
component of everything, where for a Λ-moduleM ,Mθ = M⊗Zp[(Z/pZ)×]Oθ, where Oθ = Zp[θ]. We
will omit θ in expressions though, as everything will be taken its θ-part. Note that our discussion is
meaningful only when the θ-isotypic part has an Eisenstein component, which in this normalization
is the same as θ = ω2−k for (p, k) an irregular pair.

2. Structure of H/IH and the construction of Υ

We first exhibit how to construct Υ. Recall that we had an exact sequence

0→ P → H/IH → Q→ 0,

where P is the minus part of H/IH. We will show that this is an exact sequence of GQ-modules
with very specific Galois actions on P and Q.

The Υ map is then first defined as a map

Υ : Gal(Q/K)→ HomT0(Q,P ),

just given by
Υ(σ)(x) = (σ − 1)x,
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for σ ∈ Gal(Q/K) and xmodP ∈ (H/IH)/P = Q. For this to be well-defined, Gal(Q/K) should
act trivially on P and Q. This will follow from Galois module structures of P and Q. Also, from
this, it is evident that the Galois action is unramified away from p. The map Υ will really become
a map X → P when we show the following.

(A) As we said we need to show that 0 → P → H/IH → Q → 0 is an exact sequence of
T0[GQ]-modules with very specific Galois structure.

(B) The Gal(Q/K)-action on H/IH should be unramified at every prime of K. As the Galois
action on H is unramified away from p, we only need to consider primes above p.

(C) Q is “canonically isomorphic” to T0/I ∼= Λ/ξ, so that HomT0(Q,P ) = Q.
Really then Υ factors through X and we evaluate at the canonical basis “1” of Q and we get the
desired Υ. We will make many identifications of P and Q with some other things we know.

Remark 2.1. The definition of Υ illustrates why we expect Υ to be a “connecting map.”

2.1. Ingredients. Recall that from Giada’s talk that we have a Λ-adic Poincaré pairing

(−,−) : H ×H → Λ,

which is some specific normalization of the usual Poincaré duality that has many nice properties,
e.g.:

(1) For any a ∈ T0, (ax, y) = (x, ay).
(2) For any a ∈ Z×p , (〈a〉x, y) = (x, 〈a〉y) = [a](x, y). Here, 〈a〉 ∈ T0 is the diamond operator

corresponding to a, and [a] ∈ Λ is the group element.
(3) For any σ ∈ Gal(Q/Q), we have (σx, σy) = κ(σ)−1〈σ〉−1(x, y). Here, 〈σ〉 = 〈a〉 ∈ T0 where

a ∈ Z×p is such that σ(ζpr) = ζapr for all r ≥ 1.
(4) We have an isomorphism H

∼−→ HomΛ(H,Λ), x 7→ (y 7→ (x, y)).
In Preston’s talk, we were introduced to the Drinfeld-Manin modification, which for example gave
an exact sequence of T0[GQ]-modules

0→ H → H̃DM → Λ/ξ → 0,

where the surjective map is {0,∞}DM 7→ −1.
What is the Galois action on Λ/ξ? Ohta showed in [Oht] that (Λ/ξ)(1), as the quotient of

H(1) → H̃DM(1), is naturally identified with some module generated by cusps, and in particular
every cusp appearing in the expression is a “0-cusp”, i.e. cusp corresponding to a/c ∈ P1(Q) such
that c is not divisible by p. Every such cusp is defined over Q, so the GQ-action is trivial on the
cuspidal group. Thus, the Λ/ξ has the Galois action by σ ∈ Gal(Q/Q) acts via κ(σ)−1.

From the above sequence, ξ{0,∞}DM ∈ H, so we can make sense of the homomorphism

H → Λ;x 7→ (x, ξ{0,∞}DM).

For any a ∈ I, since T0/I = Λ/ξ, we have a{0,∞} ∈ H, so that (ax, ξ{0,∞}DM) = (x, aξ{0,∞}DM) =
ξ(x, a{0,∞}DM) ⊂ (ξ) ⊂ Λ. Thus, the homomorphism yields a homomorphism

H/IH → Λ/ξ.

Note that by the Galois/Hecke equivariance of Drinfeld-Manin modification and Λ-adic Poincaré
pairing, this map is both Hecke and Galois equivariant. Here the Galois action of σ ∈ GQ on Λ/ξ
is via 〈σ〉−1, because

(σx, ξ{0,∞}DM) = κ(σ)−1〈σ〉−1(x, σ−1ξ{0,∞}DM) = 〈σ〉−1(x, ξ{0,∞}DM),

as the Galois equivariance of the exact sequence 0→ H → H̃DM → Λ/ξ → 0 tells us that σ acts on
{0,∞}DM via κ(σ)−1.
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Theorem 2.1. The map H/IH → Λ/ξ is, as a homomorphism of T0[GQ]-modules, the same as
the map H/IH � Q. More precisely, H/IH → Λ/ξ is surjective, and ker(H/IH → Λ/ξ) ⊂ H/IH
is exactly the minus part of H/IH.

This says that σ ∈ GQ acts on Q via 〈σ〉−1. Moreover, σ ∈ GQ acts on P via κ(σ)−1.

Note that we can expect the Galois action on P to be κ(σ)−1 because on the rational module
H ⊗T0 Q(T0), a free rank 2 Q(T0)-module, the Galois action of σ is known to have determinant
κ(σ)−1〈σ〉−1. This then covers Point A and C. In particular, modulo this, we know Υ as a map
Gal(Q/K)→ P is well-defined.

Recall also from Giada’s talk that as local Galois representations (i.e. T0[GQp ]-representations)
we had an exact sequence

0→ Hsub → H → Hquo → 0,

where
• Hquo(1) is unramified,
• Hquo(1) ∼= SΛ as T0-modules,
• Hsub(1) ∼= T0 as T0-modules.

Along the way of proving Theorem 2.1, we make the following identifications which were also
mentioned in Preston’s talk (mod I here, though).

Theorem 2.2. The compositions

P ↪→ H/IH � Hquo/IHquo, Hsub/IHsub ↪→ H/IH � Q,

are bijections.

The idea is simple, namely κ(σ) and 〈σ〉 are so different that all these different rank 1 stuffs
must be identified in this way. Note that we only need to prove one of the two, because the other
directly follows; indeed, A→ B → B/C is an injection means A ∩ C = 0, which is symmetric, and
A→ B → B/C is a surjection means any b ∈ B mod C is in A, or b = c+ a for some c ∈ C, a ∈ A,
which is also symmetric.

Given Theorem 2.2, we can see that 0 → P → H/IH → Q → 0 is actually split as GQp-
representations, as the inverse of the composition Hsub/IHsub → H/IH → Q gives an explicit
splitting. Thus, Point B is covered, and the Υ map is justified.

2.2. Actual proof.
(Step 1) Using P ′, Q′ instead. We let P ′ = ker(H/IH → Λ/ξ) and Q′ = Λ/ξ. We already know

GQ-action on Q′ (recall: σ acts by 〈σ〉−1), and proving that σ ∈ GQ acts on P ′ via κ(σ)−1

will automatically prove P ′ = P (and thus Q′ = Q) because then it says the complex
conjugation acts on P ′ by −1 and acts on Q′ by +1.

(Step 2) H/IH
x 7→(x,ξ{0,∞}DM)−−−−−−−−−−−→ Λ/ξ is surjective. This is because H and H̃DM are both free Λ-

modules, so that by the very existence of the exact sequence

0→ H → H̃DM
{0,∞}DM 7→−1−−−−−−−−−→ Λ/ξ → 0,

we see that ξ{0,∞}DM can be extended to a free basis of H; the surjectivity then follows
from the perfectness of the Λ-adic Poincaré pairing.
(a) H is free. This is a part of Hida theory.
(b) H̃DM is free. We first see that by the Betti version of Drinfeld-Manin modification

H̃DM = im(H̃ → H ⊗Λ Q(Λ)) is torsion-free. Thus, f = 1 − 〈1 + p〉 ∈ Λ (“weight 2
specialization”), which is a non-zerodivisor in Λ, acts as a non-zerodivisor on H̃DM. By
Nakayama it is enough to prove that H̃DM/fH̃DM is free over Λ/f , and it is enough
to prove that it is p-torsion free ((f, p) is a regular sequence of Λ). But this weight

4



2 specialization is by the coherent version of Drinfeld-Manin modification (H̃DM =

H̃ ⊗T T0) just H1
ét(Y1(p))ord

DM which is again by the Betti version a certain image in
finitely generated Qp-vector space, so it is p-torsion free.

(Step 3) Choice of τ ∈ GQp that distinguishes κ(τ) and 〈τ〉. To flesh out our idea, we pick one
specific Galois element τ . More precisely, let τ ∈ IQp be an element in the inertia whose
image in Gal(Qp(ζp)/Qp) ∼= (Z/pZ)× is a generator. For simplicity we say

f = κ(τ)−1 ∈ Z×p ⊂ T0, g = 〈τ〉−1 ∈ T0.

These are very different, in a sense that they are different in the residue field of T0; note
that T0 is a local ring by T0/I ∼= Λ/ξ, so in particular the residue field is that of Oθ. Let
a ∈ Z×p such that τ(ζpn) = ζapn . Then by our choice of τ , a is nonzero mod p, and f in the
residue field of T0 is just a−1. On the other hand, as we have taken θ-isotypic part, g in
the residue field of T0 is θ([a])−1 = θ(a)−1. Now recall that θ = ω2−k for an irregular pair
(p, k). Thus, k 6= 1, so θ cannot be ω, and therefore a and θ(a) are different, so f and g are
different.

(Step 4) Using τ . Now we know τ acts via f on Hquo, and as we know τ acts on H ⊗T0 Q(T0) as
an element of determinant fg, τ acts on Hsub ⊗T0 Q(T0) as an element of determinant g.
But we know Hsub is free of rank 1 over T0, so τ acts on Hsub as g. Now we just define a
T0-submodule S ⊂ H by

S = {x ∈ H | τx = fx}.
Then by Nakayama, H = Hsub ⊕ S (such decomposition holds at the residue field).

(Step 5) Theorem 2.2 for P ′, Q′. Now we prove Theorem 2.2 for P ′, Q′. Consider Hsub/IHsub →
H/IH → Q′. We know both source and target are free T0/I-modules of rank 1, it is sufficient
to prove the surjectivity. Let cokernel of this map be denoted as C. Then H/IH � C has
Hsub/IHsub as a kernel, so we get a natural map Hquo/IHquo � C, which is T0[GQp ]-
equivariant. Now τ acts on Q′ by g, but τ acts on Hquo by f , so it contradicts Hecke
equivariance. The other follows by our earlier observation.
In particular, by Theorem 2.2, we know τ acts on P ′ by f , so that P ′ = S/IS.

(Step 6) GQ-action for P ′. Now we show that σ ∈ GQ acts on P ′ by κ(σ)−1. Let
(
a(σ) b(σ)
c(σ) d(σ)

)
be

a matrix representation of σ : Hsub⊕S → Hsub⊕S. What we want to show is that d(σ), as
an element of HomT0/I(S/IS, S/IS), is the same as κ(σ)−1 ∈ T0. What do we know now?
(a) Hsub is free of rank 1 over T0, so a(σ) ∈ T0.
(b) S/IS is a GQ-stable sub (!!!!), b(σ) ≡ 0(mod I).
(c) As T0-modules, S ∼= Hquo, which is a dualizing module, so d(σ) ∈ HomT0(S, S) = T0.
(d) By the determinant condition, and as everything becomes free rank 1 after ⊗T0Q(T0),

a(σ)d(σ)− b(σ)c(σ) = κ(σ)−1〈σ〉−1 as elements in Q(T0). Note that this makes sense
as b(σ)c(σ) ∈ HomT0(Hsub, Hsub) = T0. Thus this holds in T0.

(e) As b(σ)c(σ) ≡ 0(mod I), a(σ)d(σ) ≡ κ(σ)−1〈σ〉−1(mod I).
Thus we are done.

3. X as Galois cohomology

Before everything we start to study X and many other modules using Galois cohomology. We
learned from Leo’s talk about Iwasawa cohomology that

X(1) ∼= lim←−
r

H2(Z[1/p, ζpr ],Zp(2))m,θ ∼= H2(Z[1/p],Λ](2))(=: S),

where Λ] is Λ with GQ-action as σ ∈ GQ acts [a]−1, · · · .
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Note that Λ]/(ξ) is precisely the GQ-module structure of Q, so we have a short exact sequence

0→ Λ](2)
ξ−→ Λ](2)→ Q(2)→ 0,

which gives a long exact sequence

H1(Z[1/p],Λ](2))→ H1(Z[1/p], Q(2))→ X(1)
ξ−→ X(1)→ H2(Z[1/p], Q(2))→ 0.

(p is odd, so H3 and above is zero) Now by the Iwasawa Main Conjecture, X has characteristic ideal
ξ, which means X(1)

ξ−→ X(1) is a zero map. Furthermore, we know from Leo’s talk the leftmost
Galois cohomology group is a twist of certain unit group:

H1(Z[1/p],Λ](2)) = lim←−
r

H1(Z[1/p, ζpr ],Zp(2))ω2−k

= lim←−
r

H1(Z[1/p, ζpr ],Zp(1))ω1−k(1)

= lim←−
r

(O×Q(ζpr ),p ⊗Z Zp)ω1−k(1).

We know from classical Iwasawa theory that this unit group E = lim←−r(O
×
Q(ζpr ),p⊗ZZp) has nonzero ωi-

isotypic component for i = 1 (“ζpm” ’s) or i even, but 1−k is not 1 nor even, soH1(Z[1/p],Λ](2)) = 0.
We have thus proved the

Proposition 3.1. The connecting map H1(Z[1/p], Q(2)) → X(1) and the natural map X(1) →
H2(Z[1/p], Q(2)) are isomorphisms.

4. Poitou-Tate duality and Υ as a connecting map

4.1. Poitou-Tate duality. We first start with the most standard part, realizing Υ : X → P as a
connecting map of Galois cohomology. We already saw this is kind of plausible as the very definition
of Υ was like a formula for a connecting homomorphism from H0 to H1. We will see that by Poitou-
Tate duality, Υ, which is really a map from H2 (by the previous section) to H3, which is “dual to
H0 → H1,” is a connecting homomorphism. To make this precise we recall the Poitou-Tate duality
(although I think this form is usually referred as Artin-Verdier duality).

Let F be a number field, and U ⊂ SpecOF [1/p] be a Zariski open dense subscheme. For a finite
abelian group T with p-power order with an action of π1,ét(U) =: G, note that there is an exact
sequence

· · · → H i
c(U, T )→ H i

ét(U, T )→ ⊕v/∈UH i(Fv, T )→ H i+1
c (U, T )→ · · · ,

where the sum runs over all places (including Archimedean places) of F , and H i
c is the cohomology

with compact support. The definition of such functor is just the formal definition that should
follow from that the functor sits in the desired position of the long exact sequence. Namely, it
is just a cohomology group of a complex which is the mapping fiber (or any “homotopy fiber”)
of C(G,T ) → ⊕v/∈UC(Fv, T ) where C’s are the complexes of continuous cochains. If we remove
Archimedean places (in particular real places) from the long exact sequence, then the one that
should sit instead at the same position as H i

c(U, T ) is H i
ét(SpecOF , j!T ), where j : U ↪→ SpecOF ,

so we know that H i
c(U, T ) and H i

ét(SpecOF , j!T ) differ by a group killed by 2. As our p is odd this
difference thus will be not a problem, so we will ignore this issue from now on.

Then, the Poitou-Tate (or Artin-Verdier) duality can be stated as follows.

Theorem 4.1 (Poitou-Tate duality, e.g. [Mil, Cor. III.3.3(b)]). Let TD = Hom(T,Gm) =
Hom(T,Q/Z)(1) be the Cartier dual of T (in Uét). Then the cup product pairing H i

c(U, T ) ×
6



H3−i
ét (U, TD) → H3

c (U,Gm) ∼= Q/Z is a perfect pairing of finite abelian groups. In particular, if
T is killed by pn, then the cup product becomes

H i
c(U, T )×H3−i

ét (U, T∨(1))→ H3
c (U, (Z/pnZ)(1)) ∼= Z/pnZ,

where T∨ = Hom(T,Q/Z) is the Pontryagin dual.

The proof is quite involved, so let me instead justify why this precisely encodes (the p-part of)
global class field theory when T = Z/pnZ(1) and i = 1.

(1) Calculation of H3
c (U, (Z/pnZ)(1)) ∼= Z/pnZ.

The long exact sequence for compactly supported cohomology firstly gives

0→ H2
c (U, (Z/pnZ)(1))→ H2(U, (Z/pnZ)(1))→ ⊕v/∈U Br(Fv)/p

r Br(Fv)

→ H3
c (U, (Z/pnZ)(1))→ H3(U, (Z/pnZ)(1))→ 0,

(uses Hilbert 90 for the leftmost injectivity) but on the other hand the long exact sequence
of étale sheaves

0→ µpn → g∗µpn,η → DivU /p
n DivU → 0,

for g : η ↪→ U the inclusion of the generic point and DivU = ⊕v∈U0iv∗Z, where U0 is the set
of closed points of U and iv : v 7→ U , we get an exact sequence

0→ H2(U, (Z/pnZ)(1))→ Br(F )/pn Br(F )→ ⊕v∈U0 Br(Fv)/p
n Br(Fv)→ H3(U, (Z/pnZ)(1))→ 0,

which uses H3(F,Gm) = 0. The global class field theory says that there is an exact sequence

0→ Br(F )→ ⊕all v Br(Fv)
∑

invv−−−−→ Q/Z→ 0,

we can see that the above exact sequence can be replaced with

0→ H2(U, (Z/pnZ)(1))→ ⊕v/∈U Br(Fv)/p
n Br(Fv)

∑
invv−−−−→ Z/pnZ→ H3(U, (Z/pnZ)(1))→ 0,

which gives the desired conclusion (as well as H2
c (U, (Z/pnZ)(1)) = 0).

(2) Artin reciprocity as a duality of class formation. Recall that the p-primary part of the
reciprocity map of global class field theory, in the language of class formulation, can be
thought as a pairing

〈, 〉 : CGS
S (p)×H2(GS ,Z)(p)→ Qp/Zp,

where (p) means the p-primary part, CS = lim−→F⊂K⊂FS
CK,S is the limit of S-idèle class

groups (i.e.
∏′
w∈SK

×
w /O×K,S), and CGS

S = CF /UF,S (ray class group of modulus “m∞S ”)
where CF is the idèle class group and

UF,S =
∏
w/∈S

Ô×w .

Note that the reciprocity map rec : CGS
S → Gab

S is then obtained by realizing H2(GS ,Z)
∼←−

H1(GS ,Q/Z) = Homcts(GS ,Q/Z). Also, CGS
S = CF /UF,S sits inside a natural exact se-

quence
1→ CF,S → CF /UF,S → Cl(OF,S)→ 1,

where Cl is the ideal class group.
(3) H1

c (U, (Z/pnZ)(1)) is the idèle class group. On the other hand we have an exact sequence
like

0→ H0
c (U,Z/pnZ(1))→ Γ(U,OU )×/Γ(U,OU )×p

n

→ ⊕v/∈UF×v /F×p
n

v → H1
c (U,Z/pnZ(1))→ Pic(U)/pn Pic(U)→ 0.
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In particular we see that H1
c (U,Z/pnZ(1)) also sits inside a short exact sequence like

1→ CF,S [pn]→ H1
c (U,Z/pnZ(1))→ Cl(OF,S)[pn]→ 1,

where S is the set of primes not in U . In particular, we see here that the Artin-Verdier
duality for T = Z/pnZ(1) and i = 1, which says H1

c (U,Z/pnZ(1)) ∼= CGS
S is perfectly paired

with H2(U,Z/pnZ), is precisely the pn-torsion part of the reciprocity map of global class
field theory.

4.2. Υ as a connecting map. Now we apply this to see Υ as a connecting homomorphism.

Proposition 4.1. The composition H2
c (Z[1/p], Q(2)) → H2(Z[1/p], Q(2)) ∼= X

Υ−→ P is the same
as the minus of the connecting map

H2
c (Z[1/p], Q(2))→ H3

c (Z[1/p], P (2)) ∼= P (1) ∼= P,

from the exact sequence

0→ P (2)→ H/IH(2)→ Q(2)→ 0.

Inherent in the statement is that by the Poitou-Tate duality H3
c (U, T ) ∼= T (−1)G, the G-

coinvariants in T (−1), and that P (1) is a trivial GQ-module.

Proof. Let X = Gal(M/K), where M is the maximal pro-p abelian extension of K = Q(ζp∞)
unramified away from p (standard notation in Iwasawa theory). Then by restriction of crossed
homomorphism one sees that X is the Pontryagin dual of H1(Z[1/p, ζp∞ ],Qp/Zp), or by Poitou-
Tate duality,

X ∼= lim←−
r

H2
c (Z[1/p, ζpr ],Zp(1)) ∼= H2

c (Z[1/p],Λ](2)).

Now the dual of X → H2
c (Z[1/p], Q(2)) is H1(Z[1/p], Q∨(−1)) → H1(Z[1/p], (Λ])∨(−1)), which is

injective as H0(Z[1/p], (Λ])∨(−1)) = 0, so X → H2
c (Z[1/p], Q(2)) is surjective. Thus it is enough

to show the Proposition with H2
c (Z[1/p], Q(2)) replaced with X. As X � X is just the quotient as

Galois group, X � X
Υ−→ P also literally has the same formula σ 7→ (σ − 1)1̃ where 1̃ is a lift of

canonical 1 ∈ Q ∼= Λ/ξ.
Now we prove the Proposition by writing everything down explicitly. You can see this is plausible

by taking the Pontryagin dual of everything. The Pontryagin dual of the composition map is

P∨ ∼= H0(Z[1/p], P∨(−1))→ H1(Z[1/p], Q∨(−1))→ H1(Z[1/p, ζp∞ ], Q∨) ∼= Homcts(X, Q
∨)→ X∨,

where the first map is the dual of the connecting map H2
c → H3

c , which is actually the minus of
the connecting map of

0→ Q∨(−1)→ (H/IH)∨(−1)→ P∨(−1)→ 0.

What is this composition? For f ∈ P∨, you take a lift f̃ ∈ (H/IH)∨, and the image as a crossed
homomorphism in H1(Z[1/p], Q∨(−1)) is σ 7→ −(σ − 1)f̃ . Now the rest maps this to

“σ 7→ −(σ − 1)f̃(1̃)” ∈ X∨,

which is the image of f̃ via the minus of the dual of X � X
Υ−→ P . �
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5. Cup product map is ξ′ times a connecting map from Galois cohomology

Now here comes the most interesting part, which explains why ξ′ appears in the square.

Theorem 5.1. Let the composition H1(Z[1/p], Q(2))
∼−→ X(1)

∼−→ H2(Z[1/p], Q(2)) be denoted as a.
Then, ξ′a is the same as the cup product ∪(1− p−1) log(κ) : H1(Z[1/p], Q(2))→ H2(Z[1/p], Q(2)),
where (1− p−1) log(κ) : Gal(Q∞/Q)

∼−→ Zp which gives rise to a cocycle in H1(Z[1/p],Zp).

To be precise, ξ′ = tdξ/dt where the derivation is done after we make an identifiaction Λθ ∼=
Oθ[[T ]] by picking t ∈ Γ with (1 − p−1) log(κ(t)) = 1. Here κ : π1,ét(Z[1/p]) � Gal(Q∞/Q) → Z×p
and (1− p−1) log : Z×p → Zp

Proof. We will abbreviate (1 − p−1) log(κ) as lt : Γ = Gal(Q∞/Q) → Zp. As we have done in
Preston’s talk, we make somewhat unnecessary distinction between Λ = Zp[[Zp]] and Zp[[Γ]]. In
particular we use Zp[[Γ]]] for Zp[[Γ]] with Galois action σ ∈ GQ by [σ]−1.

(Step 1) ∪lt as connecting map. Namely we realize ∪lt also as something that “forgets the mul-
tiplication map,” just as in the definition of a. To be more precise, we claim that, for
any pro-p abelian group A with continuous π1,ét(Z[1/p])-action, −lt∪ : H i(Z[1/p], A) →
H i+1(Z[1/p], A) is the same as the composition

H i(Z[1/p], A)→ H i+1(Z[1/p],Zp[[Γ]]]⊗̂A)→ H i+1(Z[1/p], A),

which comes from the long exact sequence of group cohomology of

0→ Zp[[Γ]]]⊗̂A t⊗1−1−−−−→ Zp[[Γ]]]⊗̂A→ A→ 0,

by “omitting the multiplication by (t⊗1−1) map.” Why? By Yoneda embedding, the com-
position is the same as cupping with the image of 1 under the composition H0(Z[1/p],Zp)→
H1(Z[1/p],Zp[[Γ]]])→ H1(Z[1/p],Zp), so we only need to show this for i = 0, A = Zp. This
is some explicit calculation; the cocycle in H1(Z[1/p],Zp[[Γ]]]) corresponding to the image
of 1 by the connecting map is g 7→ r(g) where g−1 − 1 = (t− 1)r(g). In particular tn maps
to −(t−n + · · ·+ t−1). Thus this maps to tn 7→ −n in H1(Z[1/p],Zp), which is precisely −lt.

(Step 2) Double complex picture. Now we have to compare two connecting maps “omitting multi-
plication by sth map.” Here comes the general slogan.

If you have two natural maps X → Y from homological algebra, they’d better be the same (up to sign).

An application of this in our situation is the following: if there is a diagram of complexes

0

��

0

��

0

��
0 // P ′ //

��

Q′ //

��

R′ //

��

0

0 // P //

��

Q //

��

R //

��

0

0 // P ′′ //

��

Q′′ //

��

R′′ //

��

0

0 0 0
9



with exact rows and columns, then if Hj(Q′) → Hj(R′) is surjective and Hj(P ) → Hj(Q)
is injective, there are two kinds of connecting maps Hj−1(R′′)→ Hj(P ′′): one coming from
the long exact sequence

· · · → Hj−1(P ′′)→ Hj−1(Q′′)→ Hj−1(R′′)→ Hj(P ′′)→ Hj(Q′′)→ Hj(R′′)→ · · · ,
and one coming from the snake lemma of the diagram

ker(Hj(R′)→ Hj(R))

��
Hj(P ′) //

��

Hj(Q′) //

��

Hj(R′) //

��

0

0 // Hj(P ) //

��

Hj(Q) // Hj(R)

coker(Hj(P ′)→ Hj(P ))

namely

Hj−1(R′′) � ker(Hj(R′)→ Hj(R))
δ−→ coker(Hj(P ′)→ Hj(P )) = im(Hj(P )→ Hj(P ′′)) ↪→ Hj(P ′′).

Then, the two connecting maps are minuses to each other. This is an easy diagram chase
so I will not prove it but this seems certainly plausible.

In particular, the next step shows that the above lemma is applicable in our situation via
the double complex of Galois cochains of the following double complex of Galois modules:

0

��

0

��

0

��
0 // Zp[[Γ]]]⊗̂Zp[[Γ]]](2)

t⊗1−1//

1⊗ξ
��

Zp[[Γ]]]⊗̂Zp[[Γ]]](2) //

1⊗ξ
��

Zp[[Γ]]](2) //

ξ

��

0

0 // Zp[[Γ]]]⊗̂Zp[[Γ]]](2)
t⊗1−1//

��

Zp[[Γ]]]⊗̂Zp[[Γ]]](2) //

��

Zp[[Γ]]](2) //

��

0

0 // Zp[[Γ]]] ⊗Q(2)
t⊗1−1 //

��

Zp[[Γ]]] ⊗Q(2) //

��

Q(2) //

��

0

0 0 0

(Step 3) The top two row short exact sequences are easy. Namely, the exact sequence

0→ Zp[[Γ]]]⊗̂Zp[[Γ]]](2)
t⊗1−1−−−−→ Zp[[Γ]]]⊗̂Zp[[Γ]]](2)→ Zp[[Γ]]](2)→ 0,

is quite simple. As Galois modules,

Zp[[Γ]]]⊗̂Zp[[Γ]]]
t1⊗t2 7→t1⊗t−1

1 t2−−−−−−−−−−→ Zp[[Γ]]]⊗̂Zp[[Γ]],

is an isomorphism; here the absence of ] means GQ acts trivially on that coordinate. Then
the above exact sequence becomes

0→ Zp[[Γ]]]⊗̂Zp[[Γ]](2)
t⊗t−1−1−−−−−→ Zp[[Γ]]]⊗̂Zp[[Γ]](2)

x⊗y 7→xy−−−−−→ Zp[[Γ]]](2)→ 0,
10



which is evidently split. Thus, one can really apply the above lemma and thus we have

−∪lt = lt∪ = −connecting map of bottom row and project = connecting map of snake lemma and project.

The advantage of this approach is that both connecting map of snake lemma and con-
necting map of the rightmost column start with the same connecting map, so that
we can ignore the effect of a connecting map. Then what remains happens at the same
cohomological degree so that we could easily diagram chase.

The diagram for snake lemma is as follows.

H1(Z[1/p],Q(2))

∂
��

0 // H2(Z[1/p],Zp[[Γ]]](2))⊗̂Zp[[Γ]]
t⊗t−1−1//

1⊗ξ
��

H2(Z[1/p],Zp[[Γ]]](2))⊗̂Zp[[Γ]]
x⊗y 7→xy//

1⊗ξ
��

H2(Z[1/p],Zp[[Γ]]](2)) //

ξ

��

0

0 // H2(Z[1/p],Zp[[Γ]]](2))⊗̂Zp[[Γ]]
t⊗t−1−1//

��

H2(Z[1/p],Zp[[Γ]]](2))⊗̂Zp[[Γ]]
x⊗y 7→xy// H2(Z[1/p],Zp[[Γ]]](2)) // 0

H2(Z[1/p],Zp[[Γ]]]⊗̂Q(2))

Let x ∈ H2(Z[1/p], Q(2)). Then ∂(x) = y ∈ H2(Z[1/p],Zp[[Γ]]](2)) is killed by ξ, so its
lift y ⊗ 1 ∈ H2(Z[1/p],Zp[[Γ]]](2))⊗̂Zp[[Γ]] is killed by ξ ⊗ 1. Thus, (1 ⊗ ξ)(y ⊗ 1) =
(1 ⊗ ξ − ξ ⊗ 1)(y ⊗ 1). Now definitely (1 ⊗ ξ − ξ ⊗ 1) is a multiply of (t ⊗ t−1 − 1), so let
g = 1⊗ξ−ξ⊗1

t⊗t1−1 ∈ Zp[[Γ]]⊗̂Zp[[Γ]]. Thus it lands at the leftmost nonzero part of the bottom
exact row as gy. Now from this when we project down to H2(Z[1/p], Q(2)), if you think
about it, it goes to p(g)y, where

p : Zp[[Γ]]⊗̂Zp[[Γ]]
u⊗v 7→uv−−−−−→ Zp[[Γ]].

Now what we want to prove is that this operation

ξ 7→ 1⊗ ξ − ξ ⊗ 1 7→ g 7→ p(g),

yields us −tdξ/dt = −ξ′. Indeed,

1⊗ tn − tn ⊗ 1 = (t⊗ t−1 − 1)(−tn−1 ⊗ t− tn−2 ⊗ t2 − · · · − 1⊗ tn),

so this eventually maps to −ntn, as desired.
�

6. Commutativitiy of the middle square

Now we can prove the commutativitiy of the middle square.

Theorem 6.1. The following diagram is commutative.

H1(Z[1/p], H(2))
resp //

��

H1(Qp, P (2))

∪(1−p−1) log κ
��

X
ξ′Υ

// P

Here, the upper horizontal arrow uses

H � Hquo/IHquo
∼= P,
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and the right vertical map goes to H2(Qp, P (2)) = H2(Qp,Zp(1))⊗ P = P , by the unramifiedness
of P (1).

Proof. We can take ∪(1 − p−1) log κ first and take resp later, so we can use the following square
instead:

H1(Z[1/p], H(2))
∪(1−p−1) log κ

//

��

H2(Z[1/p], H(2))

resp

��
X

ξ′Υ
// P

We also know from cup = ξ′ times omission so that we know that the left block of

H1(Z[1/p], H(2))
∪(1−p−1) log κ //

��

H2(Z[1/p], H(2))

resp

��ww
X

ξ′
// X

Υ
// P

commutes! So what remains is the commutativity of the right triangle. This follows from Υ as
a connecting map: Υ is minus the connecting map of H2

c (global, Q(2)) → H3
c (global, P (2)) of

0→ P (2)→ H/IH(2)→ Q(2)→ 0. As you could have guessed it from the minus, this also fits in
the double complex picture as follows:

0

��

0

��

0

��
0 // Cc(Z[1/p], P (2)) //

��

Cc(Z[1/p], H/IH(2)) //

��

Cc(Z[1/p], Q(2)) //

��

0

0 // C(Z[1/p], P (2)) //

��

C(Z[1/p], H/IH(2)) //

��

C(Z[1/p], Q(2)) //

��

0

0 // C(Qp, P (2)) //

��

C(Qp, H/IH(2)) //

��

C(Qp, Q(2)) //

��

0

0 0 0

Here C means the natural complex that calculates the corresponding cohomology groups. This gives
a snake lemma diagram

H2
c (Z[1/p], Q(2))

��
H2(Z[1/p], P (2)) //

��

H2(Z[1/p], H/IH(2)) //

��

H2(Z[1/p], Q(2)) //

��

0

0 // H2(Qp, P (2)) //

��

H2(Qp, H/IH(2)) // H2(Qp, Q(2)) // 0

P
12



The bottom row comes from that 0 → P → H/IH → Q → 0 is split as Qp-representations.
Now the Υ map is the connecting homomorphism of the snake lemma, and that the class is from
H2(Z[1/p], H(2)) is something like we know the class at

−
− ∗ − 0

0 − − − 0
−

Now the connecting homomorphism of snake lemma is something like you go down the trajectory

−
− ∗ − 0

0 ← ↓ − 0
↓

but the only nontrivial part of this trajectory, namely the lift of a class in H2(Qp, H/IH(2)) to
H2(Qp, P (2)), which uses the exactness and that the class maps to 0 in H2(Qp, Q(2)), can be
replaced with a natural map using the unique splitting of 0 → P → H/IH → Q → 0 as local
representations. Thus the triangle commutes. �

7. Evaluation at ∞

7.1. Modular curve. We now explain the left triangle, which involves geometry. Here I would
like to correct a mistake I said in the first talk. I said something like “Q(1) is generated by 0-
cusps which correspond to 0 ∈ P1(Q),” but this is not quite correct. Rather, in our terminology,
0-cusps correspond to a/c ∈ P1(Q) where (c, level) = 1 (so (c, p) = 1), and ∞-cusps correspond
to a/c ∈ P1(Q) where the level divides c (so pr | c, and it includes ∞ =“1/0”). Each cusp gives a
Z[1/p, ζpr ]-valued point of X1(pr). In this talk all modular curves are by default over Z[1/p] unless
otherwise noted.

A brief explanation why Q(1) is generated by 0-cusps is as follows.
• Cusps are classified by pairs (c, d) ∈ Z/prZ × Z/prZ where either c or d is coprime to p,
modulo certain equivalence relation ((a, b) ∼ (a′, b′) if a′ ≡ ±a, b′ ≡ ±b mod a, respecting

signs on both sides). In our earlier notation a/c ∈ P1(Q) corresponds to (c, d) via
(
a b
c d

)
∈

SL2(Z).
• The action of T ∗(p) on (c, d) for c coprime to p (i.e. a 0-cusp) gives (c, d′) for some different
d′. In particular a combination of 0-cusps can be fixed up to unit by T ∗(p), thus surviving
after taking ordinary projector.
• The action of T ∗(p) on (c, d) for p|c gives a linear combination of (c/p, d′)’s. Thus any cusp
that is not a 0-cusp does not survive after taking the orindary part.

In particular, the surjective map in the exact sequence

0→ H → H̃ → Λ→ 0,

is the inverse limit of boundary maps to 0-cusps,

H1
ét(Y1(pr)Q,Zp)(1)

∂−→ Zp[{0-cusps}] = Zp[(Z/prZ)×/{±1}].

Do not forget that we are taking θ-isotypic components of everything, which eliminates prime-to-p
part of (Z/prZ)×/{±1}. Moreover, by this explicit map, {0,∞} is sent to −1, not 1.1

1This is already corrected in the notes.
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7.2. Commutativity of the left triangle. We state the theorem we want to prove.

Theorem 7.1. The evaluation at the ∞-cusp

lim←−
r

H2
ét(X1(pr),Zp(2))→ lim←−

r

H2(Z[1/p, ζpr ],Zp(2)),

coincides with the composition

lim←−
r

H2
ét(X1(pr),Zp(2))

Hochschild-Serre−−−−−−−−−−→ H1(Z[1/p], H(2))

→ H1(Z[1/p], Q(2)) ∼= X(1).

Some explanations.
• The “∞-cusp” is the cusp ∞(0, 1) ∈ X1(pr)(Z[1/p, ζpr ]+) corresponding to 1/0 = ∞ ∈
P1(Q). Again remember that we suppressed θ from our notation.
• The first map of the composition is really a consequence of the Hochschild-Serre spectral
sequence

Ei,j2 = H i(Z[1/p], Hj
ét(X1(pr)Q,Z/p

nZ)(2))⇒ Ei+j∞ = H i+j(X1(pr),Z/pnZ(2)),

because H0(Z[1/p], H2
ét(X1(pr)Q,Z/p

nZ)(2)) = 0; recall that a low-degree exact sequence of
a cohomological convergent spectral sequence can be read off as

E0,1
2

d2−→ E2,0
2 → ker(E2

∞ → E0,2
2 )→ E1,1

2 → E3,0
2 .

Proof. Let’s prove.
(Step 1) Removing Q. We reinterpret H1(Z[1/p], H(2))→ H1(Z[1/p], Q(2)), the connecting homo-

morphism of
0→ Λ](2)

ξ−→ Λ](2)→ Q(2)→ 0,

as something to do with H. Namely, the exact sequence, which is something about “constant
terms of modular forms”, is actually an avatar of a sequence of spaces of modular forms as
follows.

0 // Λ](2) // H̃c(2) //

(−,[g])
��

H(2) //

(−,ξ{0,∞}DM)

��

0

0 // Λ](2) // Λ](2) // Q(2) // 0

Here, H̃c = lim←−rH
1
ét,c(Y1(pr)Q,Zp)

ord, which is paired with H̃ similarly via Λ-adic Poincaré
pairing, and [g] ∈ H̃(1) is the sequence of Siegel units ({g0,1/pr}) ∈ H̃(1), which, a priori
a compatible collection of global sections of Y1(pr)’s, are sent to H̃(1) via Kummer theory
(or the exact sequence 0 → Z/pnZ(1) → Gm → Gm → 0 in the étale site of Y1(pr)). Also,
the top horizontal row is the Λ-dual of the exact sequence

0→ H → H̃ → Λ→ 0,

via the Poincaré pairing. As I have explained earlier, the surjection is the boundary map at
0-cusp, so by using the explicit formula for the q-expansions of Siegel units (at 0), we check
that [g] maps to ξ via the surjection. This explains the commutativity of the left square.

Now we see that by that {0,∞} 7→ −1, [g] 7→ ξ, we know ξ{0,∞} + [g] ∈ H ⊂ H̃.
But [g]DM = 0, because the elements of H̃ coming from O(Y (pr)Q)× ⊗ Z/pnZ form a T-
submodule which has no intersection with H (by q-expansion principle that module into
the quotient H̃/H is an injection), so the whole module is killed when we take ⊗TT0. This

14



means ξ{0,∞}DM = ξ{0,∞}+ [g] by taking DM! Now note that in (, ) : H̃c × H̃ → Λ, we
can pull ξ out without any difficulty, so the right commutativity is established.

Therefore, the connecting mapH1(Z[1/p], H(2))→ H1(Z[1/p], Q(2))
∼−→ H2(Z[1/p],Λ](2))

coincides with the connecting map H1(Z[1/p], H(2))→ H2(Z[1/p],Λ](2)) of the upper row.
(Step 2) Geometric meaning of 0 → Λ](2) → H̃c(2) → H(2) → 0. The Λ-adic Poincaré pairing in-

volves Atkin-Lehner involution, so only ∞-cusps contribute 0→ Λ](2)→ H̃c(2)→ H(2)→
0. To be more precise, what we said about nonzero cusps being killed by taking ordinary
parts means that H → H̃, which is by definition

lim−→
n,r

H1
ét(X1(pr)Q,Z/p

nZ)ord → lim−→
n,r

H1
ét(X1(pr)Q, j∗(Z/p

nZ))ord,

for j : Y1(pr) ↪→ X1(pr), is actually identified with

lim−→
n,r

H1
ét(X1(pr)Q,Z/p

nZ)ord → lim−→
n,r

H1
ét(X1(pr)Q, j

′
∗(Z/pnZ))ord,

where j′ : X1(pr) − {0-cusps} ↪→ X1(pr). Thus, the dual of this map via the Poincaré
pairing, which is by definition

lim−→
n,r

H1
ét(X1(pr)Q, j!(Z/p

nZ))ord → lim−→
n,r

H1
ét(X1(pr)Q,Z/p

nZ)ord,

is actually identified with

lim−→
n,r

H1
ét(X1(pr)Q, j

′′
! (Z/pnZ))ord → lim−→

n,r

H1
ét(X1(pr)Q,Z/p

nZ)ord,

where j′′ : X1(pr)− {∞-cusps} ↪→ X1(pr).
This means that the dual exact sequence

0→ Λ](2)→ H̃c(2)→ H(2)→ 0,

is the (θ,m-component of the) inverse limit of

0→ T → H1
ét(X1(pr)Q, F

′)→ H1
ét(X1(pr)Q, F )→ 0,

where F = Z/pnZ(2) on (X1(pr)Q)ét, F ′′ = i∗(Z/pnZ)(2) for i : {∞-cusps} → X1(pr)Q,
F ′ = ker(F → F ′′) and

T = coker(H0
ét(X1(pr)Q,Z/p

nZ)(2)→ H0
ét(X1(pr)Q, F

′′)).

More precisely, i is the map i : SpecZ[1/p, ζpr ]+ ⊗Z[1/p] Q→ X1(pr)Q, thus

T = coker(Z/pnZ(2)→ Z/pnZ[(Z/prZ)×/{±1}](2)).

Therefore, after taking θ-isotypic component, there is actually no difference between T and
H0

ét(X1(pr)Q, F
′′) (θ = ω2−k is not ω2).

(Step 3) Maps between Hochschild-Serre spectral sequences. It is now sufficient to prove that

H2
ét(X1(pr)Z[1/p],Z/pnZ(2))

ev. at ∞ //

Hochschild-Serre
��

H2
ét(∞,Z/pnZ(2))

��
H1

ét(Z[1/p], H1
ét(X1(pr)Q,Z/p

nZ)(2)) // H2
ét(Z[1/p], T )
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is commutative, because we have observed that the right vertical map is an isomorphism
after taking θ-component. In terms of étale sheaves, this is

H2(X,F )

��

// H2(X,F ′′)

��
H1(Z[1/p], R1fF ) // H2(Z[1/p], T )

where we suppressed ét, X = X1(pr)Z[1/p], f : Xét → (SpecZ[1/p])ét, the right vertical
map comes from H2(X,F ′′) = H2(Z[1/p], fF ′′) → H2(Z[1/p], T ) (R>0fF ′′ = 0), and the
bottom horizontal map comes from the connecting map of 0→ T → R1fF ′ → R1fF → 0.
One can really check that given such an abstract situation we have a commutative square.
To be more precise, the “abstract situation” we are in is as follows.

Lemma 7.1. Let C1
f−→ C2

g−→ C3 be left-exact functors of nice enough additive abelian
categories (enough injectives is sufficient I guess) so that there is a composition-of-functors
spectral sequence Ep,q2 (F ) = Rpg∗R

qf∗F ⇒ Rp+q(gf)F for any F ∈ C1. Suppose that we are
given with an exact sequence 0→ F ′ → F → F ′′ → 0 in C1 so that the following conditions
are satisfied.
• Rqf∗F ′′ = 0 for all q > 0.
• 0→ fF → fF ′′ → T → 0, which also fits into 0→ T → Rf1F ′ → Rf1F → 0.
• g(R2fF ) = 0.

Then the analogous square

R2(gf)F //

��

R2(gf)F ′′ = R2g(fF ′′)

��
R1g(R1fF ) // R2g(T )

commutes.

This can really be proved by using a nice enough injective resolution of the double complex
computing the composition-of-functors spectral sequence, where “nice enough” means that
you can use the same injective resolution even after taking Rif . Then really you are using
the same resolution to compute maps in two different ways. This again should be believable
under our general slogan, repeated below.

If you have two natural maps X → Y from homological algebra, they’d better be the same (up to sign).

�
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